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ON THE EXISTENCE OF A SOLUTION 
FOR NONLINEAR OPERATOR EQUATIONS 

IN FRECHET SPACES 

MARIA KECKEMETYOVA 

ABSTRACT. There is proved a theorem on the existence of a solution for opera­
tor equation Lx = Nx in Frechet space in this paper, where L is a linear operator 
and N is generally nonlinear and also the existence of a continuous solution for 
a system of nonlinear differential equations with linear boundary conditions is 
proved. 

Introduction 

The aim of this paper is to prove some theorems which assure the existence 
of a solution for the equation 

Lx = Nx, (1.1) 

where L is a linear operator, N is an operator, generally nonlinear, both of 
them are defined in a Frechet space. In the first section we shall prove the 
continuation theorem by using the theorem which states equivalence between the 
set of solutions for (1.1) and the set of fixed points of the operator M defined 
by (1.6) and using Schaefer's theorem [5]. This theorem is a modification of the 
continuation theorem which was proved by P . L . Z e z z a [6] in Banach space 
on Frechet space . In the second section we shall transform by the method of 
M . C e c c h i , M . M a r i n i , P . L . Z e z z a [1] the nonlinear system 

x(t)-A(t)x(t) = f(t,x(t)) 

with linear boundary conditions 

Tx = r 

into the form of (1.1) and using the equivalence theorem and Tichonov's fixed 
point theorem [3] we shall prove a theorem which assures the existence of a 
continuous solution, generally unbounded, for this boundary-value problem. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34B15. Secondary 47H10. 
K e y w o r d s : Nonlinear operator equation, Boundary value problem, Fixed point, Frechet 

space. 
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1. Let X be a Frechet space, Y be a locally convex space and let L: 
domL C X —•> Y be a linear operator such that: dim(Ker_/) < oo . Then 
there exists [4] a linear continuous projection P from X into X such that: 

Im P = Ker L (and simultaneously 

LPx = 0 for each x eX). 
(1.2) 

Then the space X can be expressed as a topological direct sum 

N = Np©X7_p, (1.3) 

where Xp = ImP, N/-p = Im(I — P) and I: X —» X is the identity mapping. 
Clearly L \(domL) f l l *s m v e r t -k - e and it is onto ImL . 

Let Kp be its inverse operator: 

KP: I m L - ^ ( d o m L ) n N / _ p . (1.4) 

Let N be an operator generally nonlinear, N: dom N C X —+ Y . The following 
theorem holds for the operators L, N and for the equation 

Lx = Nx. (1.1) 

THEOREM 1.1. Let A = {x £ X: Nx G ImL) = i V ' ^ I m L ) /- 0. The 
equation (1.1) w then equivalent to the equation 

x = Px + KpNx with x e A. (1.5) 

For demonstration see [6]. 

We can write the equation (1.5) in the form 

x = Mx (1.6) 

with M : dom M C X —• -X", dom M = A, where Mx = Px + KpNx . 

COROLLARY 1.1. Let A ^ 0. Then the equation 

x = KPNx (1.7) 

is equivalent to the equations Lx = Nx, Px = 0. 

R e m a r k 1.1. If A = 0, then ImFn ImN = 0 and equation (1.5) has no 
solution. 
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ON THE EXISTENCE OF A SOLUTION FOR NONLINEAR OPERATOR EQUATIONS... 

R e m a r k 1.2. If the operator N is completely continuous and Kp is con­
t inuous, then KpN: d o m M C X —» Y is completely continuous. T h e operator 
M is also completely continuous since P is continuous and its range is finite 
dimensional. We shall obta in a similar result if the opera tor Kp is completely 
continuous and N is continuous and bounded, it means tha t N maps bounded 
sets into bounded sets. 

Fur ther we shall use the following theorem which is the extension of Leray-
Schauder 's theorem to locally convex spaces. Firs t , we shall in t roduce the fol­
lowing definition. 

D E F I N I T I O N 1 .1 . Let X be a real locally convex space. The mapping 

t/) : X —> X is called strictly completely continuous if and only if it is continuous 

and such that tp(nU) is a relatively compact set for each natural number n and 

neighbourhood U of 0 in X . 

