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Abstract

In this paper we shall give some results on irreducible deductive sys-
tems in BCK-algebras and we shall prove that the set of all deductive
systems of a BCK-algebra is a Heyting algebra. As a consequence of this
result we shall show that the annihilator F ∗ of a deductive system F is
the the pseudocomplement of F . These results are more general than that
the similar results given by M. Kondo in [7].
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1 Introduction and preliminaries

In [7] it was shown that the set of all ideals (or deductive systems, in our
terminology) of a BCK-algebraA is a pseudocomplement distributive lattice and
that the annihilator F ∗ of a deductive system F of A is the pseudocomplement
of F. Related results on annihilators in Hilbert algebras and Tarski algebras (or
also called commutative Hilbert algebras [6] or Abbot’s implication algebras)
are given in [2] and [3]. On the other hand, it was shown in [9] that the set
of deductive systems Ds(A) of a BCK-algebra A is an infinitely distributive
lattice, and thus it is a Heyting algebra. In this note we will give a description
of this fact and we shall prove that the annihilator F ∗ of the deductive system F
can be obtained as F ∗ = F ⇒ {1}, where ⇒ is the Heyting implication defined
in the lattice Ds(A).
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In the remaining part of this section we shall review some results on BCK-
algebras. In section 2 we shall study the notion of irreducible deductive system.
In particular, we shall give a generalization of a result given in [8] for BCK-
algebras with supremum. In Section 3 we shall prove that the lattice of deductive
system of a BCK-algebra is a Heyting algebra.

Definition 1 An algebra A = 〈A,→, 1〉 of type (2, 0) is a BCK-algebra if for
all a, b, c ∈ A the following conditions hold:

1. a → a = 1,

2. (a → b) → ((b → c) → (a → c)) = 1,

3. a → (b → c) = b → (a → c),

4. a → (b → a) = 1

5. a → b = 1 and b → a = 1, implies a = b.

If A is a BCK-algebra and we define the binary relation ≤ on A by a ≤ b if
and only if a → b = 1, then ≤ is a partial order in A.
Let us recall that in all BCK-algebrasA the following properties are satisfied:

P1 1 → a = a,

P2 a → ((a → b) → b) = 1

P3 a → b ≤ (c → b) → (c → a),

P4 a → b = ((a → b) → b) → b,

P5 if a ≤ b, then c → a ≤ c → b and b → c ≤ a → c.

A BCK-algebra with supremum, or BCK∨-algebra is an algebra

A = 〈A,→,∨, 1〉
where 〈A,→, 1〉 is a BCK-algebra, 〈A,∨, 1〉 is a join-semilattice, and a → b = 1
if and only if a∨ b = b. For a, b ∈ A we define inductively a →n b as a →0 b = b
and a →n+1 b = a → ((a →n b)).
Let A be a BCK-algebra. A deductive system or filter of A is a nonempty

subset F of A such that 1 ∈ F , and for every a, b ∈ A, if a, a → b ∈ F , then
b ∈ F . It is clear that if F is a deductive system, a ≤ b and a ∈ F , then b ∈ F .
The set of all deductive system of a BCK-algebra A is denoted by Ds(A). The
deductive system generated by a set X ⊆ A is denoted by 〈X〉. Let us recall
that

〈X〉 = {a ∈ A : x1 → (. . . (xn → a) . . .) = 1 for some x1, . . . , xn ∈ X} .

In particular, 〈x〉 = {a ∈ A : x → (. . . (x → a) . . .) = x →n a = 1}.
Let A be a BCK-algebra. In [9] (see also [10]) it was proved that the struc-

ture 〈Ds(A),∨,∧, {1}, A〉 is a bounded (infinitely) distributive lattice where the
operations ∧ and ∨ are defined by:

F1 ∧ F2 = F1 ∩ F2

F1 ∨ F2 = {a ∈ A : ∃(x, y) ∈ F1 × F2; x → (y → a) = 1} .
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We note that

F ∨ 〈a〉 = {c ∈ A : a →n c ∈ F for some n ≥ 0}

for F ∈ Ds(A) and a ∈ A. Indeed, let c ∈ F ∨ 〈a〉. Then there exist x ∈ F and
n ≥ 0 such that x → (y → c) = 1 and a →n y = 1. Since x → (y → c) = 1 ∈ F ,
y → c ∈ F . So, y → c ≤ (a →n y) → (a →n c) = 1 → (a →n c) = a →n c ∈ F .

