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TRANSMISSION IN GRAPHS : 
A BOUND AND VERTEX REMOVING 

LUBOMIR SOLTES 

ABSTRACT. The transmission of a graph G is the sum of all distances in G. Strict 
upper bound on the transmission of a connected graph with a given number of 
vertices and edges is provided. Changes of the transmission caused by removing a 
vertex are studied. 

1. Introduction 

All graphs considered in this paper are undirected without loops and multiple 
edges. For all terminology on graphs not explained here we refer to [1]. 

If S is set, then |S | denotes the cardinality of S. Given a graph G, V{G) and 
E{G) denote its vertex-set and edge-set, respectively. The cardinalities |v(G)| 
and \E{G)\ are often denoted n and m, respectively. Iff and w are the vertices 
of G, then dG{v, w) or, briefly, d{v, w) denotes the distance from v tow in G, ecG{v) 
or ec{v) denotes the eccentricity of v. 

The transmission of a vertex v of a graph G is defined by 

w e V(G) 

The transmission a(G) of a graph G is the sum of the transmissions of all its 
vertices. 

The main subject of this paper is the transmission. Several results on this 
notion are surveyed in [5]. The strict upper bound on the transmission of a 
connected graph with a given number of vertices and edges is provided in this 
paper. Changes of the transmission caused by removing a vertex are studied. 

2. An upper bound for transmission 

E n t r i n g e r , J a c k s o n and Snyder [1] have given some upper bounds 
for transmission of a connected graph with n vertices and m edges. But they are 
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not sharp for each m. Now we are going to establish the sharp upper bound. 
Let u be an isolated vertex or one endvertex of a path. Let us join u with at 

least one vertex of a complete graph. This new graph is called a path-complete 
graph and denoted by PK„ m, where n and m are the cardinalities of its vertex-set 
and edge-set, respectively (see. Fig. 1.). One can verify that there is exactly one 

fn\ 
,2 J 

path-complete graph Pk„ m for all 1 < n — 1 < m < 

Fig. 1 

The maximal distance in G is the diameter of G, diam (G). The following 
upper bound on the diameter, depending on the number of vertices and edges, 
was given by H a r a r y [4]. 

Lemma 1 ([4]). Let G be a connected graph with n > 2 vertices and m edges. 
Then we have diam (G) < diam (PKn m). 

If R ^ V(G), then G (R) is the induced subgraph of G with the vertex-set R. 
For a graph G and integer k > 1 let Sk(G) be the set of all unordered pairs of 
such not adjacent vertices in G that their distance does not exceed k. Hence 
S, (G) = 0 holds. The following lemma gives the sharp lower bound for the 
cardinality of the set Sk(G) with respect to the order and the diameter of a graph 
G. 

Lemma 2. Let G be a connected graph with n > 2 vertices and diameter d > 3. 
Then for any integer k, 2 < k < d — 1, we have 

\Sk(G)\ >_(n-i) = (k- \)n - k(k + l)/2 + 1. 
i = 2 

(1) 

Moreover, the equality occurs if G is a path-complete graph. 
Proof. Let G0 be a shortest path in G joining two vertices with distan­

ce d. Then we can denote the vertices not lying in G0 by the symbols vl9 v2, ... 
..., vn_d_, in such a way that the graphs G,: = G(V(G0) u {v,, vl9 ... Vj}) are 
connected for all j < n — d — 1. Let k be a fixed integer, 2 < k < d — 1. Ob­
viously the equality occurs in (1) for G = G0 .Clearly, Sk(Gj) contains Sk(Gj_,) 
for all 1 < j < n — d — 1. Thereby Lemma 2 will be established if we show that 
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the set Sk(Gj) — Sk(Gj_ j) has at least k — 1 elements. Now we distinguish two 
cases. 

Case 1. Let ecG(v) > k. Obviously, for at least k — 1 vertices z in G._, we 
j J J 

have 2 < dG,(vj9 z) < k. 
Case 2. Let ecG(v) < k. Note that the vertex Vj is adjacent to at most 3 

vertices from G0. That is why there are at least d — 2 vertices z such that (Vj, 
z) e Sk(Gj). Clearly, d-2> k-l holds. 