T H E O R E M 1.2. (Schaefer's theorem [5]). Let X be a real complete locally 
convex space. Let tp: X —> X be strictly completely continuous. Then either 
there exist a solution of the equation x = Xtp(x) for each X G (0; 1) or the set 
of all possible solutions of the equation x = Xtj)(x) {x: x = Xtp(x)') X G (0; 1)} 
is not bounded in X . 

R e m a r k 1.3. Because a bounded set is absorbed by each neighbourhood 
of 0 , a strictly completely continuous mapping maps each bounded set into a 
relatively compact set and therefore the following implicat ion holds: 
If a mapping is strictly completely continuous, then it is completely continuous. 

L E M M A 1 .1 . Let the operators L and N be such that N is defined in the 

whole space X and 

N(X)clmL. (1.8) 

Let either 

(1.9) N be strictly completely continuous and Kp be continuous 
or 

(1.10) N be a continuous mapping with the property: 
For each neighbourhood U\ (N(0)) of the point N(0) there exists such 
a neighbourhood V(0) of 0 that for each natural number n there exists 

a natural number k for which we have: N(nV(0)) C kU\(N(0)) and 

Kp be strictly completely continuous. 

Then the mapping KpN: X —» X is strictly completely continuous. 

P r o o f . Since Nx G Im L for each x G X, A = X. Fur ther , the m a p ­
ping KpN is continuous in bo th cases (1.9), (1.10). Suppose tha t (1.9) holds. 
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Let n be a n a t u r a l number, let U(0) be a neighbourhood of 0 such that 

N(nU(0)) is a relatively compact set. T h e n N(nU(0)) is a compact set and 

the set J\p(N(nU(0))) is also compact since the mapping Kp is continuous . 

T h e n the set 7 \ p ( N ( n U ( 0 ) ) ) is also relatively compact. 

Now let (1.10) hold and n be an arbitrary, but.fixed n a t u r a l number . T h e n 

there exists such a neighbourhood U(0) of 0 t h a t J\p(nU(0)) is a relatively 

compact set. Let us consider the neighbourhood U\ (N(0)) — N(0) + U(0) of 

the point N(0). T h e n there exists a neighbourhood V(0) of 0 such t h a t for 

each n a t u r a l n u m b e r n there exists a n a t u r a l number k wi th the proper ty : 

N(nV(0)) C kUi(N(0)). So we have: 

KPN(nV(0)) C A X Ш Ј Í Л Ҷ O ) ) ) = 

= KP(k(N(0) + U(0))) = kKP(N(0)) + Kp(W(0)) 

a n d J\p(k(Ui ( N ( 0 ) ) ) ) is a relatively compact set a n d hence its subset 

J\pN(n(V(0))) is also relatively compact. 

Consequently, t h e mapping KpN is in both cases strictly completely con­
t inuous. 

COROLLARY 1.2. Let X be a real Frechet space, the topology of which is de­

termined by the system of seminorms {pm}m-i • Let the mapping M0 : X —> X 

be strictly completely continuous. If the set {x: x = \M0(x); 0 < A < 1} is 

bounded (that means: For each natural number m there exists cm > 0 such that 

if x = AMo(:r), then pm(x) < cm), then there exists at least one fixed point of 

Mo. 

Using Corollaries 1.1, 1.2 and Lemma 1.1 we shall prove the following theo­

rem. 

T H E O R E M 1.3. (Continuation theorem). Let X be a real Frechet space the 

topology of which is determined by the nondecreasinq system of seminorms 

{pm}m=i • Let there exist cm > 0 for each natural number m such that the 

following implication holds: 

If x is an arbitrary possible solution of the equation Lx XNx for each 

A, 0 < A < 1, then pm(x) < cm . 

Let L and N satisfy all hypotheses of Lemma 1.1. Then equation Lx = Nx 

has at least one solution. 

