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ON MAGIC LABELLINGS OF TYPE (1,1,1)
FOR THREE CLASSES OF PLANE GRAPHS

MARTIN BACA
1. Introduction

The notions of magic and consecutive labelling of plane graphs were defined
by Lih Ko-Wei [1]. However, the subject can be traced back to the 13th
century when similar notions were investigated by Yang Hui (1275) and
later by Chang Chhao (1670), Pao Chhi-Shou (1880) and Li Nien
(1935).

Magic labellings of type (1,1,0) for wheels, friendship graphs, prisms and some
of the Platonic polyhedra are given in [1].

This paper describes magic labellings of type (1,1,1) for three classes of plane

graphs.

2. Necessary notions and definitions

We shall consider non-trivial finite connected planar graphs without loops or
multiple edges. If a planar graph is embedded in the plane, then it is called a
plane graph. Let G be such a graph with the vertex set V' (G), the edge set E((7)
and the face set F(G), where |V (G)|, |[E(G)| and |F(G)| are the number of
vertices, edges and faces of G.

A labelling of type (1,1,1) assigns labels from the set {1, 2, 3, ..., |V(G)| +
+ |E(G)| + |F(G)|} to the vertices, edges and faces of graph G in such a way that
each vertex, edge and face receives exactly one label and each number is used
exactly once as a label. If we label only vertices or only edges or only faces, we
call such a labelling a vertex labelling, an edge labelling or a face labelling,
respectively.

The weight of a face under a labelling is the sum of the label of the face itself
and the labels of vertices and edges surrounding that face.

A labelling is said to be magic if for every integer s all s-sided faces have the
same weight [1]. We allow different weights for different s.

This notion of magicality is different from the definition given by J. Sedlaéek
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in [2]. However, a magic edge labelling of a plane graph, in our sense, is equal
to a supermagic labelling of the plane dual graph G* of G as defined, for
instance, in [3, 4, 5].

A labelling is said to be consecutive if for every integer s the weights of all
s-sided faces constitute a set of consecutive integers. Two labellings g and g’ are
said to be complementary if for every integer s the sum of the g-weight and the
g’-weight of each s-sided face is a constant.

We shall use [ r] to denote the least integer greater than or equal to r, and

7] to denote the greatest integer smaller than or equal to r, and further we
shall use the expressions

_ (=11 (—1y+' 41

and f= to simplify later notations.

3. Results

For n > 2 let B, be the Cartesian product P, x P, of a path on n vertices with
a path on three vertices, embedded in the plane and labelled as in Fig. 1.

X Xy2 Xy3 Xy net Xy n
X2, X2,2 X23 X201 X2n
X3, X3,2 X33 X3,n-1 X3n
Fig. 1

Define the vertex labelling g, as follows.

{a(i+1)+ﬂ(n+i“1) if i is odd

go(xl,i) = an+i—1)+ BGi—1) if i is even

go(xz,i) = j
a(3n—i+1)+ﬂsl%—l if i is even
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ai + B(n + i) if i is odd

x i = . .
8o(x3,1) {a(n + i)+ Bi if i is even

Lemma 1. The vertex labelling g, of B, is magic if n>2 is even and is
consecutive if n > 3 is odd.

Proof. Under the labelling g, the weight for all 4-sided faces is 7n + 2 (if
n is even) and the weights for all 4-sided faces successively assume consecutive
values 6n + 3, 6n + 4, ..., 8n (if n is odd).

Define the edge labelling g, as follows.

gi(x X)) =an—=2i— 1)+ BRi—1) ifl<i<n-—1
a5n+1—3+ﬂ6n—z—l if i is odd
2 2
80w =N G4 m—io1
a + B if i is even
2 2
81(xXy Xy ) =5n—i—2 ifl<i<n-—1
g IZ3 T I72 e odd
2 2
800D = g4 sn—i-2 .
a + B if i is even
2 2
81(x3,%3;41) = an — 2i) + B2i fl<i<n-—1

Lemma 2. The edge labelling g, of B, is magic if n > 3 is odd and is consecutive
if n > 2 is even.

Proof. For the weights of 4-sided faces we have
& ix v 1) + & (%0 + &1 O 1 X2+ 1) + 81 (i X2,i41) =
25n — 4i — 12 23n -9

= +
2 ¢ 2

and
81X, %2 i 41) + &1(x0:%3) + 81 (X 41 %34 1) + &1 (X3,:%541) =
25n — 4i — 10 23n—9

=q + B fori=1,2,...,n—1.
2 2

It is easy to see that under the labelling g, if n is odd, the common weight for

all 4-sided faces is 23n —

and if n is even, the set of weights of 4-sided faces
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. . 2ln—8 2ln—6 25n — 14
consists of the consecutive integers T 5, v 5 .

Theorem 1. For n > 2 the graph B, has a magic labelling of type (1,1,1).

Proof. Label the vertices and the edges of B, by g, and |V (B,)| + g,
respectively. From the previous lemmas it easily follows that in the resulting
labelling of type (1,1,0) the weights of 4-sided faces constitute a set of conse-
cutive integers. Hence, if g, is the complementary face labelling with values in
the set {{V'(B,)| + |E(B)| + 1, ..., |V(B,)| + |E(B,)| + |F(B,)|}, then the labell-
ings g,, |V (B,)| + g, and g, combine to a magic labelling of type (1,1,1).

Let Q,, @, and Q, be paths on n, 2n and » vertices, respectively. Denote the
vertices of Q; by x; |, x; 5, ..., in the order they occur on Q;, i = 1, 2, 3. Form the
graph C, from the disjoint union Q, U Q, U Q, by adjoining the edges x, ; X, 5 _,
and x, ,x;; fori=1, 2, ..., n. (Fig.2).

