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ABSTRACT. The notion of the maximal Dedekind completion is extended for
the case of a half partially ordered group. The main result is formulated in 2.16.

For the maximal Dedekind completion M (G) of a partially ordered group G,
cf. L. Fuchs [3; Chapter V, §10]. C.J. Everett [2] has proved that M(G)
is a lattice ordered group whenever GG is a commutative lattice ordered group.
The same result was obtained in [1] for an arbitrary lattice ordered group.

M. Giraudet and F. Lucas [4] have defined and systematically studied
the notion of a half partially ordered group as a generalization of the notion of
a partially ordered group.

In this paper, the maximal Dedekind completion of a half partially ordered
group is studied.

1. Preliminaries

We shall summarize the essentials of the MacNeille completion of a par-
tially ordered set (see [6] and [3]).
Let G be a partially ordered set, and let X be a subset of G. Denote

UX)={geG: g>x foreach z € X},
L(X)={g€eG: g<z foreach z € X}.

AMS Subject Classification (1991): Primary 06F15.
Key words: half partially ordered group, maximal Dedekind completion, inverse element.
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STEFAN CERNAK

IfUX)#0 (L(X)#0), then X is called an upper (lower) bounded subset
of G'. Let us denote by G# the system of all subsets of G of the form L(U(X)) .
where X is a nonvoid upper bounded subset of G. Each element of G# is
said to be the Dedekind cut of G. The system G# is a conditionally complete
conditional lattice under set-inclusion ([3; p. 92]). By a conditional lattice. is
meant a partially ordered set in which every two elements having an upper
(lower) bound have the least upper bound (greatest lower bound).

Let Z, € G* (i € I), and let there exist an element Z, € G* with Z, C 7,
for each 7 € I. Then for the least upper bound of Z, (i € I') we have \/ Z, =

il
L(U( U Z,)) . Analogously, if the system Z, (i € I') has a lower bound in ;% .
N el

then for the greatest lower bound of Z, (1€ 1) weget A\ Z, = () Z,.
iel icl
Define the mapping ¢: G — G# by the rule o(g) = L(U({g})) for cach
g < G. Then ¢ is an injection, and it preserves all greatest lower bounds and
least upper bounds existing in . In what follows, we shall identify g and £(g).
In this sense, G is a subset of G¥ | and the following conditions are satisfied:

(a) If X is a nonempty and upper (lower) bounded subset of G'. then .\
has the least upper bound (greatest lower bound) in (/% .
(b) If z € G¥, then there exist nonempty subsets X and Y of ¢ such that

X is upper bounded in GG, Y is lower bounded in . and =z = sup \' =
infY in G#.

Remark 1.1. If we suppose that G is a lattice (linearly ordered set). then 7%
is a conditionally complete lattice (linearly ordered set). When identifving ¢ and
2(g). G is a sublattice of G7 .

Now, we recall the notion of a half partially ordered group (cfi[1]).

Let ¢ be a group with the group operation +. and let < he a partial order
on (. The relation < is called compatible from the right it vy 2 ¢ G and <y
inply 4z <y+4 2. An clement = € G is said to be incereasing (decrcasing) it
Loy eGand o < yimply 2+ <24y (240> z+y). The set of all increasine
(decreasing) elements of (¢ will be denoted by G ().

(G is said to be a half partially ordered group if the followine cond tions are

fultilled:

(I) < is a non-trivial partial order on (.

(1) < is compatible fromn the right.
UG

() G =

If G ois a lattice (Tincarly ordered set), then ¢ will be called o alf latiie
ordered group (hall lincarly ordered group).
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MAXIMAL DEDEKIND COMPLETION OF A HALF PARTIALLY ORDERED GROUP

Let GG be a half partially ordered group. From the definition of G, it imme-
diately follows:
(1) If z € G|, then —z € G|.
(2) If .y € G|, then z +y € GT,
ifreGl,yeG|,thenz+yeG|, y+x€qG]|.
3) If z.ye G|, z <y, then —z < —y.
We shall apply the following result [4; Proposition 1.1.3)).
PROPOSITION 1.2. Let G be a half partially ordered group such that G| # ().
Then
(1) G is a subgroup of G, and G is a disjoint union of G1 and G|.
(i) G1 and G| are isomorphic and also antiisomorphic partially ordered
sets.