P r o o f . Let M 0 = KpN. By Lemma 1.1 M 0 : X —* X is strictly com­
pletely continuous . Now let us prove 

{x: x = AM 0 (x) ; 0 < A < 1} C {x: Lx = ANx; 0 < A < 1} . (1.11) 
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Consider an arbi t rary element x E X such tha t x = XMQ(X) . Applying oper­

ator L to bo th sides of the last equality we obta in Lx = L(XMQ(X)) , where 

L(XM0(x)) = XL(KpNx) and LKPNx = Nx. Therefore Lx = XNx, it means 

tha t (1.11) holds. Hence the set {x: x = XMQ(X)] 0 < A < 1} is also bounded 

and by Corollary 1.2 there exists at least one fixed point of MQ . T h e assertion 

of the theorem follows from Corollary 1.1. 

By the Banach fixed point theorem and Corollary 1.1 we shall prove the 
following theorem. 

T H E O R E M 1.4. Let X and Y be two Banach spaces with norms | | - | | x , | | ' | | y > 
respectively. Let the mapping Kp\ I m L C Y —* X be continuous with the norm 
| | i vp | | . Let N: X —> Y satisfy condition (1.8) and 

\\Nx - Ny\\Y < q\\x - y\\x for each x, y E K, (1.12) 

where q\\Kp\\ < 1 . 

Then there exists a unique solution x of the equation (1.1) which satisfies 

Px = 0. 

P r o o f . It suffices to prove tha t the mapping M 0 = KpN is contractive in 
X. First of all, from (1.8) it follows tha t MQ is defined in X. Fur ther we have 
for any two elements x,y E X : 

\\M0x - Moy | |x < | |A>| | • \\Nx - Ny\\Y < q\\KP\\ • \\x - y\\x 

wherefrom the result follows. 

2 . Let a be a real number and let C = C ( ( a ; c o ) , R n ) be a real locally convex 

space of continuous functions from (a; oo) into R n , the topology of which is 

given by the system of seminorms: pm(x) = sup{ | |x(r) | | ; t E (a;a + m ) } for 

each x E C, where || • || is a norm in R n . T h e space C with this system of 

seminorms is a Frechet space, which means tha t it is locally convex, metr izable 

and complete. 

If A = ( a , j ) n
J = 1 is an n x n mat r ix , then the mat r ix no rm 

IAII =(£«?„•) 
1/2 

is compatible with the vector norm [2], it means tha t it satisfies the following 
conditions: 

||A|| < ||A|| • | |x|| for an arbi t rary n x n ma t r ix and for each vector 
x E R n . 
| |AB| | < ||A|| • | |B | | for a rb i t rary two n x n matr ices A, B . 
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In this section we shall investigate the existence of a solution for the system 

x(t)-A(t)x(t) = f(t,x(t)) (2.1) 

which satisfies the boundary conditions: 

Tx = r r eRm (1 < m < n), (2.2) 

where A(t) is an n x n matrix, continuous on (a; oo). 

Let / : (a; oo) x Rn —> Rn be a continuous function and let T: 
domT C C —* Rm (1 < m < n) be a linear continuous operator. This means 
that there exists such a 7 > 0 and natural number mo that: 
||Tx|| < 7Pm0(

x) f° r each x G domT. Let D be a space of all possible solutions 
of the linear system 

y(t) - A(t)y(t) = 0 (2.3) 

from C((a;oo),Rn) . Let us assume that T satisfies the condition: 

D C domT and T(D) = Rm. (2.4) 

Now let us transform (2.1)-(2.2) into the form of the equation (1.1). 

Let L: domL C C —•> C x Rm be the linear operator defined by the relation: 

x(-) »-> (x(-) - A(')x(-),Tx) , where domL = (Cl(a; 00),Rn) fl domT and let 

N: dom N C C —* C x Rm be the operator which is determined by the relation: 

x(-) »-* (/(-,x(-)),r) . Then the system (2.1)-(2.2) is equivalent to the equation 

of the form (1.1). 

Now we shall construct the operator M which is defined by (1.6). 
Let k = dim(Ker L) = n — m ( k ^ O if m < n). Let <pi,..., (fk be a basis 

for Ker L. This basis can be extended to a basis of D : 

y?i,...,<p*,<p]fc+i,...,y>n, <pi e C i = l , . . . , n . 