2 Irreducible deductive systems

In [8] the separation theorem for BCK∨-algebras was proved. In this section
following the paper [1], we prove a separation theorem for any BCK-algebra.
Let A be a BCK-algebra. A deductive system F is irreducible if and only if

for any F1, F2 ∈ Ds(A) such that F = F1 ∩F2, we have F = F1 or F = F2. We
denote byX(A) the set of all irreducible deductive systems of a BCK-algebraA.

Lemma 2 Let A be a BCK-algebra. Let F ∈ Ds(A). Then F is irreducible if
and only if for every a, b /∈ F there exist c /∈ F and n ≥ 0 such that a →n c,
b →n c ∈ F .

Proof ⇒) Let a, b /∈ F . Let us consider the deductive systems Fa = 〈F ∪ {a}〉 =
F ∨ 〈a〉 and Fb = 〈F ∪ {b}〉 = F ∨ 〈b〉. Since F �= Fa and F �= Fb, then
by irreducibility of F we have F ⊂ Fa ∩ Fb . It follows that there exists
c ∈ (Fa ∩ Fb)− F . Then a →n c ∈ F and b →m c ∈ F for some n, m ≥ 0. If we
assume that n ≥ m, then by property P4 we have that b →m c ≤ b →n c. So,
a →n c ∈ F and b →n c ∈ F .

⇐). Let F1, F2 ∈ Ds(A) such that F = F1 ∩ F2. Suppose that F �= F1 and
F �= F2. Then there exist a ∈ F1 − F and b ∈ F2 − F . So, by the assumption,
there exists c /∈ F and n ≥ 0 such that a →n c ∈ F and b →n c ∈ F . As,
a, a →n c ∈ F1 and F1 ∈ Ds(A), then c ∈ F1. Similarly, c ∈ F2. Thus,
c ∈ F1 ∩ F2 = F , which is a contradiction. �

Let A be a BCK-algebra. A subset I of A is called an ideal of A if:

1. If b ∈ I and a ≤ b, then a ∈ I.

2. If a, b ∈ I there exists c ∈ I such that a ≤ c and b ≤ c.

The set of all ideals of A will be denoted by Id(A).

Theorem 3 Let A be a BCK-algebra. Let F ∈ Ds(A) and I ∈ Id(A) such
that F ∩ I = ∅. Then there exists P ∈ X(A) such that F ⊆ P and P ∩ I = ∅.

Proof Let us consider the following subset of Ds(A):

F = {H ∈ Ds(A) : F ⊆ H and H ∩ I = ∅} .

Since F ∈ F , then F �= ∅. It is clear that the union of a chain of elements of F
is also in F . So, by Zorn’s lemma, there exists a maximal element P of F . We



30 S. A. CELANI

prove that P ∈ X(A). Let a, b /∈ P and let us consider the deductive systems
Pa = 〈P ∪ {a}〉 and Pb = 〈P ∪ {b}〉. Clearly, P ⊂ Pa ∩ Pb. Then, Pa, Pb /∈ F .
Thus, Pa ∩ I �= ∅ and Pa ∩ I �= ∅. It follows that there exist x, y ∈ I such that
a →n x ∈ P and b →m y ∈ P for some n, m ≥ 0. Suppose that m ≤ n. Then
b →m y ≤ b →n y ∈ P . Since I is an ideal, there exists c ∈ I such that x ≤ c
and y ≤ c. So, a →n x ≤ a →n c ∈ P and b →n y ≤ b →n c ∈ P . Therefore, by
Lemma 2, we conclude that P ∈ X(A). �

Corollary 4 Let A be a BCK-algebra. Let F ∈ Ds(A).

1. For each a /∈ F there exists P ∈ X(A) such that a /∈ P and F ⊆ P .

2. F =
⋂ {P ∈ X(A) : F ⊆ P}.

3 Annihilators

Let us recall that a Heyting algebra is an algebra 〈A,∨,∧,⇒, 0, 1〉 of type
(2, 2, 2, 0, 0) such that 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice and the
operation ⇒ satisfies the condition: a ∧ b ≤ c if and only if a ≤ b ⇒ c, for
all a, b, c ∈ A. The pseudocomplement of an element x ∈ A is the element
x∗ = x ⇒ 0.
Let A be a BCK-algebra. Let a ∈ A. Define the set [a) = {x ∈ A : a ≤ x}.

We note that in general the set [a) /∈ Ds(A).
For each pair F, H ∈ Ds(A) let us define the subset F ⇒ H of A as follows:

F ⇒ H = {a ∈ A : [a) ∩ F ⊆ H} .

