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CONGRUENCES ON FINITE LATTICES 

BOHUSLAV SIVAK 

1. Introduction 

The aim of the present paper is to describe the structure of the lattices of 
congruences on finite lattices. It will be shown that the congruences on any finite 
lattice L correspond to some elements of special extension of the lattice L. This 
extension can be effectively constructed. 

We shall use the following denotations: 
Con(L)...the lattice of all congruences on the lattice L 
con(u, v).. .the least congruence on the lattice L which has the elements u, v in the 

same class 
Ir(L)...the set of all join-irreducible elements of the lattice L 
At(L).. . the set of all atoms of the lattice L 
At(p) , where peL...the set of all atoms a L satisfying the condition a^p 
jr t...the principal filter of the element x 
A:1...the principal ideal of the element x 
(u, v), where u ^ u . . . t h e interval in a lattice 
u— <u . . . the element u is covered by v. 

A finite lattice will be called join-atomic iff each its element can be written as 
a join of atoms. 

2 . Congruences on finite join-atomic lattices 

Recall the well-known notions of distributive and standard elements of a lattice. 
If L is a lattice, a e L, the element a is called distributive [standard] if 

a v (x A y) = (a v x) A (a v y)[x A (a v y) = (x A a) v (x A_V)] 

for each x, y e L. It is known that each standard element of a lattice is distributive 
and that distributive (standard) elements correspond to congruences if the given 
lattice is principally complemented (relatively complemented). Each finite relative-
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ly complemented lattice is principally complemented and each finite principally 
complemented lattice is join-atomic. It can be easily shown that in a finite 
join-atomic lattice each distributive element is standard. We prefer the notion of 
a distributive element since it is more convenient for the proofs. Further details on 
distributive and standard elements can be found in [1] or [2]. 

The set of all distributive elements in L will be denoted by Dis(L). 

Theorem 2.1. Let L be a lattice with the least element 0 andp e L. Let us define 
the relation 

0P {(x, y)\xeL, yeL,xvy<pv(xAy)}. 

(i) p e Dis (L)<*0, ,e Con(L) 
(ii) p eDis(L) =^>[(AT, y ) e 0Popvx = pvy, for each x, y e L] 
(hi) peDis (L)^>con(0 , p)~0P 

Proof. First assume 6>peCon(L). Trivially, (0, p)e&P, therefore 
(x, pvx)e 0P, (y, pvy)e0p, (x/\y, (pvx) A (pvy))eGp for each Jt, yeL. 
From the last inclusion and the definition of 0P we get (pvx) A (pvy) < 
pv(j tAv). Since the inverse inequality is a lattice identity, p e D i s ( L ) . 

Further we assume peDi s (L ) . First we prove (ii). Assume (x, y)e 0P, then xvy 
< pv(xAy). This inequality is equivalent to pv(*Ay) = (pv(jtAy)) v (xvy) 
= pvxvy. Since the elements pvx, pvy are in the interval (pv(x/\y), 
pvxvy), we have pvx pvy. Conversely, if pvx = pvy, there is 

xvy<pvxvy=pvx = pvy — (pv x)/\(pv y) = pv(x/\y) 

and (x, y)e 0P. From (ii) it follows that 0P is an equivalence relation and it is 
v-stable. Now we prove that 0P is also A-stable. 

Choose (x, y)e 0 , zeL; then ( * A Z ) V (yAz) <. (xvy) A Z =£ (pv(jcAy)) A 
(pvz) = pv[(xAy)Az] pv[(x/\z) A (yAz)], therefore (XAZ, yAz)e©p. 

There remains to be proved (iii). We denote A =con(0, p). As (0, p) e 0P, there 
is Ag:0p. Choose (x, y)e 0P; then x v y is in the interval (xAy, pv(xAy)) and 
since (xAy, pv(xAy))ek, there is (xAy, xvy)ek, i.e. (x, y)e A. 

Definition 2.1. Let L be a finite join atomic lattice. We call a subset B g: At(L) 
closed iff it has the following two properties : 

(i) aeAX(L), a<vB^>aeB 
(ii) a e A t ( L ) , beB, ceL, a<bvc, a^c=> ae B 
R e m a r k . Trivially, (i) and (ii) are properties of the "closure type", therefore 

they define two closure operators on At(L), which will be denoted by 0\ and o2. 
The conjunction of (i) and (ii) is of the "closure type" again, the corresponding 
closure operator will be denoted by o. The operator 0\ can be described very 
simply: o(M) = At (v M) for each Ma At (L). Later we shall describe the operator 
o2, too. 
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Lemma 2 .1 . Let L be a finite join-atomic lattice, peL and let At (p) be closed. 
Then At(pvt) = At(p)uAt(t) for each teL. 