(i) If x € G1 and y € G|, then x and y are incomparable.

2. The maximal Dedekind completion
of a half partially ordered group

In the whole section, G is assumed to be a half partially ordered group. The
maximal Dedekind completion of G will be constructed. The method from [3]
for partially ordered groups will be applied for G.

Let us denote H = G171, K =G|.

From 1.2 (iii) it immediately follows:

LEMMA 2.1. Let X CG, X #0, U(X) #0. Then:

(i) Either X C H (and then U(X) C H) or X C K (and then U(X) C K ).
(i1) If there exists g € G, g =sup X in G, then g € H (g € K) if and only
f XCH (XCK).
(i) If X € H (X C K), then supX exists in H(K) if and only if
sup X exists in G, and sup X in G s equal to sup X in H(K).

Analogous assertions are valid for L(X) and inf X .

Let X € G#. Denote
Uuu(X)={z€G*: 2>z for each z € X},
Lo#(X)={z€G*: > <z for each 2 € X}.

Remark 2.2. In 2.1, ¢, H, K and U(X) can be replaced by G#, H# K#
and U, (X)), respectively.

From 2.1 (i), we infer that L(U(X)) € H(K) whenever X C H'K). Hence,
in view of 1.2 (i), we get the following result.
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STEFAN CERNAK

LEMMA 2.3. G7 is a disjoint union of H# and K% .

LEMMA 2.4. Let X and Y be nonempty subsets of G, and let V= {0+ y :
reX, yeVY}.
(i) Assume that one of the following conditions is satisficd:
(a,) X and Y are upper bounded subsets of H .
(a,) X is an upper bounded subset of K, and Y is a lowecr bounded
subset of K .
Then V' is a nonempty and upper bounded subset of H .

(ii) Assume that one of the following conditions is satisficd:
(ay) X is an upper bounded subset of H, and Y is an uppcr bounded
subset of K .
(ay) X is an upper bounded subsct of K, and Y is a lowcr bounded
subset of H .

Then V' is a nonemply and upper bounded subset of I\ .

Proof. Since X and Y are nonempty, V is nonempty as well.

Suppose that (a,) is satisfied. Then there exist elements +'.y" € ¢ with
<z, y <yforall x € X, y €Y. According to 2.1 (i), we get 2.y € K.
By (I1), we have x +y < 2’ +y. Since 2’ is decreasing, ' +y < &’ +y'. Hence.
x+y <z’ +y . With respect to (2), we have x +y € H and 2’ +y' € H.

Assume that (a,) is fulfilled. Then there exist elements x’,y" € G such that
x <z’ y<y'. From 2.1(i), we infer that 2’ € H and y’ € K. By using of (II.
we obtain x4y < ' +y. As for 2’ is increasing, we get 2’ +y < 2’ +y'. Hence.
r+y <z’ +y'. Applying (2), we have r+y € K and 2’ +y € K.

The remaining assertions can be verified similarly. O

Remark 2.5. The dual lemma to 2.4 also holds true.
For an element z € H# we denote
Uy(z)={he H: h >z}, Ly(z)={heH: h<z}.

Symbols U (2), Ly (z) have an analogous meaning for z € K# . In view of (h).
the sets Uy (z), Ly(z) are nonempty subsets of H. Hence. U, (z) is lower
bounded, and L, (z) is upper bounded in H. We get an analogous result for
subsets Up(z) and Ly (z) of K.

