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CONGRUENCES ON FINITE LATTICES

BOHUSLAV SIVAK

1. Introduction

The aim of the present paper is to describe the structure of the lattices of
congruences on finite lattices. It will be shown that the congruences on any finite
lattice L correspond to some elements of special extension of the lattice L. This
extension can be effectively constructed.

We shall use the following denotations:

Con(L)...the lattice of all congruences on the lattice L

con(u, v)...the least congruence on the lattice L which has the elements u, v in the
same class

Ir(L)...the set of all join-irreducible elements of the lattice L

At(L)...the set of all atoms of the lattice L

At(p), where p e L...the set of all atoms a L satisfying the condition a<p

x'...the principal filter of the element x

x*...the principal ideal of the element x

{u, v), where u<v...the interval in a lattice

u —<uv...the element u is covered by v.

A finite lattice will be called join-atomic iff each its element can be written as
a join of atoms.

2. Congruences on finite join-atomic lattices
Recall the well-known notions of distributive and standard elements of a lattice.
If L is a lattice, a € L, the element a is called distributive [standard] if
av(xay)=(avx)a(avy)[xa(avy)=(xara)v(xay)]

for each x, y € L. It is known that each standard element of a lattice is distributive
and that distributive (standard) elements correspond to congruences if the given
lattice is principally complemented (relatively complemented). Each finite relative-
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ly complemented lattice is principally complemented and each finite principally
complemented lattice is join-atomic. It can be easily shown that in a finite
join-atomic lattice each distributive element is standard. We prefer the notion of
a distributive element since it is more convenient for the proofs. Further details on
distributive and standard elements can be found in [1] or [2].

The set of all distributive elements in L will be denoted by Dis(L).

Theorem 2.1. Let L be a lattice with the least element 0 and p € L. Let us define
the relation

O, {(x,y)lxeL,yeL,xvy<pv(xay)}.
(i) peDis(L)<0,eCon(L)
(i) peDis(L)=>[(x, y)e O, <pvx=pvy, for each x, ye L]
(iti) peDis(L)=>con(0, p)— 6,

Proof. First assume ©,eCon(L). Trivially, (0,p)e©O,, therefore
(x,pvx)eB,, (y,pvy)eB,, (xay, (pvx) A (pvy))eB, for each x, yeL.
From the last inclusion and the definition of @, we get (pvx) A (pvy) <
pv(xay). Since the inverse inequality is a lattice identity, p € Dis(L).

Further we assume p € Dis(L). First we prove (ii). Assume (x, y)€ &,, thenxvy
< pv(xAay). This inequality is equivalent to pv(xAy) = (pv(xAy)) v (xvy)
= pvxvy. Since the elements pvx, pvy are in the interval (pv(xAay),
pvxvy), we have pvx pvy. Conversely, if pvx=pvy, there is

xvy<pvxvy=pvx=pvy=(pvx)a(pvy)=pv(xnry)

and (x, y) e ©,. From (ii) it follows that ©, is an equivalence relation and it is
v -stable. Now we prove that @, is also A-stable.

Choose (x, y)e© ,zeL;then(xAz) v (yAz) < (xvy) A 2 < (pv(xAay)) A
(pvz) = pvl(xay)az]l  pvl(xaz) A (yAZ))], therefore (xAz, yAZ)€ B,.

There remains to be proved (iii). We denote A =con(0, p). As (0, p) € G,, there
is A = ©,. Choose (x, y)e O,; then xvy is in the interval (xAy, pv(xAy)) and
since (xAy, pv(xAy))el, there is (xAy, xvy)el,ie. (x, y)eAi.

Definition 2.1. Let L be a finite join atomic lattice. We call a subset B c At(L)
closed iff it has the following two properties:

(i) aeAt(L), a<vB=>aeB

(ii) aeAt(L), beB, ceL,a<bvc, axc=>acB

Remark. Trivially, (i) and (ii) are properties of the “closure type”, therefore
they define two closure operators on At(L), which will be denoted by o, and o,.
The conjunction of (i) and (1i) is of the “‘closure type” again, the corresponding
closure operator will be denoted by o. The operator o, can be described very

simply: o(M) = At(v M) for each M = At(L). Later we shall describe the operator
02, too0.
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Lemma 2.1. Let L be a finite join-atomic lattice, p € L and let At(p) be closed.
Then At(pvi) = At(p)UAt(r) for each te L.
Proof. The inclusion 2 is trivial, we shall prove <. Choose ae At(pvit)—

At(t); then a € At(L), a1, a<p vt The last inequality can be written in another
form:

a<tv(vAt(p)).
As L is finite, we can find a minimal subset Q = At(p) such that
a<tv(vQ).
There is Q# 0, since a#E t. Choose b € Q and denote
Q' =0Q—{b}, c=tv(vQ).