Then X(t) = (^1(^)5 • • • ̂ n (O) ls ^ n e fundamental matrix for equation (2.3). 
System {(fi}"=1 is bounded in C, so the following assertion holds: 
For any m G N there exists Hm > 0 such that 

sup{||X(r)||; te (a;a + m)} <Hm. 

Further, let 

Pi: C -> D Pi: x(-) »-> X(-)X-\a)x(a) 

n k 

P2:D-+ KevL F2 : y(.) = ^ A ^ ( - ) ~ ^ A « ^ * ) 
1=1 t = i 
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be linear topological projections. 

Then P = P2 o P x : C -> KerL C C is a topological projection in the space 
C onto Ker L. Then C = Ker L 0 C/_P . 

Let I\p : Imi—> (dom L)nCj-p be the inverse operator of L Mom L)nCI_p* 

It has been proved in [lj that Kp has the form: 

KP (b(t), r) = X(t)JT-* (r - Tz(t, a, 0)) + z(t, a, 0) = 

t t 

= X(t)JT~l(r-T IX(t)X~1(s)b(s)ds\ + /X(t)X~l(s)b(s)ds, (2.5) 
a a 

where / : C —> C is the identity mapping, C/_p = K e r P and z(t,a,0) is a 
solution of the system: 

z(t) - A(t)z(t) = b(t), (2.6) 

which satisfies the elementary condition z(a) = 0. To = (Tifk+i, • • • ,T<pn) is 
an m x 7Ti matrix and J is an immersion of Rm into R n . For demonstration 
see [1]. 

The equation (1.1), or the system (2.1)-(2.2), are equivalent, as it is stated 
in theorem 1.1, to equality (1.6). 

Further, let p(t), q(t) G C((a;co),R) be non-negative locally integrable 
functions on (a; oo) such that: 

a-j-m a-\-m 

(i) J p(t) dt = r m < oo, J q(t) dt = Am < oo for each natural 
a a 

number m, 

(ii) ||x-H0/(*,t0ll<p(0H + 9(0. «£«"• 
R e m a r k 2.1. Each maximal solution x(t) of the system (2.1) is defined 

on (a;oo). 

R e m a r k 2.2. With respect to (2.5), the operator M is defined on the set: 

A= ig e C: J X(t)X~l(s)f(s,g(s)) ds G domTJ . For demonstration see [1]. 
a 

LEMMA 2 .1 . If domT = C, then the operator M is defined on C and it is 
continuous. 

P r o o f . By the definition of the operators L and N we have: If g £ C, 
then Ng = (f(',g(-)), T) G ImL if and only if there exists a solution x(t) of 
the system: 

x(t)-A(t)x(t)=f(t,g(t)) 
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with x(t) E domT and Tx = r. This solution is of the form: 

t 

x(t) = y(t) + J X(t)X~1(s)f{s,g(s)) ds a < t < oo, 

a 

where y(t) is a solution of (2.3) which satisfies the condition y(a) = x(a). 
According to (2.4) y(t) E d o m T . Therefore x(t) E domT if and only if 

t 

IX(t)X~1(s)f{s,g(s)) ds E domT = C. (2.8) 

a 

But this condition is satisfied. In fact, if 

t 

T^J X(t)X-1(s)f(s,g(s))ds) =r0, 

a 

then by (2.4) there exists such y(t) E D that Ty = r — r$ and so Tx = r. 
Therefore Ng E Im L for each g E C and A = dom M = C. 

Further, we shall prove continuity of the operator M . Since P i s a continuous 
projection, it suffices to prove continuity of the operator KpN . Let {^j}?^i be 
a sequence of functions from C such that it converges to i in C Now let us 
prove that: 

t 

X(t) J X-\s)[f(s, Xj(s)) - f(s, x(s))] ds (2.9) 

a 

uniformly converges to 0 in (a; a + m) for each natural number m , which means 
that it converges to 0 in C. The sequence {XJ}<J^Z1 converges uniformly to 
x on {a]a + m) for each natural number m. The function X-1(r)/(r, u) is 
continuous on the compact set (a; a + m) x U(0, R) , where R > \\x(t)\\ for each 
t E (a;a + m). So it is uniformly continuous. This means that: For each e > 0 
there exists 6 > 0 such that for any two numbers si,<S2 E (a; a + m) and for 
any two points tti,it2 € U(0, It) there holds: 