Proof. The inclusion 2 is trivial, we shall prove c . Choose tfeAt(pv/) — 
At ( / ) ; then aeAt(L), a^fct, a^pvt. The last inequality can be written in another 
form: 

a*Ztv(vAt(p)). 

As L is finite, we can find a minimal subset Q c A t ( p ) such that 

a^tv(vQ). 

There is Q=£0, since a^t. Choose beQ and denote 

Q' = Q-{b}, c = tv(vQ'). 

Then aeAt(L), b eAt(p), ceL, a^bvc, a^p~c (the last fact is a consequence of 
the minimality of Q) and as At(p) is closed, we have aeAt(p), q.e.d. 

Theorem 2.2. Let L be a finite join-atomic lattice, peL. Then p e Dis(L) o 
At(p) is closed. 

Proof. Assume p eDis(L) . As L is join-atomic, p = vAt(p) and At(p) has the 
property (i) from Definition 2.1. Now we prove that it has also the property (ii). 
Assume that 

aeAt(L), beAt(p), ceL, a^bvc, a^c. 

We have a^pvc, since b^p and a^bvc, and AAC = 0 (the least element of L), 
since aeAt(L) and a^pc. Therefore 

p = pv(a/\c) = (pva)/\(pvc) = pva, i.e. a^p, aeAt(p). 

We proved the implication =$>. The implication <.= is a consequence of Lemma 2.1 
and the trivial fact At(uAv) = At(u)nAt(v) for each u, veL. 

Lemma 2.2. Let x, y be elements of a lattice L with the least.element 0. Then 

con(0, jr)vcon(0, _y) = con(0, xvy) 

holds in Con(L). 

Lemma 2.3. Let L be a finite join-atomic lattice with the least element 0 and 
6>eCon(L). Then 6> = con(0, /) for some teL. 

Proof. Trivially, 0= v{con(u, v)\ueL, veL, u—<v, u€h)}. For such u, 
v there exists a„.„ e A t (L )n (u J — M1), since L is join-atomic. The intervals (u, v) 
and (0, au.v) are transposes, therefore con(«, v) = con(0, au.v). By Lemma 2.2 it 
suffices to take / = V { « U . „ | M € L , veL, u—<v, u&v}. 
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Lemma 2.4. Let L be a finite join-atomic lattice with the least element 0 and 
teL. Then con(0, t) = con(0, p) for some p eDis(L). 

Proof. We construct a sequence of sets 

Bo = At(f), B, = a,(Bo), B2 = a2(B,), 
B3 = a,(B2), ..., B2n = o2(B2n ,), B2„ + , = a,(B2n) 

Trivially, B0 c B, c B2 c B, c .... As L is finite, this sequence becomes stable on the 
value a(B0). If we denote t, = vB„ there is f = r 0 ^ t i ^ t 2 ^ • •• and con(0, t) 
= con(0, to) = con(0, f i )c . . . . As x= wAx(x) for each xeL, r2„+i = vB2„+ , 
= vai(B2„) = vAt(vB 2 „) = vAt(f2,,) = t2n and con(0, t2n) = con(0, /2„ + ,). If 
we prove that con(0, t2n i) = con(0, t2n) for each n, it will be trivial that the 
lemma holds for p = v o(B0). 

Let us define an operator T (in general, it is not a closure operator) in the 
following way: 

If S has the property (ii) from Definition 2.1, T ( S ) = S, if S has not the property 
(ii), there exist elements aeAt(L), b eS,ce L such that a^bvc, a^c, a ^ S. We 
choose one such triple (a, b, c) and take T ( S ) = S U { « } . 

We construct a sequence of sets 

S0 = B2„ „ S, = T(SO), S 2 = T ( S , ) , S , = T(S 2 ) , . . . 

and a sequence of elements of L 

5o=vS 0 , 5, = vS, , 5 2 =vS 2 , 53= vS, , .... 

As So = Si = S2 = S3 = . . . and L is finite, this sequence becomes stable on the value 
a2(So) = a2(B2n-i). As t2n i = 50sS5is£52s£53^..., con(0, t2n 1) = con(0, s0) = 
con(0, 5i) c con(0, s2) c con(0, 53) = ... and this sequence becomes stable on the 
value con(0, t2„). It suffices to prove that con(0, s.) 3 con(0, 5,+ 1) for each /. Let 
us denote A=con(0,5,). If S1+i = S,, there is 5,+i=5, and trivially (0,51+,)eA. If 
S1+i^=S,, there exist elements a e A t ( L ) , beS,, ceL such that a^bvc, a^c, 
a^S„ S, i = S,u{a}, therefore 51+] = 5, va . As BsS vS, = 5,, there is (0, b)e A and 
(c, bvc)ek. As c^avc^bvc, there is (c, avc)eh. As OAC = 0, there is 
(0, a)eA. Therefore (0, 5,+!) = (0, s,va)eA, q.e.d. 

