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ON THE EXISTENCE OF A SOLUTION
FOR NONLINEAR OPERATOR EQUATIONS
IN FRECHET SPACES

MARIA KECKEMETYOVA

ABSTRACT. There is proved a theorem on the existence of a solution for opera-
tor equation Lz = Nz in Fréchet space in this paper, where L is a linear operator
and N is generally nonlinear and also the existence of a continuous solution for
a system of nonlinear differential equations with linear boundary conditions is
proved.

Introduction

The aim of this paper is to prove some theorems which assure the existence
of a solution for the equation

Lz = Nz, (1.1)

where L is a linear operator, N is an operator, generally nonlinear, both of
them are defined in a Fréchet space. In the first section we shall prove the
continuation theorem by using the theorem which states equivalence between the
set of solutions for (1.1) and the set of fixed points of the operator M defined
by (1.6) and using Schaefer’s theorem [5]. This theorem is a modification of the
continuation theorem which was proved by P. L. Zezza [6] in Banach space
on Fréchet space . In the second section we shall transform by the method of
M.Cecchi, M.Marini, P.L.Zezza [1] the nonlinear system

#(t) — A(t)z(t) = f(t,2(t))
with linear boundary conditions
Tz =r

into the form of (1.1) and using the equivalence theorem and Tichonov’s fixed
point theorem [3] we shall prove a theorem which assures the existence of a
continuous solution, generally unbounded, for this boundary-value problem.

AMS Subject Classification (1991): Primary 34B15. Secondary 47H10.
Key words: Nonlinear operator equation, Boundary value problem, Fixed point, Fréchet
space.
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1. Let X be a Fréchet space, Y be a locally convex space and let L:
domL C X — Y be a linear operator such that: dim(KerL) < oo. Then
there exists [4] a linear continuous projection P from X into X such that:

ImP =KerL (and simultaneously

(1.2)
LPz=0 for cach z € X').
Then the space X can be expressed as a topological direct sum
.Y:XPGBXI_;), (1.3)

where Xp =Im P, X;_p =Im(I—P) and I: X — X is the identity mapping.
Clearly L (dom L) N X;_p is invertible and it is onto Im L.

Let Kp be its inverse operator:
Kp: ImL — (domL)N X;_p. (1.4)

Let N be an operator generally nonlincar, N: dom N C X — Y . The following
theorem holds for the operators L, N and for the equation

Lz = Nz. (1.1)

THEOREM 1.1. Let A = {z € X: Nz € ImL} = N"Y(ImL) # 0. The

equation (1.1) 1s then equivalent to the equation
z=Pz+ KpNz with z € A. (1.5)
For demonstration see [6].
We can write the equation (1.5) in the form
z= Mz (1.6)
with M: domM C X - X, domM = A, where Mz = Pr+ KpNz.
COROLLARY 1.1. Let A# 0. Then the equation
z=KpN«z (1.7)
18 equivalent to the equations Lz = Nz, Pz =0.

Remark 1.1. If A=0,then InLNIm N =@ and equation (1.5) has no
solution.
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Remark 1.2. If the operator N is completely continuous and Kp is con-
tinuous, then KpN: dom M C X — Y is completely continuous. The operator
M is also completely continuous since P is continuous and its range is finite
dimensional. We shall obtain a similar result if the operator Kp is completely
continuous and N is continuous and bounded, it means that N maps bounded
sets into bounded sets.

Further we shall use the following theorem which is the extension of Leray-
Schauder’s theorem to locally convex spaces. First, we shall introduce the fol-
lowing definition.

DEFINITION 1.1. Let X be a real locally conver space. The mapping
P : X — X 13 called strictly completely continuous if and only if it 1s continuous

and such that (nU) is a relatively compact set for each natural number n and
neighbourhood U of 0 in X .

THEOREM 1.2. (Schaefer’s theorem [5]). Let X be a real complete locally
convez space. Let : X — X be strictly completely continuous. Then either
there ezist a solution of the equation = = Ap(z) for each A € (0;1) or the set
of all possible solutions of the equation z = Mp(z) {z: z = AY(z); A € (0;1)}
1s not bounded 1n X .

Remark 1.3. Because a bounded set is absorbed by each neighbourhood
of 0, a strictly completely continuous mapping maps each bounded set into a
relatively compact set and therefore the following implication holds:
If a mapping is strictly completely continuous, then it is completely continuous.