If |si — 521 < 8 and | u\ — U21| < S, then 

\\X-\s1)f(s1,u1)-X-1(s2)f(s2,u2)\\< 

and to > 0 there exi ts a natural numb r jo such th<-1 for each j an 1 
for each s E (G;G -f- m) there he Ids* \xj(s x( )\\ < . Then foie wc 1 avr: 
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For each e > 0 there exists a natural number jo such that for each j > jo and 
for each s E (a; a + m) there holds: 

\\X-1(s)[f(s,xj(s))-f(s,x(s))]\\<e, 

which means that X~~1(s)f(<s,Xj(s)) uniformly converges to X~~-(s)f(s,x(s)) 
in (a; a -f- m) for an arbitrary natural number m and j —• oo. Further, there 
holds: 

t 

J\\X-1(s)[f(s,xj(s)) - f(s,x(s))\ || ds < e(t - a) < em 

a 

for each t G (a\a-{- m), j > jo • Since X(r) is bounded on each (a; a -f- m) , the 
t 

sequence X(t) f X~1(s)f(s,Xj(s)) ds converges uniformly to 

t 

X(t)Jx-1(s)f(s,x(s))ds 

in (a; a -f m) for each natural number m and so it converges in C for j —> oo . 
If we take into account the continuity of the operators T and To , we obtain the 
continuity of KpN from (2.5). 

LEMMA 2.2. The operator M: domM = A C C — • C maps an arbitrary 
bounded subset of A to relatively compact set in C. 

P r o o f . Since P is a linear continuous operator and dim(Im P) < oo (and 
hence P is compact), it is sufficient to prove the assertion for the mapping 
KPN. 

Let £2 be a bounded set, D e i , this means that: 
If x G fi, then pm(x) < ttm . By (2.5) we have: 

\\(KPNx)(t)\\ < | |A- (OJT 0 - 1 ( r -Tx( t , a ,0 ) ) | | + | |x(*,a,0)|| < 

t 

< \\X(t)\\ • pT.-^r - Tx(*,a,0)) | | + \\X(t)\\ • \\JX-\s)f(s,x(s)) dt < 

< \\X(t)\\ • \\JT^\\(\\r\\ + | |Tx(ť,a,0)| |) + \\X(t)\\-\\J X~\s)f(s,x(s)) ds 
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pm(KpNx) < sup{||X(0|| • ll-rro-'lKlMI + \\Tx(t,a,0)\\); t e (a;a + m)} + 

t 

+ sup{ | |X(0 | | - | | IX-1(s)f(s,x(s))ds^; te (a;a + m)} < 
a 

<Hm | |JT0-1 | | [ | |r | | + 7 H m o ( r m o L i m o + Amo)] +Hm(rmfim + Am) = i/m 

for each x E Q and for each natural number m . So M(O) is uniformly bounded 
on each (a; a + m). Further we shall prove that M(Q) is equicontinuous on these 
intervals. Let t\ < r2 be two points of (a',a-\-m), m E N . Let 

t 

6(t,x) = / X~1(s)f(s,x(s)) ds a < t < oo 

a 

V = j r 0
_ 1 ( r -TX(t)6(t,x)). 

Then there holds: 

\\(KpNx)(t2)-(KpNx)(t1)\\ = 

= \\X(t2)V + X(t2)6(t2,x)-X(t1)V-X(t1)6(t1,x)\\ < 

< \\x(t2) -x(tt)\\ • \\v\\ + \\x(t2) -X^UWJT-'W[\\r \ \ + 7Hmo(rmoflmo+ 
<2 <2 

+ Amo)] + r m / i m + Am} + Hmlfim / p(s)ds + / q(s)ds). 

tl <! 

