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REGULARITY AND EXTENSION OF MAPS 

ROMAN FRIC*) — D. C KENT**) 

ABSTRACT. We investigate the notion of regularity for convergence spaces and 
C -spaces. We show that regularity can be characterized in terms of certain ex­
tensions of continuous maps. This generalizes a characterization of regularity for 
topological spaces. 

Introduction 

There are some topological properties which can be conveniently character­
ized by asserting the existence of extensions of certain types of functions. The 
Tietze Extension Theorem gives such a characterization of normality. A topo­
logical space is completely regular if and only if, for each subspace B = _4U {x} , 
where A is closed and i E l - 4 , the function / : B —> R defined by f(A) = 0 
and f(x) = 1 has a continuous extension g: X —> R. 

In this context, apparently less well-known is the role of regularity. A char­
acterization of regular topological spaces in terms of extensions and maps is 
stated in [BOUR] and extended to pretopological spaces in [CECH]. In or­
der to state this theorem concisely, we introduce some simplifying terminology. 
If Xo is a subspace of X, / : Xo —> Y is continuous and there is a family 
S = {f2: x e X — Xo} such that, for each i G l - I o , fz: X0U {x} —> Y is 
a continuous extension of / , then we say that / is pointwise extendable to X 
relative to S. Assuming that / : Xo —> Y is pointwise extendable to X relative 
to tS, let / s : X —> Y be the extension of / such that fs(x) = fx(x), for all 
x € X — Xo . If fs: X —> Y is continuous, we say that / is fully extendable to 
X relative to S. 

THEOREM 0.1. [CECH] A pretopological space Y is a regular if and only if 
whenever XQ is a dense subspace of a topological space X and a continuous 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 54A20, 54D10. Secondary 54A05, 
54C20. 

K e y w o r d s : Convergence space, £-space, Regular space, Strict subspace, Pointwise ex­
tendable map. 
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function f: Xo —> Y is pointwise extendable to X relative to S = {fx '• x £ 
X — Xo} , then f is fully extendable to X relative to S . 

We shall refer to the preceding theorem (and modified versions of it appropr i ­
a te to other types of topological s t ructures) as a "regularity extension theorem" . 

In [FRIC], it is proved tha t in the realm of sequential topological spaces the 
regulari ty of Y can be replaced by a weaker notion of c -regularity . In [CECH], 
it is pointed out tha t this theorem is not valid if X is a pretopological space. 
However, in Section 1 we prove the regularity extension theorem for pre topo­
logical spaces (indeed, more generally, for convergence spaces) by adding the 
assumpt ion tha t Xo is a strict subspace of X. An a l te rna te version of the 
regulari ty extension theorem for T\ convergence spaces is also established. In 
Section 2, we use the regularity extension theorem as the definition of "regu­
lari ty" for £ - spaces , and then prove a version of this theorem which yields a 
simpler characterizat ion for regular £-spaces . 

We present a simple universal example showing tha t the assumpt ion of Xo 
being a strict subspace of X cannot be avoided (see Example 2.3). 

1. R e g u l a r c o n v e r g e n c e s p a c e s 

Let X be a set, F(X) the set of all (proper) filters on X . For each x G X , 
x denotes the ultrafilter generated by {x} . 

A convergence structure q on X is a relation between F(X) and X such 
tha t : 

(1) (x, x) G q, for all x G X.; 
(2) (T, x) G q and T C Q implies (Q, x) G q; 
(3) (T, x) G q implies (T H x, x) G q . 

A convergence space (X, q) is a set X equipped with a convergence s t ruc­
tu re q. If (T, x) G <l, we say tha t T q-converges to x. For A C X, ciqA = 

{x G X: there is T G F(X) such that A G T and (T, x) G q) is called 
the q-closure of A. If T G F(X), ctqT is the filter on X genera ted by 

{c£qF: F G T}. A convergence space (X, q) is regular if c£qT q -converges 
to x whenever T q-converges to x . A convergence space is pretopological 

(and a is a pretopology) if, for each x G X , there is a filter Vq(x) (called 
the a-neighbourhood filter at i ) such that T a-converges to x if and only if 
Vq(x) Q T. It is well known, tha t each closure operator on X (in the sense of 
C e c h [CECH]) defines a unique pretopology on X and vice-versa; thus the 
pretopological spaces and essentially the closure spaces of Cech. 