Therefore

z=supL,(z) =infUy,(2) in H* ()
if z€ H#

z=sup L, (2) =infU,(z) in K7# ()
if z€ K#.
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MAXIMAL DEDEKIND COMPLETION OF A HALF PARTIALLY ORDERED GROUP

We intend to define a binary operation z; 4+ z, in G#. The following four
possibilities can occur:

(a)) z,,2, € H#;
by (4). we have z; = sup L (z,), 2, = sup Ly(z,) in H# . Hence, 2.4 (i) yields
that the set. Z = {hy +h,: h, € Ly(z,), hy € Ly(z,)} is a nonempty and
upper bounded subset of H.

(ah) 2,2, € K#;
then (5) implies that z, = sup L (z,), z, = inf U (2,) in K#. Similarly as in
(a}), we get that Z = {k, +ky: k; € Ly(z), ky € Ug(z,)} is a nonempty
and upper bounded subset of H .

(a}) z, € H#, 2, € K#:;
from (4) and (5), it follows that z, = sup Ly(z;) in H#  z, = sup L (z,) in
K#. By using of 2.4 (ii), we obtain that the set Z = {h, + k,: h € Ly(z,),
k, € L, (z,)} is a nonempty and upper bounded subset of K.

(a)) z, € K#, 2, € H¥;

according to (5) and (4), we get z, = sup Lg(2;) in K#, z, = infUy(z,) in
H# . Analogously as in (a}), we get that Z = {k, + h, : k; € Ly (2,), hy €
U, (2,)} is a nonempty and upper bounded subset of K.

With respect to (a), we can conclude that, in all four cases, there exists sup Z
in G#. In the cases (a}) and (a}) ((a}) and (a})), there exists also sup Z in
H# (K#). But 2.2 yields that sup Z in G# coincides with sup Z in H# (K#).

The operation + in G# is defined as follows. We put 2, +2, =supZ in G#
for each z,,z, € G#.

From the definition, we immediately obtain:

(2') If z,,z, € H¥ | then z, + 2, € H*,
if 2,2, € K# | then 2y + 2, € H#,
if 2, € H¥, 2y € K#  then z, + 2z, € K#, 2y + 24 € K#.

Remark 2.6. The operation + in G# need not be associative, in general.
Thus G# fails to be a semigroup, in general (see 3.5 (A)). Hence, in this point,
the situation essentially differs from that concerning partially ordered groups.
Namely, if G is a partially ordered group, then G# is a semigroup ([3; p. 94)).

In the following lemma, we show that the operation z; + z, in G# does not
depend on a choice of subsets of G having supremum equal to z, and supremum
or infimum equal to 2, in G#.
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LEMMA 2.7. Let z,2, € G#, and let X,, X, be nonempty subsets of .
Assume that some of the following conditions is satisfied:

(b)) X,C€CH, X, CH, zy =sup X, z, =sup X, in G#,

(b,) X, CK, X, CK, z;, =sup X, z, =inf X, in G,

(by) X, CH, X, CK, zy, =supX,, z, =sup X, in G#,

(b,) X, CK, X,CH, 2z, =supX,, 2, =inf X, in G¥.
1+

Then z, + zy =sup{z, + 2, 2, € X, z, € X,} in G¥.

Proof. Suppose that the condition (b,) is satisfied. Then z; € K#.
2y € H# . By the definition of the operation + in G#, we have Z + 3, =
sup{kl +hy, + ky € Lp(zy), hy € UH(ZZ)} in K#. According to (2).
2, + 2, € K# holds. Let us form the set V = {2, +z,: =, € X|. v, € X,}.
From (2), we infer that V' C K. Since X, is a nonempty upper bounded sub
set of K, and X, is a nonempty lower bounded subset of H. 2.4(ii) vields
that V' is a nonempty upper bounded subset of K. Whence, there exists an
element v € K#, v =supV in K#. We have to show that z, + 2z, = v. From
X, € Lg(z), X, CUy(2y). it follows that V C Z, and so v < z; 4+ z,. Now,
we prove that z; + 2z, < v, ie, Ug(v) C Ug(z, + z,). Let ¢ € Uy (v). Then
g > v, and thus g >z, +z, for each z, € X|, z, € X,. Since x| € K. by (1).
—z, € K, and we get —z, + g <z,, —z, + g < z, < h, for each h, € Up(z,)
and g >z, +h,. Then (II) yields g—h, > x,, g—hy, > 2z, > k,, g > k, +h, for
each k; € Ly (z,), hy € Uy(2,). Therefore g > z, +z,, and so g € Up (2, +z,).

