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RETRACTS OF ABELIAN MULTILATTICE G R O U P S 

B O Ž E N A C E R N A K O V A 

(Communicated by Tibor Katriňák ) 

A B S T R A C T . We s tudy retracts of an abelian m-group which is an interned direct 
product of a finite number of its m-subgroups. T h e main result is formulated 
in 2.6. 

Retracts of partially ordered sets were investigated in [3] - [6]. J. J a k u b f k 
[8] studied retracts of abelian lattice ordered groups. 

Let G be an abelian directed multilattice group (m-group) which is an inter­
nal direct product of its m-subgroups A and B and let H be a retract of G. 
In this paper, it will be shown that there exist retracts R\ of A, R2 of B such 
that H is isomorphic with the external direct product R\ and R2. On the other 
hand, it will be proved that, in general, H need not be an internal product of a 
retract of A and a retract of B. 

This generalizes the results of J . J a k u b i k [8] concerning retracts of 
abelian lattice ordered groups. 

1. Preliminaries 

Let (P, <) be a partially ordered set and let x,y G P. The set of all lower 
(upper) bounds of the set {x,y} in P will be denoted by L(x,y) (U(x,y)). 

A subset S of P is called directed if L(x,y) 0 5 ^ 0 , U(x,y) H S ^ 0 for 
each x,y £ S. 

Let x,y G P , x < y. The interval [x,y] is the set {z G P : x < z < y}. Let 
K be a subset of P such that ki, k2 G K, k\ < k2 implies [ki,k2] £ K. Then 
K is said to be a convex subset of P . 

The notion of multilattice has been introduced by M. B e n a d o [2] in the 
following way. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06F15. 
K e y w o r d s : multilattice group, direct product, retract, retract mapping. 
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A partially ordered set (P, <) is called a multilattice if the following two 
conditions are fulfilled: 

(i) if x,y G P , z G L(x,y), then there exists z' G L(x,y) such that 
z < z', and z' is a maximal element of L(x,y), 

(ii) the dual condition concerning U(x,y) holds. 

If, moreover, (P, <) is a directed set, then (P, <) is said to be a directed 
multilattice. 

Let (P, <) be a multilattice. For x,y G P we denote hy x A y and x V y 
the set of all maximal elements of L(x,y) or all minimal elements of U(x,y), 
respectively. If P is a directed multilattice, then the sets x Ay and x V y are 
not empty. We shall write x instead of {x}. 

A partially ordered group (G, + , <) will be called a multilattice group if the 
partially ordered set (G, <) is a multilattice. If, moreover, (G, <) is a directed 
multilattice, then a partially ordered group (G, + , <) is said to be a directed mul­
tilattice group (m-group). For the definitions and properties of partially ordered 
groups and multilattice groups, see [7] or [1] respectively. 

Let (G, +, <) be an m-group. In the next, we shall write G instead of 
(G, + , < ) . A subgroup G' of G is said to be an m-subgroup of G if, whenever 
x,y G G', then x A y C G' and x V y C G'. 

A mapping ip of G onto an m-group G is called a homomorphism of G onto 
G if the following conditions are satisfied: 

(i) ip is a homomorphism of the group (G, +) onto the group ( G , + ) , 
(ii) (/?(# Ay) = (p(x) A (p(y), (p(x V y) = (p(x) V (^(y) for each x,y G G. 

An isomorphism of m-groups is defined in the obvious way. If G and H are 
isomorphic m-groups, we shall use the denotation G ~ H. 

Let A and B be m-subgroups of G such that the following conditions hold: 

(i) for each g G G there exist uniquely determined elements a G A, b G P 
such that g = a + 6; 

(ii) if g,g' e G, g = a + b, g' = a' + b', a, a' G A, b,b' G B, then 
#rV = a1a' + btb', where £ G {+, A, V}. 

Under these assumptions, G is said to be an internal direct product of A and 
B. It will be expressed by writing G = (i) A x B. 

It is easily seen that AC\B = {0} and that both A and B are convex subsets 
of G. 

An internal direct product of m-subgroups Ai,A%,... ,An of G is defined 
analogously, and we write C7 = (i) Ai x i 2

 x •' • x An. 
Let X and y be m-groups. We form the (external) direct product G of 

groups X and Y. Define the operations A and V componentwise. Then G is 
an m-group and G is called the (external) direct product of X and Y. We shall 
use the notation G = A x B. 
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Let H be an m-subgroup of an m-group G . We say that H is a retract of G 
if there is a homomorphism / of G onto H such that f(h) = h for each h G H. 
The homomorphism / will be said to be a retract mapping of G onto H. 