T h e not ion of " strict compactification" of a convergence space was in t roduced 
in [KERI]. More generally, a subspace (Xo, qo) of a convergence space (X, q) 
is defined to be a strict subspace of (X, q) if (Xo, qo) is dense in (X, q) (i.e., 
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c£qXo = X ) and, if T g-converges to x, there is G G F(X) such that X0 G G , 
c ^ £ C F , and G q -converges to x. If (X, 5) is a topological space, then every 
dense subspace is strict, but dense subspaces of pretopological spaces need not 
be strict. Strict extensions for convergence spaces and groups are considered in 
[FKCG] and [FKNC], and for £-spaces and £-groups in [FRZA]. 

THEOREM 1.1. A convergence space (Y, p) is regular if and only if whenever 
(Xo, q0) is a strict subspace of a convergence space (X, q) and a continuous 
function f: (Xo, q0) —• (F, p) is pointwise extendable to (X, q) relative to S = 
{fx: x G X — X0}, then f is fully extendable to (X, q) relative to S. 

P r o o f . Assume that (F, p) is regular, and let T a-converge to x in 
(X, q). Assume that / : (Xo, qo) —» (Y, p) is continuous and pointwise extend­
able to (X, q) relative to 5 . Let g = fs . If A C X0 , one can verify that 
g(c£qA) C c£pf(A). Since (Xo, #0) is a strict subspace, there is G q -converging 
to x such that X0 G G and c£qG C T. Note that c£pf(G) C g(c£qG) C g(T). 
If x G Xo , then G p-converges to x, and f(G) p-converges to f(x) = g(x) 
by continuity of / . Also c£pf(G) p-converges to g(x) by regularity of (F, p), 
and so g(T) p -converges to g(x). If x G X — X0 , and £ ' denotes the filter on 
X0 U {x} generated by G, then G' qx -converges to x , where <7X is the restric­
tion of q to X0 U {x}. Thus f(G) = fx(G') p-converges to fx(x) = g(x) by 
continuity of fx . Therefore, c£pf(G) p-converges to g(x), which implies g(T) 
p-converges to g(x). Thus g: (X, q) —* (F, p) is continuous. 

Conversely, assume (F, p) is not regular. Then there is T G F(F) and y EY 
such that .F p-converges to y, but c ^ F does not p-converge to y. We shall 
construct a convergence space (X, q) with strict subspace (Xo, <lo) such that, 
for each x G X — Xo , there is a continuous extension / x : Xo U {x} —> F , but 
/ is not fully extendable to (X, q) via this set of pointwise extensions. 

Let A = (f]c£pT) - [(ft?) U {y}] = {aa: a G 1}. For each a G / , let 
-4a = {a a i : i G N} be a countable infinite set such that Aa f) Ap = 0, for a ^ /? 
in 7, and A a n F = 0, for all a G / . Let X2 = [}{Aa: a G 1} . 

Next, let X ' = {x G F : x is not an isolated point in (F, p)} — (Af){y}) . For 
each x G X ' , let ^(x) be a point such that <p(x) £ F U X 2 , and, for x, z G X ' , 
V?(x) = (^(z) if and only if x = 2. Let Xi = {^>(x) x G X '} ; then Xi is a copy 
of X"' which is disjoint from F U X2 . 

Let X = X0 U Xi U X2 , where X0 = F . Note that Xi or X2 (but not 
both) could be empty. Let T' be the filter on X generated by T. Also, observe 
that c£pT necessarily has a trace on X1 U A. If c£pT has a trace on X ' , let 
W be this trace, and let H! be the filter on X generated by (f(H). If A ^ 0, 
let /C' be the filter on X generated by {X2 — F: F a finite subset of X 2 } . If 
c^,.F has a trace on X ' and A ^ 0 , we define £ = F ' n H' H JC'. If c£pT does 
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not have a t race on I ' , then A ^ 0 , and in this case we define Q = J7' D 1C . 
Finally, if A -= 0 , then clvT must have a trace on X', and in this case we let 

5 = rnr. 
T h e convergence s t ructure q on X is defined to be the finest convergence 

s t ruc tu re subject to the following conditions: 

(1) Qr\y a-converges to y ; 
(2) If £ is a filter on X such tha t XQ G C and C\Y P-converges to 

x G X', then £ fl <p(x) a-converges to v?(x) in X\ ; 
(3) If £ is a filter on X such tha t X0 G £ and £ | y p-converges to 

a a G -A, then £ fl aa{ a-converges to a a i , for all i G N . 