LEMMA 1.1. Let the operators L and N be such that N 1is defined in the
whole space X and

N(X)cCImL. (1.8)
Let either

(1.9) N be strictly completely continuous and Kp be continuous
or

(1.10) N be a continuous mapping with the property:
For each neighbourhood Uy (N(0)) of the point N(0) there ezists such
a neighbourhood V(0) of O that for each natural number n there ezists

a natural number k for which we have: N(nvm) C kU (N(0)) and
Kp be strictly completely continuous.

Then the mapping KpN: X — X i3 strictly completely continuous.

Proof. Since Nz € ImL for each z € X, A = X. Further, the map-
ping KpN is continuous in both cases (1.9), (1.10). Suppose that (1.9) holds.
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Let n be a natural number, let U(0) be a neighbourhood of 0 such that
N(nU(0)) is a relatively compact set. Then N(nU(0)) is a compact set and

the set Kp (N(nWO))) is also compact since the mapping Kp is continuous.
Then the set Kp (N(nm)) is also relatively compact.

Now let (1.10) hold and n be an arbitrary, but.fixed natural number. Then
there exists such a neighbourhood U(0) of 0 that Kp (nUTO_)) is a relatively
compact set. Let us consider the neighbourhood Uy (N(0)) — N(0) + U(0) of
the point N(0). Then there exists a neighbourhood V(0) of 0 such that for
each natural number n there exists a natural number k& with the property:

N(nm) C kU1 (N(0)) . So we have:
KpN(aV(0)) C Kp(kUy(N(0))) =
= Kp(k(N(0) + U(0))) = kKp(N(0)) + Kp(kU(0))

and Kp(k(Uy(N(0)))) is a relatively compact set and hence its subset

KpN(n(V(0))) is also relatively compact.
Consequently, the mapping KpN is in both cases strictly completely con-
tinuous.

COROLLARY 1.2. Let X be a real Fréchet space, the topology of which is de-
termined by the system of seminorms {pm}S>_,. Let the mapping My: X — X
be strictly completely continuous. If the set {z:z = AMo(z); 0 < A < 1} is
bounded (that means: For each natural number m there ezists c,, > 0 such that
if £ = AMoy(z), then pn(z) < cm ), then there exzists at least one fized point of
M.

Using Corollaries 1.1, 1.2 and Lemma 1.1 we shall prove the following theo-
rem.

THEOREM 1.3. (Continuation theorem). Let X be a real Fréchet space the
topology of which 1s determined by the nondecreasing system of seminorms
{pm}_,. Let there ezist ¢,y > 0 for each natural number m such that the
following implication holds:

If = 1s an arbitrary possible solution of the equation Lz ANz for each
A, 0< A<, then pm(z) < cm -

Let L and N satisfy all hypotheses of Lemma 1.1. Then equation Lz = Nz
has at least one solution.

Proof. Let My = KpN. By Lemma 1.1 My: X — X is strictly com-
pletely continuous. Now let us prove

{z:2=AMp(z); 0 <A< 1} C{z: Lz = A\Nz; 0 <\ < 1}. (1.11)
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Consider an arbitrary element ¢ € X such that £ = AMy(z). Applying oper-
ator L to both sides of the last equality we obtain Lz = L(AMy(z)), where
L(AMy(z)) = AL(KpNz) and LKpNz = Nz. Therefore Lz = ANz, it means
that (1.11) holds. Hence the set {z: z = AMp(z); 0 < A < 1} is also bounded

and by Corollary 1.2 there exists at least one fixed point of M, . The assertion
of the theorem follows from Corollary 1.1.

By the Banach fixed point theorem and Corollary 1.1 we shall prove the
following theorem.

THEOREM 1.4. Let X and Y be two Banach spaces with norms ||-||x, ||-|lv,
respectively. Let the mapping Kp: ImL CY — X be continuous with the norm
|IKp||- Let N: X — Y satisfy condition (1.8) and

I[Nz — Nylly <qllz —yllx for each x,y € X, (1.12)

where q||Kp| < 1.

Then there ezists a unique solution x of the equation (1.1) which satisfies
Pz =0.

Proof. It suffices to prove that the mapping My = KpN is contractive in
X . First of all, from (1.8) it follows that My is defined in X . Further we have
for any two elements z,y € X :

Moz — Moyl x < ||[Kpll - INz = Nylly < q||Kpll - |lz —yllx
wherefrom the result follows.