Xy X1,2

We construct a vertex labelling g; and an edge labelling g, of C, in the
following way.

g(x, ;) =2i—1
83(Xy ) =4n—2i+2
g:(xy0) =4n—2i+ 1
8(x;,) =2i
fori=1,2,...,nand
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ga(x) %1 i) =4n—2i— 1 fl<i<n-—1

_fan+i-3 if i is odd
(X% = \5p 4 — 4 if i is even
8a(Xy 01Xy 0)=n—i+1 ifl<i<n
8u(Xy Xy 0 ) =n+1i fl<i<n-—1
_ dn+i—2 if i is odd
8a(X22%3;) = Sn+i—3 if i is even
84(x3,; X3, ) =4n—2i—2 ifl<i<n-—1

Lemma 3. The vertex labelling g of C, is consecutive if n > 2.

The set of weights of 5-sided faces under the labelling g, consists of conse-
cutive integers {10n + 4, 10n + 5, ..., 12n + 1}.

Lemma 4. The edge labelling g, of C, is magic if n > 2.

By direct computation we obtain that the weight for all 5-sided faces is
151 — 6.

Theorem 2. For n > 2 the graph C, has a magic labelling of type (1,1,1).

Proof. Label the vertices and the edges of C, by g, and |V (C,)| + g
respectively. If g5 is the complementary face labeling defined analogously as in
the previous theorem, then the labellings g;, g, + |V (C,)| and g5 combine to a
magic labelling of type (1,1,1).

We define D, to be the graph obtained from the graph C, by inserting the
edges x, 51 X354 1 and Xy 5% 54, fori=1,2, ..., n — 1. (Fig. 3).

A Xy,2 X13 __ Xtn1 X{,n
X2,1 X23 X25 __ 1%22n3 [ X220
/I //
X2,2 X24 X2 X202 |X2,2n
X34 X32 X33 : X3,n-1 X3,n
Fig.3

Define the vertex labelling g, and the edge labelling g; as follows.
g6(xl,i) =4n — 2i+ 1

86(X22i_1) = 2i
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g(X22) =2n —2i+ 1
8e(x3;) =2n+2i
fori=1,2, ..., n
g (x ;X1 :41) =81 +2i—4
81(X5 21Xy 04 1) =61 —2i
87(Xy 2%y 51 42) = 6n — 2i — 1
gr(x3,X;,,1)=8n+2i—3
81X 2% 50 1) =Tn+i—2

fori=1,2,...,n—1.

[21”+1J+’+‘—5 if i is odd
( ) 2 2
81\ X,iX22i 1) =
5 . 2
{3n+1J+l—5 if i is even
2 2
&1 (X201 Xy ) =6n+i—2 ifl<i<n
10n+%—5 if i is odd
&1(xy.2i%3,;) = .
e 21
[ n+1J+|7q+i—5 if i is even
2 2 2

Theorem 3. For n > 2 the graph D, has a magic labelling of type (1,1,1).

Proof. Label the vertices and the edges of D, by g, and g,, respectively.
We obtain the labelling of type (1,1,0), where the weights of 3-sided faces
constitute a set of consecutive integers {21n, 21n + 1, ..., 23n — 3} and the
weights of 4-sided faces successively assume the values 43n — 9, 43n — 8, ...,
44n —12,44n — 11,44n — 9, 44n — 8, ..., 45n — 11 if n is odd and 43n — 10,
43n -9, ...,44n — 13, 44n — 12, 44n — 10, 44n — 9, ..., 45n — 12 if n is even.
Hence, if gz is the complementary face labelling with values in the set
V(D) + |E(D)| + 1, .., |V(D,)| + |E(D,)| + |F(D,)I}, then the labellings g,
g, and g combine to a magic labelling of type (1,1,1) ‘

Observe that the external 2n + 4-sided face is assigned the label |V (D,)| +
+ |E(D)| +n.
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O MAT'MYECKUX PASMETKAX THUIIA (1,1,1)
JUIS1 TPEX KJIACCOB IJIOCKUX 'PA®OB

Martin Baca
Pe3rome

Tycth G — cBa3Hbli mnockuit rpad c |V (G)| Bepumnamy, |E(G)| pebpamu un |F(G)| rpansaMu.
Pa3mertka Tuna (1,1,1) mpunuceiBaeT MeTku U3 MHOXecTBa {1, 2, 3, ... |V(G)| + |E(G)| + |F(G)|}
BEpUIMHAM, peOpaM U rpaHsiM TaKMM 00pa3oM, YTO KaxAO# BeplMHe, peGpy M rpaHH NMPHITUCHI-
BaEeTCS TOJBKO OJHA METKA, MPHYEM KaxK[1as MeTKa UCNOJIb3YETCsl TOJILKO OJUH pas.

Bec rpaHH OTHOCHTEJIBHO JaHHOM pa3METKH PaBeH CYMME METOK, IPUIHCAHHBIX CAMOM IpaHu
u eé BeplLIMHAM M peGpaM.

Pa3MeTrka Ha3bIBaeTCS Maru4yeckoi, €CM Bce FPaHU C OAHHM U TEM XK€ YUCJIOM CTOPOH UMEIOT
OMH M TOT e, 3aBHCALLIMI OT YUCIa CTOPOH, Bec. B paboTe nmocTpoeHbl Maruueckue pa3MeTku
tuna (1,1,1) ans Tpéx xyaccoB miaockux rpagos.
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