It is obvious from this construction that the subspace (Xo, <lo) is dense in 
(X, q), and one can easily verify that dLvT* C £ , which implies t ha t (Xo, Qo) 
is a strict subspace of (X, q). Let / : (Xo, qo) —» (i7, p) be the identi ty m a p ; it 
is obvious from our construction tha t / is a continuous. If x G X\ we define 
fx(x) — z, where z is the unique element of X' such tha t <p(z) = x; if x G X2 , 
then x = aQi for some a G J and z G N and we define v?(.r) = «a • It follows 
easily tha t fx is a continuous extension of / for all x G X — Xo . Let # be the 
extension of / to X which coincides with fx for each x G X — Xo ; g is not 
continuous because (7 a-converges to y, but g(£) = c -̂,̂ -* does not p -converge 
t ° g(y) — V • Then , / is not extendable to (X, q) via the set {fx '• x G X — Xo} 
of pointwise extensions, and the proof is complete. • 

Another version of the regularity extension theorem for T\ convergence 

spaces can be s ta ted as follows. 

T H E O R E M 1.2. Let (Y,p) be a T\ convergence space. Then (Y, p) is regular 
if and only if whenever (Xo, qo) w a strict subspace of a convergence space 
(X, a), and a continuous function f: (Xo, qo) —* (Y, p) is pointwise extendable 
to (X, q), then f has a continuous extension h: (X, q) —-> (Y, p). 

P r o o f . If (Y, p) is regular, h can be taken to be the function g of the 
preceding proof. Conversely, if (Y, p) is not regular, the converse pa r t of the 
preceding proof can be repeated, and one can use the T\ p roper ty of (Y, p) to 
show tha t any continuous extension of / to (X, q) must necessarily coincide 
wi th fx for each x G X — Xo . Thus the function g of the preceding proof is the 
only possible choice for h and since g is discontinuous, no continuous extension 
of / to (X , q) can exist. • 

If the space (Y, p) of Theorem 1.1 is pretopological, then the space (X , q) 
const ructed in the proof of this theorem is also pretopological . T h u s Theorems 
1.1 and 1.2 remain valid if "convergence space" is everywhere replaced by "pre­
topological space" . If limit space and pseudotopological space are defined as in 
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[PREU], Theorems 1.1. and 1.2 are also valid when "convergence space" is re­
placed by "limit space" or " pseudotopological space", with no alteration re­
quired in the proof of either theorem. One can also show that these theorems 
hold when "convergence space" is everywhere replaced by "Cauchy space" and 
"continuous function" by "Cauchy continuous function"; in this case, of course, 
the proofs must be altered. These results suggest that the regularity extension 
theorem could serve as a suitable definition for regularity in a wide variety of 
topological categories, an idea which we pursue further in the next section. 

2. Regular £ - spaces 

In this section, we use the regularity extension theorem to extend the notion 
of regularity to £-spaces. We then give an internal characterization of regular 
£-spaces; a deeper study of such spaces and their relationship to regular filter 
convergence spaces will be developed in another paper [FRKE]. 

Let X be a set, N the set of natural numbers. Then X N denotes the set of 
all sequences on X . If S G X N , let P(S) be the filter generated by S. For a 
"double sequence" C = (Sn) G (XN)N on X , let f(() be the filter with base 

{ OO OO N 

U U {Sk(£)} \ , for n G N. Furthermore, if 
* = i ^ = i ' 

/ G N N , let C/ = {Sn(f(n))) be the "diagonal" of C determined by / . Let 
MON denote the set of all monotone functions in NN ; if S G X N , then all 
subsequences of S are of the form S 0 5 , for some s G MON. 

An £-structure L on X is a relation between X N and X such that: 
(1) (5, x) G L whenever x G X and S is the constant sequence S(n) = x, 

for all n G N; 
(2) If (5, x) G L, then (S o s, x) G L, for each s G MON. If L is an 

£-structure on X , then (X, L) is called an £-space. If (5, x) G L, 
we say that " 5 L-converges to x" . (X, L) is called an £0-space if 
each sequence L-converges to at most one point; it is an £*-space if 
the Urysohn axiom is satisfied: 

(*) (5, x) G L if, for each s G MON, there is a t G MON such that 
(S o sot, x) eh. 