2. Let a be a real number and let C = C((a; oo),]R”) be a real locally convex
space of continuous functions from (a;00) into R™, the topology of which is
given by the system of seminorms: pm(z) = sup{||z(¢)||; t € (a;a + m)} for
each ¢ € C, where | - || is a norm in R". The space C' with this system of
seminorms is a Fréchet space, which means that it is locally convex, metrizable
and complete.

If A= (a,-j);‘,].=1 is an n X n matrix, then the matrix norm

n 1/2
1Al = (Z )

1,j=1
is compatible with the vector norm [2], it means that it satisfies the following
conditions:

lA]l < ||A]l - ||x]| for an arbitrary n X n matrix and for each vector
x € R™.
|AB|| < ||A]| - ||B]| for arbitrary two n x n matrices A,B.
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In this section we shall investigate the existence of a solution for the system
£(t) - A()a(t) = F(t,2(2)) (2.1)

which satisfies the boundary conditions:
Tr=r reR™ (1<m<n) (2.2)

where A(t) is an n X n matrix, continuous on (a;00).

Let f: (a;00) x R* — R"™ be a continuous function and let T:
domT C C - R™ (1 < m < n) be a linear continuous operator. This means
that there exists such a 4 > 0 and natural number m, that:
|ITz|| € YPmo(z) for each z € domT'. Let D be a space of all possible solutions
of the linear system

§(t) - A@®)y(t) = 0 (23)

from C((a; 00), R") . Let us assume that T satisfies the condition:
D CcdomT and T(D)=R™. (2.4)

Now let us transform (2.1)—(2.2) into the form of the equation (1.1).

Let L: domL C C — C xR™ be the linear operator defined by the relation:
z(-) — (2(-) — A(-)z(-), Tz) , where dom L = (C*(a;00),R") NdomT and let
N: dom N C C — C xR™ be the operator which is determined by the relation:
z(-) — (f(+,2(})),r) . Then the system (2.1)-(2.2) is equivalent to the equation
of the form (1.1).

Now we shall construct the operator M which is defined by (1.6).

Let k =dim(KerL) =n—m (k#0 if m <n). Let ¢1,...,9r be a basis
for Ker L. This basis can be extended to a basis of D:

Plye- -y Phks Pkt Pn, ‘P:EC i:11-~~7n-

Then X(t) = (¢1(t),...,pa(t)) is the fundamental matrix for equation (2.3).
System {p;}™, is bounded in C, so the following assertion holds:
For any m € N there exists H,, > 0 such that

sup{[|X(})Il; t € (a5 +m)} < Hp.
Further, let

P:C—D Py:z(-) = X() X Y(a)z(a)
n k
P2: D — KerL P2: y() = Z Al(pl() — Z/\'SO'()
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be linear topological projections.

Then P = P,oP;: C — KerL C C is a topological projection in the space
C onto KerL. Then C =KerL® Ci_p.

Let Kp:Im L— (dom L)NCr_p be the inverse operator of Ll(dom L)NCi_p

It has been proved in [1} that Kp has the form:

Kp(b(t),r) = X@)JTy  (r — Tz(t,a, 0)) + 2(t,a,0) =
= X(t)JT;! (7‘ - T/X(t)X"l(s)b(s) ds) + /X(t)X_l(s)b(s) ds, (2.5)

where I: C — C is the identity mapping, Ci—p = Ker P and 2(t,qa,0) is a
solution of the system:

3(t) — A(t)z(t) = b(t), (2.6)

which satisfies the elementary condition z(a) = 0. Ty = (T@ir+1,---,Tpn) is
an m X m matrix and J is an immersion of R™ into R". For demonstration
see [1].

The equation (1.1), or the system (2.1)—(2.2), are equivalent, as it is stated
in theorem 1.1, to equality (1.6).

Further, let p(t), ¢(t) € C((a;0),R) be non-negative locally integrable
functions on (a;o00) such that:

a+m a+m

(i) [ pt)dt =T < 00, [ g(t)dt = Am < oo for each natural

number m,
(i) X1 O f(Eu)ll < p()llull + g(t), v € R™.

Remark 2.1. Each maximal solution z(t) of the system (2.1) is defined
on (a;o0).