Theorem 5 Let A be a BCK-algebra. Let F, H ∈ Ds(A). Then

1. F ⇒ H ∈ Ds(A).

2. F ⇒ H = {x ∈ A : (x → f) → f ∈ H for each f ∈ F}.

3. 〈Fi(A),∨,∧,⇒, {1}, A〉 is a Heyting algebra.

Proof 1. Since, [1) ∩ F = {1} ⊆ H , then 1 ∈ F ⇒ H .
Let x, x → y ∈ F ⇒ H . Then, [x) ∩ F ⊆ H and [x → y) ∩ F ⊆ H . Let

z ∈ [y) ∩ F . As, y ≤ z, then by the property P5, x → y ≤ x → z. By property
P4., we have x → z ∈ F . Thus,

x → z ∈ [x → y) ∩ F.

On the other hand, as x ≤ (x → z) → z and z ≤ (x → z) → z, we get
(x → z) → z ∈ [x) ∩ F . Therefore,

x → z, (x → z) → z ∈ H,

and consequently z ∈ H . So, F ⇒ H ∈ Ds(A).
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2. We prove that

F ⇒ H ⊆ G = {x ∈ A : (x → f) → f ∈ H for each f ∈ F} .

Let x ∈ A such that [x) ∩ F ⊆ H . Let f ∈ F . Since, x ≤ (x → f) → f and
f ≤ (x → f) → f , then (x → f) → f ∈ [x) ∩ F ⊆ H . Thus, x ∈ G.
Let x ∈ G. Let y ∈ A such that x ≤ y and y ∈ F . Since (x → y) → y ∈ H

and x → y = 1, then 1 → y = y ∈ H . Thus, x ∈ F ⇒ H .
3. Let F, H, K ∈ Ds(A). Then it is easy to check that

F ∩H ⊆ K if and only if F ⊆ H ⇒ K.

Thus, 〈Ds(A),∨,∧,⇒, {1}, A〉 is a Heyting algebra. �

As a corollary we have the following result, first given by M. Kondo in [7].

Corollary 6 Let A be a BCK-algebra. The annihilator of a deductive system
F is the deductive system

F ∗ = F ⇒ {1} = {x ∈ A : [x) ∩ F = {1}} .

Proof It is immediate by the above theorem. �

For BCK∨-algebras we can give the following result which generalize a similar
result given by M. Kondo in [7] for commutative BCK-algebras.

Proposition 7 Let A be a BCK∨-algebra. Then for every F ∈ Ds(A)

F ∗ = {x ∈ A : x ∨ f = 1 for each f ∈ F} .

Proof Let x ∈ A such that x ∨ f = 1 for each f ∈ F . We prove that
[x) ∩ F = {1}. Let a ∈ A such that x ≤ a and a ∈ F . Then a = x ∨ a = 1.
Thus, x ∈ F ∗.
Let x ∈ F ∗. Then [x) ∩ F = {1}. Since x ≤ x ∨ f , f ≤ x ∨ f , for each

f ∈ F , and as F is increasing, then x ∨ f ∈ [x) ∩ F . Thus, x ∨ f = 1, for each
f ∈ F . �

Now we prove that the annihilator of a subset X is the annihilator of the
deductive system generated by X . This result was proved for Tarski algebras
in [2].

Theorem 8 Let A be a BCK∨-algebra. Then for every subset X of A, we have
X∗ = 〈X〉∗.
Proof Since X ⊆ 〈X〉, then 〈X〉∗ ⊆ X∗. Let x ∈ X∗. We prove that for every
a ∈ 〈X〉, x ∨ a = 1. Suppose that there exists a ∈ 〈X〉 such that a ∨ x �= 1.
Then there exist x1, . . . , xk ∈ X such that

x1 → (x2 → . . . (xk → a) . . .) = 1.

As x ∈ X∗, x∨xi = 1 for every xi ∈ {x1, . . . , xk}. Since, a∨x �= 1, by Theorem
3 there exists an irreducible deductive system P such that x /∈ P , a /∈ P and
taking into account that x ∨ xi = 1, then xi ∈ P for every xi ∈ {x1, . . . , xk}.
But since, x1 → (x2 → . . . (xk → a) . . .) = 1 ∈ P , then a ∈ P , which is a
contradiction. Thus, a ∨ x = 1 for every a ∈ 〈X〉 and consequently x ∈ 〈X〉∗.

�
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