2. Direct products and retracts 

Throughout this section, we suppose that G is an abelian m-group, A and 
B are m-subgroups of G, and that the relation 

G = (i)AxB (1) 

is valid. 
Assume that A\ is a retract of A with the corresponding retract mapping a 

and that B\ is a retract of B with the corresponding retract mapping /3. For 
each g E G, g = a + b, a G A, 6 6 5 we put / (# ) = a(a) + /3(b) and denote 
f(G) = H. 

2 .1 . LEMMA. H is a retract of G with the corresponding retract mapping / . 
and the relation 

H = (i) Ax x S i (2) 

is t'a/ia7. 

P r o o f . Let 0,0 ' G G j = a + b, g' = a' + b', a, a' G A, b,b' G .B. We have 
f(g A s ' ) = f((a + b) A (a' + b')) = f(aAa' + bA b') = a (a A a') + /3(b A b') = 
a(a) A a(a ' ) + (3(b) A /3(b') = (a(a) + /3(b)) A (a(a ;) + /3(b')) = f(g) A /(</'). In a 
similar manner, it can be verified that f(g V g') = f(g) V f(g') and / ( # + g') = 
/(</) + /(«/') hold. 

Let h G H. Then there is an element g G G, g = a + b, a e A, b E B such 
that /(«/) = ft. Then /(ft) = f(f(g)) = f(a(a) + /3(b)) = a(a(a)) + /3((3(b)) = 
a(a)+(3(b) = f(9) = h. 

We have shown that H is a retract of G with the corresponding retract 
mapping / . 

Let h G H, h = a + b, a G A, b G B. Then /i = f(h) = a(a) + /3(b), 
a(a) G A i , /3(b) G Bi. Since 4̂X C A, ^ C H, with respect to (1), ele­
ments a(a) and /3(b) are uniquely determined. Again, from (1), it follows that 
operations + , A, V on H are performed componentwise. Hence (2) holds true. 

• 
Now assume that H is a retract of G, and / is a retract mapping of G onto 

H. Denote f(A) = Hx, f(B) = H2. 

R e m a r k . f(A) need not be a retract of A . It can happen that f(A) C A 
fails to hold in general (see Example). 
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2.2. LEMMA. Hi and H2 are m-subgroups of H. and Hi D H2 = {0}. 

P r o o f . Since A is an m-subgroup of G and / is a homomorphism of G 
onto H, Hi is an m-subgroup of H. Analogously, we obtain that H2 is an 
m-subgroup of H. 

Denote H+ = {h G Hi : h> 0} (i = 1, 2). At first we prove that Hf n H^ 
= {0} is fulfilled. 

Suppose that there exists an element h G H± n H^, /i > 0. Then there is 
a' e A with /i = / ( a 7 ) , and we have h = h V 0 = / ( a ' ) V 0 = f(a') V / (0) = 
f(a' V 0) = / ( a ) , where a > 0 , a G a ' V O . Similarly, we can find an element 
b G H, b > 0 with h = f(b). Hence b = f(a) = / (b) = f(a) A /(b) = / ( a A b). 
The relation An B = {0} and convexity of A and B in G imply that there is 
no element g G G such that 0 < g < a, b. Therefore 0 G a A b, and thus h = 0, 
which is a contradiction. 

Let Hi fl H2 = K y£ {0}. Then there exists an element k G K, fc^-0. Since 
If is an m-subgroup of H, the relation k V 0 C K holds. Hence there exists an 
element k' > 0, k' G fc V 0, fc7 G H^ fl H^, which is a contradiction. • 

2 .3 . LEMMA. Let Hi and H2 be as above. Then 

H = (i) Hi x H2 . (3) 

P r o o f . Let he H, h = a + b, aeA.be H.Then h = f(h) = / ( a ) + / (b ) , 
/ ( a ) G Hi, / (b) G H2 • Now we intend to show that elements f(a) and / (b ) are 
uniquely determined. 

Let h = hi + h2, hx G Hi, h2 G H2. There exist a7 G -4 and b' e B 
such that /ii = / ( a 7 ) , /i2 = /(b7) , and we get h = f(a') + f(b'). Therefore 
f(a) + / (b) = f(a') + f(b') and f(a) - f(a') = f(b') - / ( b ) . Since f(a) - f(a') 
e Hi, /(b7) - / (b) G H2, in view of 2.2, we obtain f(a) = f(a'), / (b) = f(b'). 

It remains to show that the operations + , A, V are performed component­
wise. We prove it for the operation A. For the operations V and + the proofs 
are similar. 