Remark 2.2. With respect to (2.5), the operator M is defined on the set:
t
A= {g eEC: [X(t)X(s)f(s,9(s))ds € domT} . For demonstration see [1].

LEMMA 2.1. If domT = C, then the operator M 1s defined on C and it i3
continuous.

Proof. By the definition of the operators L and N we have: If g € C,

then Ng = (f(-,g(-)),r) € Im L if and only if there exists a solution z(t) of
the system:

#(t) — A(t)z(t) = f(t,9(t))
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with z(t) € domT and Tz = r. This solution is of the form:

2(t) = y(t) + / XX (5)f(5,9(s) ds  a<t< oo,

where y(t) is a solution of (2.3) which satisfies the condition y(a) = z(a).
According to (2.4) y(t) € domT'. Therefore z(t) € dom T if and only if

t
/X(t)X_l(s)f(s,g(s)) ds € domT = C. (2.8)
But this condition is satisfied. In fact, if

T(j X)X (9)f (s,9(5)) ds) =To,

then by (2.4) there exists such y(t) € D that Ty = r —r¢ and so Tz = r.
Therefore Ng € ImL for each g € C and A =dom M =C.

Further, we shall prove continuity of the operator M . Since P is a continuous
projection, it suffices to prove continuity of the operator Kp N . Let {171}}?0:1 be
a sequence of functions from C such that it converges to z in C. Now let us
prove that:

X(t)/X—l(s)[f(s,zj(s)) - f(s,z(s))] ds (2.9)

uniformly converges to 0 in {a;a+m) for each natural number m, which means
that it converges to 0 in C. The sequence {z;}52; converges uniformly to

z on {a;a + m) for each natural number m. The function X ~!(¢)f(t,u) is

continuous on the compact set (a;a+m) x U(0, R), where R > ||z(t)|| for cach
t € (a;a + m). So it is uniformly continuous. This means that: For each € > 0
there exists § > 0 such that for any two numbers s;,s2 € (a;a +m) and for
any two points uy,us € U(0, R) there holds:

If |s; —s2| <8 and |u; —uz| < &, then

HX_I(Sl)f(Sl Juy) — X7 (s2)f(s2,ua)|| <

and to > 0 there exi ts a natural numb r 39 such thet for cach ) anl
for each s € {(a;a +m) there hclds |z,(s z( )|l < . Theircfore we tave:
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For each € > 0 there exists a natural number j, such that for each j > jo, and
for each s € (a;a + m) there holds:

X718 [£(s,25(s)) = f(s,2())]]| <,

which means that X~(s)f(s,z;(s)) uniformly converges to X~1(s)f(s,z(s))
in {(a;ja + m) for an arbitrary natural number m and j — oo. Further, there

holds:

/“X'l(s)[f(s,xj(s)) — f(s,2(s))]||ds < e(t —a) < em

for each t € (a;a+m), j > jo. Since X(t) is bounded on each (a;a+ m), the

t
sequence X (t) [ X~'(s)f(s,z;(s))ds converges uniformly to
a

X(t)/X—l(s)f(s,z(s)) ds

in (a;a + m) for each natural number m and so it converges in C for j — co.
If we take into account the continuity of the operators T' and T, we obtain the
continuity of KpN from (2.5).

LEMMA 2.2. The operator M: domM = A C C — C maps an arbitrary
bounded subset of A to relatively compact set in C.

Proof. Since P is a linear continuous operator and dim(Im P) < co (and
hence P is compact), it is sufficient to prove the assertion for the mapping
KpN.

Let € be a bounded set, 2 C A, this means that:

If z €, then pn(z) < pm . By (2.5) we have:

[(KpNz)(t)|| < || X(t) Ty (r — Tx(t, a,0))|| + ||z(t,a,0)|| <

<

< x| - 975 (- = Ta(t,a,0) || + [ X)) - | / X7Y(s)f (s,2(5)) ds

)

< JXO] - 775 el + 172, ,001) + X O] | [ X511 (5,2()) ds
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pm(KpNz) < sup{ X - 1Ty 1 (7]l + I T2(t, a,0)[); ¢ € {asa +m) }+