If (b,)-(by) are fulfilled, the proofs are similar. 0

LEMMA 2.8. Let 2,2z, € G# zy < 2z,. Then

(i) 2z, + 2 < zy+z for each z € G¥,
(i) 242z, <z+z, for each z € H#
(ii) 2+ 2, > z+ 2, for each z € K¥#.

Proof. We shall prove only (iii). Inequalities (i) and (ii) can be veritied in
a similar manner.

According to 2.3 and 2.2, both elements z, and z, belong cither to H* or to
K# . Consider the case z,,2z, € H# . Assume that z € K# . From (2'). it follows
that z + 2z, € K#, 2+ z, € K# . We have z + z, = sup{k +h, s ke L ().
h, € UH(ZI)}, 2+ 2, =sup{k+h,: k¢ Ly (2), hy € Uy(z,)} in K*. We
have to prove that z + 2, > z + z,, i.c, that Uy (z +z,) C U, (z + z,). Lt
g€ Up(z+2). Hence g € K, g > 2+ 2z, g > k+ h,. Since b € K. we
get —k + g < h, for cach h; € U, (z,). Whence, —k + g < z,. The hypothesis
z, < z, implies that —k+¢ < z,. Therefore —k+g¢g < h,. Because of k€ K. we
get g > k4 h, for cach k € Ly (z), h, € Uy (z,). We conclude that g = =+ 2.
and so g € Up (2 + z,). 0

384



MAXIMAL DEDEKIND COMPLETION OF A HALF PARTIALLY ORDERED GROUP

Assume that there exists an inverse z' € G# to z € G#. Since 0 € H, it is
easy to see that the following results hold true:
(1') If z € H#, then 2’ € H#
if z€ K# then 2’ € K#.

Remark 2.9. If z € G#, then, in general, z need not have an inverse in G#
(see 3.5 (C)).

Let M,(G) (I(K#)) be the set of all elements of G# (K#) possessing an
inverse in G*. The set of all elements of H# having an inverse in G# (that
is in H#) is the maximal Dedekind completion M (H) of a partially ordered
group H (cf. [3]).

The following lemma is an immediate consequence of 2.3.

LEMMA 2.10. M, (G) is a disjoint union of M(H) and I(K¥).

By interchanging Uy (Uy ) and Ly (L, ) in (a})-(a}), we get a set W
instead of the set Z. With respect to 2.5, W is a nonempty and lower bounded
subsct of G. Then there exists w € G#, w =inf W.

LEMMA 2.11. Let z,,2, € M, (G). Then z, + z, = w.

Proof. Let z,,z, € M,(G). From 2.10, we infer that z; (z,) belongs
cither to M(H) or to I(K#). Assume that z, € I(K#), z, € M(H). Since
[(K#)C K# and M(H) C H# | we have z, +z, = sup{k, + h, : &, € L (z,),
hy € Upy(zy)}, w=inf{k{ +hl: K € Ug(z,), hly € Ly(z,)}. Since k, <k,
and hly < h,, we get k, + h, <k' + h!,. Hence z; + z, < w. We have to verify
that w <z, +z,, e, Ly(w) C Ly(z, +2,). Let g € Ly (w). Then g € K,
g < w. Hence, g < kY + hl, for each k| € U, (z,), hYy € L;(z,). From (II),
we infer that g — b, < k|, and so g — hi, < z,. According to 2.8 (i), we have

g = =z, + ). The assumption z, € A, (G) implies that there exists an inverse
to =, in (/" . Then according to 2.8 (iii), —z, 4+ g > bl for cach hl, € L,/ (z,).
Therefore —z 4+ g > z,. Applying 2.8 (iil) again we obtain ¢ < z, 4+ z,, and so
g L (2 —2,).