Theorem 2.3. Let Lbea finite join-atomic lattice. Then Dis (L) is a sublattice of 
L and the assignment p •-» 0P defines an isomorphism of lattices Dis (L)—+ Con (L). 

Proof. It is known that Dis(L) is a v-subsemilattice of L. By Theorem 2.2, p , 
oeDi s (L ) => At(p) , At(o) are closed => At(pAo) = A t ( p ) n A t ( a ) is closed => 
p AO eDis(L) and therefore Dis(L) is a sublattice of L. The assignment p>—*&p is 
injective since pi = [O]0P. By Theorem 2.1 and Lemma 2.2, 0p„q =con(0, pvq) 
= con(0, p) v con(0, q) = 6>pv©, and it suffices to prove the surjectivity. 
Choose AeCon(L). By Lemma 2.3, A =con(0, t) for some teL. By Lemma 2.4, 
A = con (0, p) = 0P for some p e Dis (L). 
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Lemma 2.5. Let L be a finite join-atomic lattice. If Ai, A2 are closed subsets of 
At(L), the set A i u A 2 is closed. 

Proof. Ai =At(p), A2=At(q), where p = vAu q = vA 2 . By Theorem 2.2 p 
and q are distributive, and by Lemma 2.1 and the distributivity of pvq, A i u A 2 

= At(p)<uAt(q) = At(pvq) is closed. 

Corollary. The closure operator a is topological. 

3 . Congruence-preserving extensions of lattices 

We shall construct a special extension of lattices which will make it possible to 
apply the results of the preceding paragraph to any finite lattice. 

Theorem 3.1. Let L be a finite lattice with the least element 0, i .e I r (L ) — 
At (L), u0—<u and let L ' be a set disjoint to L such that there exists a bijection 

L — w0
T—»L', x>->xu. 

Define the relation =S on the set L" = L\JL' in the following way: 

x^y for x, yeL is defined as in L, 
x*£yu<=-x^y for all xeL, yeL — u0, 
xu^y++xvu^y for all xeL — u0, yeL, 
x" ^y"ox^y for all x, yeL — u0. 

Then =S is an order (reflexive, antisymmetric and transitive binary relation) on L" 
and (L", s£) is a lattice in which L is a sublattice. Moreover, 

At(L") = At(L)u{0"} , Ir(L") = ( I r (L) -{ i . } )u{0"} . 

The proof is not interesting, it is necessary to distinguish a lot of cases for the 
elements of L". It can be easily proved that the lattice operations on L" are the 
following ones: 

xvy, XAy are defined as in L if x,yeL, 
xvy" =y"v x = (xvy)" if xvyeL — uoo\ 

= xvyvu if xvyeu0\ 
x"vy" =xvy", 

XAy"=yuAX = (xAy)u if xeu\ 
XAy if xeL — u\ 

x" Ay" = (xAy)". 

Definition 3.1. The lattice L" constructed in Theorem 3.1 will be called a simple 
extension of the lattice L. 
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Theorem 3.2. Let L be a finite lattice with the least element 0, u, velr(L) 
- (At(L)u{0}). 77ien the lattices (L")v and (L")u are isomorphic. 

Proof. The assignment 
x>-^x for xeL, 
x">->x" for xeL — Uo], where u0— <u, 
x">—*x" for xeL — v0, where v0— <v, 
(*")"-»(*")" for *eL-(uoTui>oT) 

defines an isomorphism of lattices (Lu)"—»(L")U. 

Definition 3.2. Lef Li be a sublattice of a lattice L2. The extension L, c L2 will be 
called congruence-preserving iff the assignment 0>-»0n(Li x Li) defines an 
isomorphism of lattices Con(L2)—»Con(Li). 

R e m a r k . If Li c L 2 and L2cL3 are congruence-preserving extensions, L i c L j 
is congruence-preserving. Trivially, L c L is always congruence-preserving. 

Theorem 3.3. Each simple extension of lattices is congruence-preserving. 
Proof. Let L c L " be a simple extension of lattices, 0=£ u0— <uelr(L). The 

element u0 is uniquely determined by u. Define a mapping <p: Con(L") —» 
Con(L), <p(0) = 0n(L x L). Trivially, this definition is correct and <p preserves 
the intersections. There suffices to prove that <p is injective and surjective. 