Then ae At(L), be At(p), ce L, a<bvc, a%c (the last fact is a consequence of
the minimality of Q) and as At(p) is closed, we have a e At(p), q.e.d.

Theorem 2.2. Let L be a finite join-atomic lattice, pe L. Then p e Dis(L) <
At(p) is closed.

Proof. Assume p € Dis(L). As L is join-atomic, p = v At(p) and At(p) has the
property (i) from Definition 2.1. Now we prove that it has also the property (ii).
Assume that

aeAt(L), beAt(p), ceL, as<bvc, a%c.

We have a<pvc,since b<p and a<bvc, and a Ac =0 (the least element of L),
since a € At(L) and a< c. Therefore

p=pv(anc)=(pva)a(pvc)=pva, ie. a<p, aeAt(p).
We proved the implication =>. The implication < is a consequence of Lemma 2.1
and the trivial fact At(uAv) = At(u)nAt(v) for each u, veL.
Lemma 2.2. Let x, y be elements of a lattice L with the least element 0. Then
con(0, x)vcon(0, y)=con(0, xvy)
holds in Con(L).

Lemma 2.3. Let L be a finite join-atomic lattice with the least element 0 and
©®eCon(L). Then ©=con(0, t) for some te L.

Proof. Trivially, ©=v{con(u, v)lueL, veL, u—-<wv, u®v}. For such u,
v there exists a.., € At(L)n(v! — u'), since L is join-atomic. The intervals (u, v)
and (0, a...) are transposes, therefore con(u, v) = con(0, a...). By Lemma 2.2 it
suffices to take t=v {a..|JueL, veL, u—<v, ubv}.
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Lemma 2.4. Let L be a finite join-atomic lattice with the least element 0 and
te L. Then con(0, t) = con(0, p) for some p e Dis(L).
Proof. We construct a sequence of sets

B, = At(?), 1 =0,(Bo), , = 0a( By),
Bs=01(B), ..., B2, =0:(B2. 1), Bian =0(Ban)s -

Trivially, Boc B, < B.< Bsc ... As L is finite, this sequence becomes stable on the
value o(Bg). If we denote t,=VB, there is t=tr<t<t,<... and con(0, 1)
= con(0, 1) < con(0, s,)c.... As x=vAt(x) for each xeL, t;n.1 = VBiau
= v0i(Bz2,) = VAt(vB2,) = VAt(t2.)=t2. and con(0, 12,) = con(0, t2.1). If
we prove that con(0, ;. 1) = con(0, t,,) for each n, it will be trivial that the
lemma holds for p = v o(Bo).

Let us define an operator t (in general, it is not a closure operator) in the
following way:

If S has the property (ii) from Definition 2.1, 7(S) =S, if S has not the property
(i), there exist elements ae At(L), b€ S, ce L suchthata<bvc,atc,a¢S. We
choose one such triple (a, b, ¢) and take 7(S)=Su{a}.

We construct a sequence of sets

So= Bz,, 1y Sl = T(S()), Sz = T(S)), S} = T(Sz), vee
and a sequence of elements of L
s5o=vSy, s$i=VS, 5:=Vv8, s$i=VvS,...

As $c=85 8. S;s g~ and L is finite, this sequence becomes stable on the value
02(S0) = 02(Ban-1). AS fn 1=S0<s1S5H:<51<..., con(0, 2, ) = con(0, s0) <
con(0, s1) < con(0, 5:) < con(0, s3) ... and this sequence becomes stable on the
value con (0, £.,). It suffices to prove that con(0, s.) 2 con(0, s,.,) for each i. Let
us denote A =con(0, s,). If S..,=S, there is s..,=s and trivially (0, s,.,)eA. If
S.+1# S, there exist elements ae At(L), be S, ceL such that asbvec, akc,
a¢S, S 1=Su{a}, therefore s,.,=5va. As B<vS =s, there is (0, b)e A and
(c, bvc)ed. As c<avc<bvec, there is (¢, avc)eld. As anc=0, there is
(0, a) e A. Therefore (0, s..1) = (0,s.va)ea, q.ed.