One can directly verify that the equality occurs in (1) if G is a path-complete 
graph with diameter at least 3. Q 

Theorem 1. Let G be a connected graph with n > 2 vertices andm edges. Then 
o(G) < o(PKnm) holds. 

Proof. Let D and d be the diameters of the graphs PKn m and G, respec­
tively. If d < 2 holds, then we have o(G) = 2n(n — 1) — 2m < o(PKn m). Next 
we shall suppose that d > 3 holds. Let s, be the number of unordered pairs of 
vertices in G with distance /, for integer / > 0. Note that 

sx=m and s, + s2 + ... + sd = m + \Sd(G)\ = f 

holds. A little calculation gives 

<T(G)/2 = _ is, = st + \Sd(G)\ + _ ' (|s,(G)| - |s,(G)|) = 
1 = 1 1 = 1 

-(-K?:(@—H-
Now Lemma 1 gives D > d and from Lemma 2 the inequality 

o-(G)/2 < Q + Y ( Q -m- \St(PKn, J|) = o(PKnm)/2 

follows. D 

3. The removal of a vertex 

Now we shall study how the transmission will change if we remove a vertex 
from a graph. We shall obtain the graphs G — e, G — v if we remove from G the 
edge e or the vertex f, respectively. F a v a r o n , Kou ide r and Maheo in [3] 
solved a certain problem suggested by Plesnik in [5). They have found the 
maximum value of o(G — e) — o(G), as a function of rz, where e is an edge of 
the graph G and G — e is connected. Next we shall study a similar problem for 
removing a vertex. 
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Let f be a real function of two integer variables. Then we define the real 
function Iy such that for a connected graph G and such its vertex v that G — v 
is connected we have Iy(G, v): =f(o(G — v), o(G)). 

Next we shall consider the folloving three properties of a function f. 
(Dj): the functionf(/, j) is decreasing with respect toy 
(Ii): the function f(/, f) is increasing with respect to / 

(Ih): the function g(h) \ = f(h, h + t) is increasing for any fixed integer t > 0. 
Finally, by w + PK„ w we mean the graph obtained from PK„ m in such a way 

that we join the new vertex w to every vertex of PK„ m by an edge. Next we shall 
study the extremal values of a function Ff. 

Theorem 2. Let v be a vertex of a graph G with n > 2 vertices and m > 2n — 3 
edges and both G and G — v be connected. If a function f(/, j) fulfils (Dj) and (Ii) 
then we have 

Ff(G, v) < Ff(w + Pk„ _ , t m _ n + , , w). 

Proof . Note that o(G) >2n(n-\)-2m = o(w + PK/7_ um_,, + , , w) 
holds. Further, for the graph G — v with n — \ vertices and m' edges, 
m — (n — 1) < m' < m, we get o(G — v) < o(PKn_} m_n_ ,) from Theorem 1. 
Using the properties (Dj) and (Ii) we complete this proof. Q 

Theorem 3. Let G be a connected graph of order n > 2, v e V(G) and the graph 
G — v be connected. If the function f(i, j) fulfils (Dj) and (Ii) then we have 

Ff(G, v) < max Ff(w + PK/7 _ , m _ n + ,, w). 
In - 3 < m < n(n - l)/2 

Proof . If we add to G an edge incident to v, then the value of Ff in­
creases. That is why we can restrict ourselves to graphs with at least 2n — 3 
edges. The rest follows from Theorem 2. fl 

Let Tn , be the set of all connected graphs of the order n which contain a 
vertex having the transmission t. The following lemma shows that the path-
complete graph has the maximal transmission of all the graphs from Tn ,. 

Lemma 3. Let two integers n > 2 and t,n — 1 < t < ( . j be given. Then for 

any graph G' e Tn , we have o(G') > o(PKn ,„), where m = (n + 2)(n — l)/2 — /. 
Moreover, the equality occurs if and only if G = PKn m. 

Proof . Let G be the graph from Tn , having the minimal transmission, v 
be its vertex with the transmision t, r be the eccentricity of v and IV,- be the set 
of such vertices u that d(v, u) = i, for any integer /. 