+oup{ XN | [ X707 (s 2(6) as] t€ (@a+m)} <

SH"I”JTO—IH [”7‘” +'7Hmo(Fmo/1mo + Amo)] + Hm(rm/‘m + Am) =Vm

for each z € Q and for each natural number m. So M(§2) is uniformly bounded
on each (a;a+m). Further we shall prove that M(§) is equicontinuous on these
intervals. Let t; < t; be two points of (a;a +m), m € N. Let

t

8(t,z) = /X"l(s)f(s,r(s)) ds a<t< oo

a

V =JTy  (r — TX(1)é(t, ).
Then there holds:

[(KpNe)(t2) — (KpNz)(t)] =
= | X(£2)V + X(t2)8(t2,2) — X(t1)V — X (t1)6(t1,2)]| <
<X () = XEON - IV + 1X (22) = XEOIH{IITTT NI + YHong (Tmo ttme +

+Amo)] + Coptm +Am} + H,, (pm fp(s)ds%—/tzq(s)ds).

t t

Therefore the set M(Q) is equicontinuous on each (a;a + m), for each m € N
and so by the Ascoli-Arzela lemma there is a relatively compact set on each
(a;a + m). This means that if {z;}32, is a sequence of the functions from
M(Q) and I, = (a;a+m), m € N, then it is possible to choose a subsequence
{Irl(t)}21 of the sequence {Ii(t)}zl which uniformly converges on I;. Anal-
ogously there exists a subsequence {x?(t)}zl of {xf(t)}zl such that it is
uniformly convergent on I, . We can repeat this procedure for each m € N. In
this way we obtain a family of subsequences of {z;}2;. By Cantor’s diagonal
process we have that there exists a sequence {zi()}2, of {z.(t)}$2, which
uniformly corniverges on each interval I, , and so M(Q) is a relatively compact
set in C'.

The following lemma follows from Lemma 2.1 and Lemma 2.2.
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LEMMA 2.3. If domT = A, then the operator M: C — C 1is completely
continuous.

Using Tichonov’s theorem we shall prove the following theorem which states
the existence of a solution to (2.1)-(2.2).

THEOREM 2.1. Let the system (2.1)-(2.2) satisfy the following conditions:
(2.10) A(t) is a real n X n matriz, defined and continuous on (a;o00), X(t)
is a fundamental matriz of (2.3) with

Hpm =sup{||X(®)||; t € (a;a+m)}, m=12...;

(2.11) f € C({a;00) x R",R") and it satisfies:
X&) f(t,w)|| < p(E)llull + q(t), v € R, where p(t),q(t) are non-
negative locally integrable functions such that
a+m a+m
/ p(t)dt =T < o0, / g(t)dt =An < o0
a a
for each natural number m;
(2.12) T s a linear bounded operator from domT = C onto R™ and the
rank of the matriz TX(t) s m;
(2.13) YHuoHu||lJ Ty Y|ITme + HmIm <1 for m >mg.
Then the system (2.1)-(2.2) has at least one solution in C.

Proof. The operator My = KpN is completely continuous by Lemma 2.3
and so it is sufficient to find a bounded set K which satisfies the hypotheses
of Tichonov’s theorem. Let K = {z € C: pm(z) < am, m > mp}, whereby we
shall determine a,, by the following consideration. There holds:

las2)®)] = [|(KpNa)®)]| <

[+

+| / X()X ()1 (s,a(s)) ds| <

X()JT;? [7‘ - T/X(t)X‘l(s)f(s,z(s)) ds]

< 1X1 17 i+ 7 [ XX 9 s, +

XN | [ X710 (5 2(2) ds
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for a<t<a+m and
pm(KpNz) <
< Hu|lJT5 [Pl + v Homo (CrmoPmo(2) + Amo )] + Hi (TCrmpm(z) + Am) <
< Ho (1TT5 (171l + v Homo Amo ) + Am]+
+ (HullJ Ty 17 Himo Ling + Hi Lo ) pin ().

If we choose

o s HHn [T I+ YHmoAmo) + Am] }
"o (1 - Hm”JTO_IthmoFmo - HmFm)

b

then My: K — K . Further, I is a non-empty, closed, convex and bounded set
in C, My(R) is a compact set by Lemma 2.2, M, is a continuous mapping,
therefore by Tichonov’s theorem there exists a fixed point of Ay in L. By
Corollary 1.1 it follows that this fixed point of M is a solution of (1.1) which
satisfles Pz = 0. So it is a solution of the boundary problem (2.1) (2.2) in
Ci—p.
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