Therefore the set M(fi) is equicontinuous on each (a; a + m), for each m £ N 
and so by the Ascoli-Arzela lemma there is a relatively compact set on each 
(a;a + m). This means that if {xi}<*_1 is a sequence of the functions from 
M(f2) and Jm = (a\a + m), m E N, then it is possible to choose a subsequence 
{x\(0},-i °f the sequence {x,(t)} which uniformly converges on I\ . Anal­
ogously there exists a subsequence {x^(t)} =1 of {x}(t)} ._ such that it is 
uniformly convergent on J2 . We can repeat this procedure for each m E N. In 
this way we obtain a family of subsequences of {xi}^i • By Cantor's diagonal 
process we have that there exists a sequence {x](t)}^_1 of {xz(t)}°_1 which 
uniformly converges on each interval Im , and so AJ(ft) is a relatively compact 
set in C. 

The following lemma follows from Lemma 2.1 and Lemma 2.2. 
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L E M M A 2 . 3 . If d o m T = A, then the operator M: C —> C is completely 
continuous. 

Using Tichonov's theorem we shall prove the following theorem which s tates 
the existence of a solution to ( 2 . 1 ) - ( 2 . 2 ) . 

T H E O R E M 2 . 1 . Let the system ( 2 .1 ) - (2 .2 ) satisfy the following conditions: 

(2.10) A(t) is a real n xn matrix, defined and continuous on ( a ; o o ) , X(t) 
is a fundamental matrix of (2.3) with 

Hm = s u p { | | X ( r ) | | ; r e ( a ; a + m ) } , m = l , 2 , . . . ; 

(2.11) / G C ( ( a ; o o ) x R n , R n ) and it satisfies: 

\\X1(t)f(t,u)\\ < p(t)\\u\\ +q(t), u e R n , where p(t),q(t) are non-
negative locally integrable functions such that 

a-fra a-\-m 

J p(t)dt = Tm < oo, / q(t)dt = Am<oo 
a a 

for each natural number m; 
(2.12) T is a linear bounded operator from d o m T -= C onto R m and the 

rank of the matrix TX(t) is m; 

(2.13) 7 H m o H m | |JT 0 - 1 | | r m o +H m r m < 1 for m > m0 . 
Then the system (2 .1 ) - (2 .2 ) has at least one solution in C. 

P r o o f . The operator Mo = KpN is completely continuous by Lemma 2.3 
and so it is sufficient to find a bounded set K which satisfies the hypotheses 
of Tichonov's theorem. Let K = {x £ C : pm(x) < a m , m > mo} , whereby we 
shall determine am by the following consideration. There holds: 

||(Mo*)(0|| - \\(KPNx)(t)\\ < 
t 

X(t)JT~x r-T IX(t)X~1(s)f{s,x(s))ds < + 

<\\x(t)\\.\\jт-Ҷ 

íx(t)X~1(s)f(s,x(s))ds 
a 

t 

+ ||T íX(t)X-1(s)f(s,x(s))dsj + 
a 

i 

+ \\X(t)\\.\\jx-1(s)f(s,x(s))ds 
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for a < t < a -f m and 

pm(KpNx) < 

<7/ m | |JT 0 - 1 | | [ | | r | |+ 7 7í m o (r m o p m o ( a : ) + Am o)] + Hm(TmPm(x) + Am) < 

< i ř m [|| JT~l || ( | | r | | + 7 / í r a o A m o ) + A m ] + 

+ (ďm || JT 0
_ 1 | |7frm orm o + ír m r m )p m (x) . 

If we choose 

{J/m[| |JT0-1 | |( | |r | |+7IImoAm o)+Am]} 
Oím > 

( i — Hm||JT0 | | 7 H m o r m o — Hmrm) 

then Mo : K —> A' . Further, A' is a non-empty, closed, convex and b o u n d e d set 
in C , MQ(K) is a compact set by Lemma 2.2, Mo is a continuous mapping, 
therefore by Tichonov's theorem there exists a fixed point of AI0 in Iv . By 
Corollary 1.1 it follows t h a t this fixed point of Mo is a solution of (1.1) which 
satisfies Px = 0 . So it is a solution of the boundary problem (2.1) (2.2) in 
Cj-p. 
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