Theorem 2.3. Let L be a finite join-atomic lattice. Then Dis (L) is a sublattice of
L and the assignment p — O, defines an isomorphism of lattices Dis (L)— Con(L).

Proof. It is known that Dis(L) is a v-subsemilattice of L. By Theorem 2.2, p,
qeDis(L) = At(p), At(q) are closed = At(pArq) = At(p)nAt(q)is closed >
p AqeDis(L) and therefore Dis(L) is a sublattice of L. The assignment p— G, is
injective since p*=[0]6,. By Theorem 2.1 and Lemma 2.2, 6,.,=con(0, pv q)
= con(0, p) v con(0, q) = O,vO, and it suffices to prove the surjectivity.
Choose A € Con(L). By Lemma 2.3, A =con(0, ¢t) for some € L. By Lemma 2.4,
A=con(0, p)= 6, for some p eDis(L).

286



Lemma 2.5. Let L be a finite join-atomic lattice. If A,, A, are closed subsets of
At(L), the set AyUA; is closed.

Proof. A =At(p), A:=At(q), where p=v A,, =V A,. By Theorem 2.2 p
and q are distributive, and by Lemma 2.1 and the distributivity of pvg, AiUA,
= At(p)UAt(q) = At(pvgq) is closed.

Corollary. The closure operator o is topological.

3. Congruence-preserving extensions of lattices

We shall construct a special extension of lattices which will make it possible to
apply the results of the preceding paragraph to any finite lattice.

Theorem 3.1. Let L be a finite lattice with the least element 0, uelr(L)—
At(L), uo—<uand let L' be a set disjoint to L such that there exists a bijection

“w

L—u'>L', x—x“

Define the relation < on the set L*=LuUL’ in the following way:

x<y for x, ye L is defined as in L,
x<y“ex<yforallxeL, yeL - u,',
x“<yeoxvus<yforall xeL—u,, yeL,
x“<y“ex<yforall x, ye L — u,'.

Then < is an order (reflexive, antisymmetric and transitive binary relation) on L*
and (L, <) is a lattice in which L is a sublattice. Moreover,

At(L“)=At(L)u{0*}, Ir(L*)=(Ir(L)—{u})u{0}.

The proof is not interesting, it is necessary to distinguish a lot of cases for the
elements of L*. It can be easily proved that the lattice operations on L“ are the

following ones:

xvy, xny aredefinedasinLif x,yelL,
1

xvy'=y‘vx=(xvy)’ if xvyeL —uw,

=xvyvu if xvyeu,,
x“vy“=xvy",

XAy =y“ax=(xay)* if xeul,

XAy if xeL-—u',

XAy =(xAy)-
Definition 3.1. The lattice L* constructed in Theorem 3.1 will be called a simple
extension of the lattice L.
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Theorem 3.2. Let L be a finite lattice with the least element 0, u, velr(L)
— (At(L)u{0}). Then the lattices (L*)" and (L")" are isomorphic.

Proof. The assignment

x—x for xelL,

x“+sx" for xe L —uol, where uo—<u,

x'—x" for xe L —v,', where vo—<uv,

(x*)"—(x")* for xe L —(uo'Uvo)
defines an isomorphism of lattices (L“)* —(L")".

Definition 3.2. Let L, be a sublattice of a lattice L,. The extension L, c L, will be
called congruence-preserving iff the assignment @— On(L,X L,) defines an
isomorphism of lattices Con(L;)—Con(L,).

Remark. If L,c L, and L, c L; are congruence-preserving extensions, L, c L
is congruence-preserving. Trivially, L c L is always congruence-preserving.

Theorem 3.3. Each simpie extension of lattices is congruence-preserving.

Proof. Let L L" be a simple extension of lattices, O # uo —<w € Ir(L). The
element uo is uniquely determined by u. Define a mapping ¢: Con(L") —
Con(L), ¢(@)= ©On(L x L). Trivially, this definition is correct and ¢ preserves
the intersections. There suffices to prove that @ is injective and surjective.

Choose two different congruences ©,, @, on L“; then e.g. ©, ¢ O,. There exist
elements a, b e L" such that

a—<b, (a,b)e®, (a,b)¢oO,.

There are four possibilities :

(@) aeL, beL; then (a, b) e @(©:)— @(O), (6O) #* (O-).

(b) aeL’,beL’; then a=x", b=y" for some x, ye L — uo'. As the intervals
(a, b) and (x, y) are transposes, they are collapsed by the same congruences and
(x, y) € 9(€:) - @(O).