Proofs o7 the remaining cases are similar. t

Remark 2.12. If .2y € G# | then, in general, the elements z, + z, and w
need not be equal (see 3.5(B)).

Remark 2.13. Let 2.z, € A (). Then the dual lemma to 2.7 is also valid.
LENNMA 2.14. (M, (G). ) is a group.

Prool. At first. we prove that the operation + is associative, Le., (2, 4 z,)
oy b sy b ozy) for cach iz, z, € M (G

3 | P
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Let z,,2,,25 € M,(G). According to 2.10, each of the elements z,. =,
belongs either to M(H) or to I(K#). Only two cases will be investigated. Proofs
of the remaining cases are analogous.

Let z, € M(H), 25,2, € I(K#). Since M(H) C H# | I(K#) C K# . with
respect to 2.7(b,), we obtain (2, +z,)+z, =sup{h, +k,: h € L,(z,). k, €
Ly (zy)} +infUp(zy) = sup{(h, + ky)+ky: hy € Ly (z), ky € Ly(z,). k€

(z4)} = sup{h, + (ky + ky): h, € Ly(z), ky € Lp(2,). ky € Uplz

( |
On the other hand, according to 2.7 (b,), we have 2, +(z, +Zz:;) = sup L. ”(N:f 4
sup{k, +ky 0 ky € Ly(2y), ky € Up(2y)} =sup{h +(ky+ky) s hy € Ly(z)
ky€ Ly(z,), k € Ugl(zy)}.

Now, let z,,2,,2, € I(K# ) Then 2.7 (b,) 1mphes that (z, + z,) + 2, =
sup{kl—i-kzz ki€ Lg(zy), ky € Ug(z )}+supL1\ = su){ by 4 k) + ko
ky € Ly(z,), k eUK(zg, k, eL,\( )} = sup{k, +< Dk € Li(s).
ky € Up(2y), ky€ Ly z;)} Iuv1(w0f211(md27(b) (‘g(t s F(zy+zy) =
supLK(z])—i—lnf{k +k D ky € Up(zy), ky € Lyp(2y)} =sup{k, + (ky, + k)

ki€ Ly(z), ky€Ug(z,y), ky€ LK(Z3>}‘

It remains to verify that z, + z, € M,(G) whenever z,,z, € M, (). Let
Zy, 24 € M, (G). There are clements =}, 2z}, € M, (G) with z + =] = [ 4+ 2, = 0.
zy + 2l = 2y + 2, = 0. By using of associativity, we get (z, + z,) + () + =]) =
2yt (2 +25)+2; =0, (25 +2)+ (2, +25) = 25 + (2] +2,) + 2, = 0. Hence

2 + 2} is an inverse to z, + z, in G¥, and thus 2z +z, € Z\[,,((}). 0

The partial order < is non-trivial on M, (G) because of < is a non-trivial
partial order on G. From 2.8 (i}, it follows that < is compatible from the right.
From 2.8 (ii) and 2.8 (iii), we infer that M, (G)! = M(H) and M, (()] =
I(K#).

By using of 2.10, we have obtained the following result.

THEOREM 2.15. Let GG be a half partially ordered group. Then M, (G) is n
half partially ordered group, and M,(G)1 = M(H), M, (G)| = [(K#).

A half partially ordered group M, (G) is said to be the marimal Dedekind
completion of G.