Let (X, L) be an £-space. Let S G XN , and x G X . Then S and x are said 
to be linked if there is a double sequence C = (Sn) G (XN)N such that, for each 
k G N, the sequence Sk L-converges to S(k), and, if T G X N has the property 
F(T) D ^F(C) > then T L-converges to x. In this case, we say that C links S 
and x. 

If (X, d) is a pseudo-metric space and M denotes the usual convergence of 
sequences in (X, d), then one can easily verify that S and x are linked if and 

353 



ROMAN FRlC — D. C. KENT 

only if S M-converges to x. We omit the straightforward proof of the next 
proposition. 

P R O P O S I T I O N 2 .1 . Let (X, L) be an C*-space. Let ( = (Sn) e (XNf, 

S G XN , and x G X . Then ( links S and x if and only if for each k G N, 
the sequence Sk L -converges to S(k) and, for each f G NN , the sequence £/ 
L -converges to x . 

Let (X, L) be an £-space, and let X0 be a dense subset of X (i.e., c^(Xo) 
= X). Then the £-subspace (Ko, Lo) of (X, L) is called a strict subspace if, 
for each S G XN , and x G X such that S L-converges to x , there is £ G (XQ)N 

which links S and x. 

In the completion theory for £*-spaces, we usually begin by constructing 
an £-convergence L and then pass to its Urysohn modification L* . To control 
an L*-convergent sequence, it suffices to control its L-converging subsequences. 
Correspondingly, in [FRZA], the notion of a strict extension (precompletion, 
completion) is in terms of subsequences. However, for general £-structures we 
have to adopt a stronger notion of strictness. Indeed, Proposition 3.4 in [FRZA] 
states that the Novak £*,-completion vQ of Q is strict in our sense. Since the 
real line is a metric space, each of the 2C £Q-group completions of Q constructed 
in [FRZA] are strict in our sense as well. 

Recall that a function / : (X, L) —> (Y, M) between two £-spaces is contin­
uous if f(S) M-converges to f(x) whenever S L-converges to x. The termi­
nology in the paragraph preceding Theorem 0.1 may be applied to extension of 
functions between £-spaces in the obvious way. 

An £-space (Y, M) is defined to be regular if, whenever (Xo, Lo) is a strict 
subspace of (X, L) and a continuous function / : (Ko, L) —» (Y, M) is pointwise 
extendable to (X, L) relative to S = {fx: x G X — Ko}> then / is fully 
extendable to (X, L) relative to S. 

It turns out that there is a simple characterization of regular £ -spaces which 
we state in the next theorem. 

THEOREM 2.2. An C-space (Y, M) is regular if and only if S M-converges 
to x whenever S G KN , x G X, and S and x are linked. 

P r o o f . Assume that (Y, M) is an £-space with the property that S 
M-converges to x whenever S x are linked. Let (X, L) be an £-space, let 
(.Xo, Lo) be a strict subspace of (X, L) , and let / : (Xo, L) —» (Y, M) be a 
continuous map which is pointwise extendable to X via a set {fz ' x G X — X0} 
of pointwise extensions. Assume that S L-converges to x . Since Xo is a strict 
subspace of X , there is a double sequence ( = (5„) G (XQ)N which links S 
and x. Let g: X —> Y be the extension of / to X defined by g(x) = fx(x) for 
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all x eX -X0. For each k G N, let Tk = (f(Sk(n))) and £ = (T„). Clearly 
£ links g(S') and g(x). Since V is regular, the sequence g(S) M-converges to 
g(x), establishing continuity of g. Thus (Y, M) is regular. 

Conversely, assume that the specified condition fails. Thus there is a sequence 
(z)n G F N , a point 1 G 1 " , and a double sequence ( = (5„) G (F N ) N such that 
£ links (xn) and x, but (xn) does not M-convergence to x. 

Let Xo = Y, and let K"i = {yi, y2, •. • } be an infinite set disjoint from Y. 
Let X = X0 U X\ , and let L be the finest £-structure on X such that: 

(1) (Sfc,y*)GL,foraU k G N; 

(2) ( ( y „ ) , s ) € L ; 

(3) (5, x) G L for each S G -KN such that JF(C) C ^ ( 5 ) . 