(c) aeL, beL’; then b=y* for some yeL—u,. As a<y—-<y“=b and
a—<b, there is a=y, (y, y“)e ©,— O,. The intervals (y, y“) and (uo, u) are
projective (consider the interval (0, 0*)!), therefore (uo, u) € p(E:) — @(6,).

(d) aeL’, beL; then a=x" for some xeL—u,' and a=x“<xvu<b,
therefore b = x v u and we have (x*, xv u) € @, — ©,. The intervals (x*, xv u) and
(x Auo, uo) are transposes, therefore (xAuo, o) € @(@:)— @(6,).

There remains to be proved the surjectivity. Take A e€Con(L). We shall
construct @eCon(L*) such that A =@(O@)=On(L X L). There are two pos-
sibilities :

(a) If (uo, u)€ A, we define

(x,y)eO«(x,y)ed for x,yelL,
(x,y)eO«=(y", x)eO<«>(x,y)e for xeL,yel — u',

(x*, y*)e O« (x,y)ehr for x,yeL —uw'.
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It is easy to prove that @ e Con(L*) and @(O@)= 4.
(b) If (uo, u) & A, we define

(x, y)eO@<(x,y)er for x,yelL,
(x,y)eO«=(y“, x)eO<=[x=u and (u, y)ei]
for xeL,yeL—uoT,

(x*, y*)e O<=(x,y)er for x,yeL—uo.

Now the stability of @ is not trivial. We shall consider one of the interesting cases:
(x,y)€®, x, ze L, ye L —u,'; we want to prove that (xAz, y“Az)e O.

By the definition of @, x =u and (u, y) € A. There are two possibilities:
(1) zeu'; then

xAzZ=unz=u, y"rz=(yAz)".

By the A-stability of A, (uoAz, yAz)€A, but uoAz=uoAuAz=u,, therefore
(xnz, (yA2)") = (xAz, y'AzZ)e O.

(2) zeL—u'; then uanz<u and from the join-irreducibility of u we get
UAZS U, UWAZ = UAUAZ = UAZ = XAZ, Y“AZ = yAz, Therefore (xAz,
y'AZ) = (oAz, yaz) € AcO.

Remark. Applying the construction of a simple extension to a finite lattice L as
often as possible we get an embedding of L into some join-atomic lattice L. The
extension Lc L is congruence-preserving and by Theorem 2.3 we get an
isomorphism of lattices Dis (L)— Con(L).

By Theorem 3.2 up to the isomorphism the lattice L does not depend on the
order in which the elements of Ir (L) — (At(L)u{0}) are used in its construction.

The distributive elements of the lattice L can be found by Theorem 2.2 : first we
find o({a}) for all a € At(L), the elements v o({a}) and joins of such elements are
all distributive elements of L.

The construction of a simple extension has some interesting properties: it
preserves the distributivity of a lattice (if L is distributive, L is a Boolean algebra)
but does not preserve, e.g., the meet-semidistributivity the property defined by the

quasiidentity a=bAc=bAd = a=bAr(cvd) — it suffices to extend the pen-
tagon.
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KOHI'PY3HLUMHU HA KOHEYHBIX CTPYKTYPAX
Borycnas Cusak
Peslome

B ctathe m0Ka3aHbl TPH OCHOBHBLIX pe3ynbTaTa. [IBa OTHOCATCH K KOHEYHbIM CTPYKTVpaMm, Bce
3eMeHTbl KOTOPLIX NMPEACTaBHMbI B BHC CyMMbl aTOMOB: 1) OHCTPHOYTHBHBIE 31E€MEHTBI TaKHMX
CTPYKTYP HaxORATCS BO B33aMMHO OHO3HAYHOM COOTBETCTBHM CO 3aMKHYTbIMH MHOXCECTBAMH
HEKOTOPOTO ONepaTopa 3aMbIKaHUA, 2) KOHIPY3HLHH Ha TaKHX CTPYKTYpaxX HaXoOAsITCs BO B3aHMHO
ORHO3HAYHOM COOTBETCTBUM C AUCTPUOYTHBHLIMH INEMEHTAMM.

HakoHen noka3sbiBaeTcsi, Kak [Nl N106OH KOHEYHOM CTPYKTYPbi MOCTPUMTH TaKoe KOHEYHOE
PacUIHpEHHE, KOTOPOE HMEET H3OMOPQHYIO CTPYKTYPY KOHTPYIHUHA H BCE 3NEMEHTBI KOTOPOTO
NPEACTaBHMbI B BAIE CYMMbI aTOMOB.
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