In [1] (in [5; p. 162]), it was proved that the maximal Dedekind completion
of a lattice ordered group (linearly ordered group) is a lattice ordered group
(linearly ordered group). From this fact and from 2.15, it follows:

THEOREM 2.16. Let G be a half lattice ordered group (half linearly ordered
group). Then the maximal Dedekind completion M, (G) of (i is a half lattice
ordered group (half linearly ordered group).
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MAXIMAL DEDEKIND COMPLETION OF A HALF PARTIALLY ORDERED GROUP

3. Inverse elements in G#

Elements of G# having an inverse in G# will be characterized in this section.
We shall use the notation X, = Ly(z), Y, = Uy(z) if 2 € H? | and X =
L,(2), Y = Ug(2) if 2 € K*. Further denote —X = {-z € (G : z € X}.
Symbols =Y, —X |, =Y, have an analogous meaning.

LEMMA 3.1.

(i) Assume that z € H#. Then there exists z' € H¥* such that 2/ =
sup(—Y,) = inf(-X,).

ii) Assume that z € K#. Then there exists z" € K% such that 2" =
sup(—X) = inf(-Y).

Proof.

(i) Let z € K#. According to (5), we have z = sup X = inf Y. By using
of (3), from x <y, we get —z < —y for each = € X, y € Y. Hence there exist
e K72 =sup(—X), z* = inf(=Y). Since 2" < z*, we have to show
that =* < 2" ie., Ug(2") C Up(2*). Let g € Uy (2"”). Then g > 2”. Thus
g > —r and —g > x for each z € X. Hence —g > 2z, and so —¢g € Y and
g € —Y . From this, we infer that ¢ > z* and g € Uy (2*).

The proof of (i) is analogous. O

LEMMA 3.2. Assume that the following conditions are fulfilled:

(i) If 2 € H* | then N{y, —z,: 2, € X;, y, €Y,} =0 1in G.
(i) If z€ K#  then \/[{r —y: 2€ X, yeY}=01inG.

Then = has a right inverse in G¥# .

Proof. Assume that z € K# and let 2 be as in 3.1 (ii). We want to show
that 2’ is a right inverse to z in G#. With respect to (2/), we obtain z + 2" €
n#, =4z =sup{fe+y: z€ X, ye ~Y}=sup{fz —y: z€ X, yeY}
in (7. The assumption implies that sup{z —y: r € X, y € Y} =0 in G.
Henee, sup{e —y: 2 € X, y € Y} =0 in G¥ as well. Therefore z + 2 =0,
and thus z” is a right inverse to z in G#.

Assume that (1) is satisfied. In a similar manner, can be verified (cf. [1]) that
=" is a right inverse to z in G#. O

Remark 3.3. In an analogical way, we obtain that 2z’ (2”) is a left inverse to
= in G whenever A{~z,+y,: =, € X,, y,€Y,} =0 (V{-z+y: 7€ X,
yeY}=0)in G.
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THEOREM 3.4.

(i) Assume that = € H*. Then z € M,(G) if and only if the following
conditions are satisfied in G :
() My, =z =z, € Xy, y, €Y} =0,
(c})) M-z +y,: z,€X,, yy €Y} =0.

(ii) Assume that z € K#. Then z € M, (G) if and only if the following
conditions are satisfied in G :
(c) V{z—y: z€X, yeY}=0,
(ch) V{—z4+y: z2€eX, yeY}=0.

Proof.

(ii) Let z € K# and let both conditions (c,) and (c}) be satisfied. Then 3.2
and 3.3 yield that the element 2" = inf(—Y) is an inverse to z in G#. Hence
z € M, (G). Conversely, let =z € M, (G). Since z € K¥, X C K and Y C K.
In view of (3), from = < y we infer that —x < —y for each * € X. y € Y.
Since z is decreasing, t —y < 0 foreach z € X, yeVY.Let g G, v —y <y
for each z € X, y € Y. By (Il), we get * < g+ y for each = € X. and thus
z< g+vy.Asfor g € H, by using of 2.8 (ii), —g + z < y holds for each y € Y.
and so —g+ z < z. The assumption z € M, (G) implies that there is an inverse
to z in G#. According to 2.8 (i), we get —¢g < 0 and g > 0. We conclude that
V{ie—y: 2e X, yeY} =0in G, and (c,) is valid. The proof of (¢)) is
analogous.