Choose two different congruences 0 i , 0 2 on L"; then e.g. 0 2 £ 0 i . There exist 
elements a, beL" such that 

a-<b, (a,b)e02, (a, 6 ) ^ 0 , . 

There are four possibilities: 
(a) aeL, beL; then (a, b) e <p(02) - <p(0i), <p(0i)±<p(02). 
(b) aeL', beL'; then a = x", b = y" for some JC, y e L — u0. As the intervals 

(a, b) and (x, y) are transposes, they are collapsed by the same congruences and 
(x,y)e<p(02)-<p(0i). 

(c) aeL, beL'; then b = y" for some yeL — u0. As a=Sy —<yu = b and 
a—<b, there is a=y, (y, y")e 0 2 — 0 i . The intervals (y, y") and (u0, u) are 
projective (consider the interval (0, 0U)!), therefore (u0, u)e<p(02) — <p(0\). 

(d) aeL', beL; then a = x" for some xeL — uJ and a=x"<xvu^b, 
therefore b=xvu and we have (x", xv u) e 02— 0 i .The intervals (x",xv u) and 
(XAUO, w0) are transposes, therefore (XAU0, WO) e <p(02) — <p(0i). 

There remains to be proved the surjectivity. Take AeCon(L) . We shall 
construct 0 e C o n ( L " ) such that X = <p(0)= 0n(L x L). There are two pos­
sibilities : 

(a) If (u0, u)ek, we define 

(x, y)e0o(x, y)el for x, yeL, 
(x, y")e 0o(y", x)e 0o(x, y)e for xeL,yeL — u0, 

(x", y")e 0 < * ( J T , y)eA for x, y e L - u o o , . 
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It is easy to prove that <9eCon(L") and <p(0) = k. 
(b) If (u0, u)^k, we define 

(x, y)e &<>(x, y)e A for x, yeL, 
(x, y")e ©o(y", x)e 6><=>[JC = u and (u0, y)ek] 

for xeL, yeL — ua\ 
(x", y")e 0o(x, y)eA for x, yeL — M0

T. 

Now the stability of 0 is not trivial. We shall consider one of the interesting cases: 
(x, y")e 0, x, zeL, yeL-Uo*; we want to prove that (XAZ, y"Az)e 0. 

By the definition of 0, x=u and (ua, y)eX. There are two possibilities: 
(1) ze MT; then 

XAZ = u AZ = u, y" Az = (y AZ)" • 

By the A-stability of A, (U0AZ, yAz)eX, but U0AZ = U0AUAZ = uo, therefore 
(XAZ, (yAz)") = (XAZ, y"Az)e0. 

(2) zeL — wT; then UAZ<U and from the join-irreducibility of u we get 
WAZ^SWO, UoAz = UOAUAZ = UAZ = XAZ, y"Az = yAz, Therefore (XAZ, 

y"AZ) = (UOAZ, yAz) e A c 0 . 

R e m a r k . Applying the construction of a simple extension to a finite lattice L as 
often as possible we get an embedding of L into some join-atomic lattice L. The 
extension LcL is congruence-preserving and by Theorem 2.3 we get an 
isomorphism of lattices Dis(L)—»Con(L). 

By Theorem 3.2 up to the isomorphism the lattice L does not depend on the 
order in which the elements of Ir(L) — (At(L)u{0}) are used in its construction. 

The distributive elements of the lattice L can be found by Theorem 2.2: first we 
find o({a}) for all ae At(L), the elements wo({a}) and joins of such elements are 
all distributive elements of L. 

The construction of a simple extension has some interesting properties: it 
preserves the distributivity of a lattice (if L is distributive, L is a Boolean algebra) 
but does not preserve, e.g., the meet-semidistributivity the property defined by the 
quasiidentity a = bAC= bAd => a = bA(CS/d) — it suffices to extend the pen­
tagon. 
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КОНГРУЭНЦИИ НА КОНЕЧНЫХ СТРУКТУРАХ 

Богуслав Сива к 

Резюме 

В статье доказаны три основных результата. Два относятся к конечным структурам, все 
элементы которых представимы в виде суммы атомов: 1) дистрибутивные элементы таких 
структур находятся во взаимно однозначном соответствим со замкнутыми множествами 
некоторого оператора замыкания, 2) конгруэнции на таких структурах находятся во взаимно 
однозначном соответствии с дистрибутивными элементами. 

Наконец показывается, как для любой конечной структуры построить такое конечное 
расширение, которое имеет изоморфную структуру конгруэнции и все элементы которого 
представимы в виде суммы атомов. 
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