The minimality of the transmission gives that 

G(N, u IV/+,) are the complete graphs for all / < r — 1 . (2) 
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If r = 1, then G = G(N0 u ./V,) is the complete graph, hence it is the path-

complete graph on n vertices and I ~ j edges. 

Now we can suppose that r > 2 holds. Here it is sufficient to prove that the 
set IV, contains just one element for each 0 < i < r — 2. This together with (2) 
gives that G is a path-complete graph. 

We prove it indirectly. Suppose that / is the smallest number such that IV, has 
at least two elements and / < r — 2. Clearly IV0 = {v}9 hence / > 1 holds. Let 
VjE Ni9 vreNr. Now we shall construct a graph H such that we "move vt from 
IV, to Nf +! and move vr from Nr toNr_]". More formally, we omit the edge vt _ xvt 

where N,_1={v,_1}, we add the edges v(vi + 29 vrvr_2 for all vi + 2e Ni + l9 

vr_2 e Nr_2. Finally we shall add the edge vtvr if r — i < 3 holds. 
Note that the distance of any vertices w, z from V(G) — {vi9 vr} unchanged. 

Further the sum d(z9 v,) + d(z9 vr) did not change or decreased. The last term 
unchanged for z = v9 hence crH(v) = t holds and so He Tn t. Finally d(vi9 vr) 
decreased, which gives o(H) < o(G)9 a contradiction. Thus G is a path-
complete graph. 

Note that for the vertex u of PK„ m with the smallest degree we have 

o(u) + m = (~\ + n— \ = (n + 2)(n — l)/2. For m = n — 1 this equality holds 

and if we alter PK„ m to PK„ m _ ,, then we omit one edge and a(u) increases by 
one. This completes the proof. • 

Theorem 4. Let v be a vertex of a graph G on n > 2 vertices and both G and 
G — v be connected. If a function / ( / , j) fulfils (Dj) and (Ih), then we have 

min Ff(Pkn,m9 u„ J < Ff(G9 v)9 

n - 1 < m < (^) - (n - 2) 

where un m is the endvertex of the graph PKn m. 

Proof. The property (Dj) means that if we omit from G an edge incident to 
v9 then the value of Ff deer 
endvertex of G. Therefore 
v9 then the value of Ff decreases. So we can restrict it to the case when v is an 

2n - 3 < a(v) < Q (3) 

holds. Moreover, we have 

a(G) = 2a(v) + a(G - v) (4) 

and so 

Ff(G, v) =f(a(G - v), 2a(v) + a(G - v)) (5) 
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holds. Let us put t' = o(v). Then Lemma 3, the equality (5) and the property 
(Ih) together give Ff(PKnm, un m) < Ff(G9 v) where o(un m) = t' and so m = 
= (n -f 2)(n — l)/2 — tr. Further, the inequalities (3) give 

n — \ < m < ( 9 ) — (n — 2). This establishes the theorem. D 

R e m a r k . Now we shall consider two special choices of the function f. 
Note that the function /(/, j) = i/j fulfils (Dj), (Ii) and (Ih). So we can apply 
Theorems 2, 3, 4 to the ratio o(G — v)/o(G). 

Next we shall study the extremes of the function ao(G — v) + bo(G) where 
a, b are real. The case ab > 0 is trivial. The other cases can be reduced to the 
form o(G — v) — qo(G) with q > 0. The function / — qj fulfils (Dj), (Ii) and also 
(Ih) if 0 < q < 1. But if we want to find the minimal value off as a function 
of n for q > 1, then we can restrict ourselves to the case when v is an endvertex 
(it follows from (Dj)). Hence (4) holds and we immediately get 

Jy(G, v) = -(2qo(v) + (q-\)G(G- v)), 

which is minimal if and only if G is the path on n vertices. We wil not deal here 
with further technical details. 

Eventually the following unsolved problem is presented. 

Problem. Find all such graphs G that the equality o(G) = o(G — v) holds for 
all their vertices v. We know just one such graph — the cycle on 11 vertices. 
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