(i) can be proved in a similar manner (cf. [1]). =

The question of the independence of the conditions (¢,) and (¢}) ((c,) and
(¢!))) remains open.

foxanpre 3.5. Let €7 be the additive group of all integers with the natural

lincar order, and let H be the lexicographic product H = C'o C'. 1 hoh' < 11,
b= (cpey). b= () o= ¢ (i =1.2). then h < " if and onlyif ¢ < ¢
or ¢, = ¢ and ¢, < ¢,. The operation + in H is defined componentwise. /1 is
a linearly ordered group.

We apply the idea of the proof of Lemma HL3 from [1] to construet o half
limearly ordered group G with 7] = H that is not a lincarlty ordered oronp.

Let a be a symbol. and let a + I be the set of svimbols « - = {a - ho:
e HY. Denote by (Ca (disjoint) union of (Cand a + . The operation  and
the order < on I will he extended on the whole ¢7 in the following wav, For
cach ho b € H weput (at hy4(a bWy = ~h+h'h+tavh) i
fa+h)y+ W =a+(h+ 0" Parther we put a +h < a-=h" itand onlv i 40 <)
a+ hoand B incomparable. Then 8 turns into a hall linearhv ordered oroup

a1 h i
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such that G1 = H, G| =a+ H. Since G1 # 0, G fails to be a linearly ordered
group.
Form the sets:

Xy ={(by,c) e H: b €C, b; <0, ceC},
Yi={(c;,c0)eH: ¢, €C, ¢, >1, ceC},
X, ={(by¢): byeC, by<1, ceC},
Y, ={(cy,0): c,€C, ¢, >2, ceC},
Xy={(byc)e H: byeC, b,<2, ceC},
Vy={(cy,e0)eH: c;€C, ¢, >3, ceC}.

We have x; <y, for each z, € X, y, € Y,, (i = 1,2,3). Therefore there
exist elements v,,v,,v, € H# such that v, = sup X, = infY, (i = 1,2,3) in
H# ., and X, = Ly(v,), Y, = Uy(v,) (i =1,2,3). From a+a;,a+y, € a+ H,
a+y, <a+x foreach z, € X,, y, €Y, (i =1,2,3) it follows that there are
clements z, 2y, 2, € (a+H)# such that z; = sup{a+y, : y;, € Y;} =inf{a+z,:
roe X} i=123)in (a+ H)¥, and {a+vy, : y;, € Y} = Lo, py(z),
fat+a;: 2, € X;} =U,, 4(z) (i=1,2,3).

(A) We get z; + 2z, = sup{(a+y,)+ (a+z,) : y; €Y, 2, € X,} =
sup{—y] +z,: y, €Y, x, € X2} =sup X, = v, in H#: (2, + 29) + 24 =
v+ 2z, =sup{a, + (a+yy): z, € X;, y; € Yy} =sup{la+ (—z, +y,):
r, € X, yy € Yo} =sup{a+yy: y; € Y3} = 2z;. On the other hand,
2,2z, =sup{(a+y,)+(atz,y): y, €Y,, a5 € X3} =sup{—y,+z3: Y, €Y,,
ry € X} =sup X, =v5 2, + (2 +25) = 2, +v; = sup{(a +~Yy;) + Yy
YoV € Y )= Sup{a+(yli+y1j) C Yo Yy € Y} =suplaty,: y, € Vo} = 2,.
Hence, (2, + z,) + 23 # 2, + (2, + 23) .

(B) We have seen in (A) that z, +z, = v,. But w = inf W = inf{(a+z,) +
(at+y,): z, € X,, y, € Y2} =inf{—z,+y,: ¢, € X|, y, € Y,} =infY, =v,.
Therefore z; + z, # w.

(C) There does not exist A{y, —x, : =, € X;, y, € Y} in G. With respect
to 3.4 (i) the element v, € G¥ has no inverse in G#.
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