Let (X0, Lo) be the subspace of (K, L) determined by X0, and let 
/ : (J_"o, Lo) —̂  (Y, M) be the identity map, which is clearly continuous. Let 
g: (X, L) —* (Y, M) be the extension of / defined by g(yk) = xk , for all 
yk G X . Each function fx obtained by restricting g to X0 U {x} is continuous, 
for all x G -X" — K0 • But g: (X, L) —• (Y, M) is not continuous, since (yn) 
L-converges to x, but (g(yn)) = (^n) does not L-converge to g(x) = x . Thus 
(F, M) is not regular and the proof is complete. • 

We present a simple example showing that the assumption of X0 being a 
strict subspace of X cannot be avoided (see a remark preceding Theorem 1.1). 

E x a m p l e 2.3. Consider a countable infinite set X arranged into a dou­
ble sequence (Sn), a sequence S and a point x. Denote by L the finest 
>C*-structure of X such that S converges to x and each Sk converges to S(k), 
k G N. Clearly, L has unique sequential limits. Put X0 = X — {S(k); k G N} 
and Lo = L|Ko . It is easy to see that (X0, h0) is a dense subspace of (X, L) , 
but it fails to be strict.,Let Y = X . Denote by M the finest C0 -structure on Y 
such that each Sk converges to S(k), k G N. It follows from the construction 
that (Y, M) is regular, and the identity map id0 of X0 into Y is continuous 
and can be continuously extended to each subspace X0U {S(k)} , kGN, but 
not to X . Consider the associated pretopological spaces pX0 , pX , pY. Then 
pY is regular and pX0 fails to be a strict subspace of pX . Also in this case ido 
can be continuously extended over X0 U {»->(£)} , k G N, but not over X. 

In [POCH], the following condition has been considered for an £-space 
(X,L): 

(P) Let S G XN , x G X. If there is a. double sequence ( = (Sn) G Xn 

such that, for each k G N, the sequence Sk L-converges to S(k) and, 
for each s, t G MON, the sequence (Ss(n)(t(s(n)) ) ) L-converges to 
x, then S L-converges to x. 
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It follows from Proposition 2.1 and Theorem 2.2 that an C* -space (X, L) is 
regular if and only if it satisfies condition (P). 

In the case of £j$-spaces, regularity can be characterized as follows: An 
£J-space (F, M) is regular if, whenever (X0, L0) is a strict subspace of (X, L) 
and a continuous function / : (X0 , L0) —> (Y, M) is pointwise extendable to 
(X, L) , then / has a continuous extension h: (X, L) —> (Y, M) . It would be of 
interest to describe the largest class of C -spaces for which this characterization 
of regularity is valid. 

It should be noted that our definition of regularity for £-spaces depends 
on the definition of "strict subspace", which in turn depends on the definition 
of "linkage" between a sequence and point. By modifying the requirements im­
posed on the double sequence ( in defining the statement "£ links S to x", 
one thereby alters the definition of regularity, but simultaneously one changes 
the condition in Theorem 2.1 characterizing regularity, so that Theorem 2.1 re­
mains valid. We have chosen to define linkage between sequences and points so 
that the resulting definition of £-space regularity translates to the usual (fil­
ter) convergence space definition of regularity under the modification functor 7 
of B e a t t i e and B u t z m a n n (see [BEBU] and [FRKE]). Further studies 
involving regularity in the setting of £-spaces may indicate that an alternate 
notion of linkage is more appropriate. Various diagonal conditions which might 
be considered to define a linkage can be found in [FRVO] and [NOBE]. 

Finally, it should be mentioned that we defined "X 0 is a strict subspace of 
X " with the requirement that X be the (first) closure of X0 in X . In apply­
ing regularity in the study of extensions and completions (both for convergence 
spaces and L-spaces), it may be desirable to broaden the definition of "strict" 
to include the case where X is the topological (or iterated) closure of X0 . 
Such situations appear, e.g., in connection with extension of measures ([KRAT], 
[NOME]). The appropriate formulation of the regularity extension theorem un­
der these circumstances will be left as a problem for further investigation. 
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