Let h' e H, h' = a' + b7, a' G A, b7 G B. Hence h' = f(a') + f(b'). From 
(1), it follows that hAh' = f(hAh') = f(aAa' + bAb') = f(aAa') + f(bAb') = 
f(a) A f(a') + / (b) A f(b'). Therefore (3) is satisfied. • 

Let b,i G Hi, hi = a + b, a G A, b G B. Define the mapping f1: Hx —• A 
by fi(hi) = a. 

2.4. LEMMA. The mapping / i is an isomorphism of Hi into A. 

P r o o f . It is obvious that / i preserves the operations + , A, V. 
Let hi e Hi, hi = a + b, a e A, b e B. Assume that fi(h{) = 0. Hence, 

from / i ( b i ) = a, it follows that a = 0, and so hi = b e B. Since hi e H, we 
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get h\ = f(h\) = / ( b ) . From this, we infer that hi G H2. According to 2.2, 
we obtain hi = 0 . This yields that / i is one-to-one. We conclude that / i is an 
isomorphism of Hi into A. • 

In an analogous way, we define the mapping f2: H2 —» H, and, similarly, we 
can verify that f2 is an isomorphism of H2 into B. 

Let cp: A —> A be a mapping defined by the rule (p(a) = / i ( / ( a ) ) for each 
a G A. 

2.5. LEMMA. fi(Hi) is a retract of A with the corresponding retract map­
ping (p. 

P r o o f . The mapping / reduced to A is a homomorphism of A onto Hi. In 
view of 2.4, / i is an isomorphism of Hi into A. Therefore (p is a homomorphism 
of A onto / i ( H i ) . 

Let ai G / i ( H i ) . There exist hi G Hi, hi = ai + bi, oi G A, bi G B and 
a e A such that f(a) = hi. Hence, f(a) = ax + bi, / ( a ) = / ( a i ) + / ( b i ) , 
/ ( a - a i ) = / ( b i ) . Using 2.2 we obtain / (b i ) = 0. Therefore f(ax) = / ( a ) , and 
thus <p(a1) = f1(f(a1)) =fi(f(a)) = fi(ax + bi) = ax . • 

We have proved that Hi = A (Hi) is a retract of A. In a similar manner, it 
can be shown that H2 = f2(H2) is a retract of B. 

Define the mapping <j>\ H —> Hi x R2 as follows: for each h G H, h = /ii + b2, 
h1eHuh2e H2 we put ^(ft) = (fi(hi)J2(h2)). 

It is easy to prove that the following assertion is valid: 

2.6. THEOREM. The mapping </> is an isomorphism of H onto R1 x H2, 

H ~ Hi x H2 . 

By the induction we get 

2.7. THEOREM. Let Ai,A2,...,An be m-subgroups of G such that 

G = (i) Ai x A2 x • • • x An , 

and let H be a retract of G. Then there exist retracts Hi, H2,..., Rn of 
Ai, A2,..., An such that 

H 2.. Hi x H2 x • • • x Rn . 

Again, assume that G = (i) A x B. It can happen that there exists a retract 
H of G with the corresponding retract mapping / such that H cannot be 
expressed as an internal direct product of a retract of A and a retract of B, and 
that f(A) C A is not satisfied. 
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E x a m p l e . Let A = Z, where Z is the additive group of all integers with 
the natural linear order, B = {(x, y) : x,y G Z , x — y is even} . A is a linearly 
ordered group. Addition and a partial order on B are defined componentwise. 
One verifies easily that B is an m-group. There are elements in B, e.g., bi = 
(2,4), b2 = (1,5) possessing no least upper bound in B. Let us consider the 
direct product G = A x B of m-groups A and B. Then G is an m-group. 
Introduce the notation A = {(a, b) G G : b = 0 } , B = {(a, b) G G : a = 0 } , 
H = {(a, (x,y)) G G : x = y = a } . Obviously, A, 5 and H are m-subgroups 
of G and G = (i) A x B is valid. 

Define the mapping / : G —• H by / ( a ) = (a, (a, a)) for each element 
g ^ G, g = (a,(x,y)), a G *4, (x,y) G # . Then H is a retract of G 
with the corresponding retract mapping / . We verify only that / preserves 
the operation A. Let g' G G, g' = (a',(x',y')). Assume that a < a' (if 
a > a', the result is analogous). Then f(g A g') = f((a, (x,y)) A (a', (x',y')) = 
f((a,(x,y)A(x',y'))) = (a, (a, a)) and f(g)Af(g') = (a, (a, a)) A (a', (a', a')) = 
(a, (a, a)). Hence f(gAg') = f(g)A f(g'). Since f(A) = H,we have f(A)£A. 
From the fact that H is a diagonal of G, we conclude that H is the internal 
direct product of no m-subgroups of H. 
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