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(Communicated by Tibor Katriňák ) 

ABSTRACT. The notion of the maxima l Dedekind completion is extended for 
the case of a half partially ordered group. The main result is formulated in 2.16. 

For the maximal Dedekind completion M(G) of a partially ordered group G, 
cf. L. F u c h s [3; Chapter V, §10], C. J. E v e r e t t [2] has proved that M(G) 
is a lattice ordered group whenever G is a commutative lattice ordered group. 
The same result was obtained in [1] for an arbitrary lattice ordered group. 

M. G i r a u d e t and F. L u c a s [4] have defined and systematically studied 
the notion of a half partially ordered group as a generalization of the notion of 
a partially ordered group. 

In this paper, the maximal Dedekind completion of a half partially ordered 
group is studied. 

1. Preliminaries 

We shall summarize the essentials of the M a c N e i 11 e completion of a par­
tially ordered set (see [6] and [3]). 

Let G be a partially ordered set, and let X be a subset of G. Denote 

U(X) = {g e G : g > x for each x E X} , 

L(X) = {g G G : g < x for each x G X} . 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06F15. 
K e y w o r d s : half partially ordered group, maxima l Dedekind completion, inverse element. 
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STEFAN CERNAK 

If U(X) ^ 0 ( L ( A ) ^ 0 ) , then X is called an upper (lower) bounded subset 

of G . Le t us deno te by G # the sys tem of all subse ts of G of the form L(U(K)) . 
where X is a nonvoid upper bounded subse t of G . Each elemen t of G ^ is 
said to be the Dedekind cut of G. T h e sys tem G ^ is a condi t ionally comple te 
condi t ional la t t ice under set-inclusion ([3; p . 92]). B y a conditional lattice, is 
mean t a par t ia l ly ordered set in which every two elemen ts having an upper 
(lower) bound have the least upper bound (grea tes t lower bound ) . 

Le t Zi G G # (i G J), and let there exist an elemen t Z() G G ^ wi th Z- C Z() 

for each i G I. T h e n for the least upper bound of Z (i G I) we have \J Zi ~ 

L( Ul l j Z\ ) . Analogously , if the sys tem Z% (i G ./) has a lower bound in G # , 

then for the grea tes t lower bound of Z- ( i E I ) we get f\ Zi — f] Zx . 
iei iei 

Define the mapping tp: G —» G ^ by the rule v?(g) — ^{U({g})) for each 

g £ G. T h e n (/? is an injection, and it preserves all grea tes t lower bounds and 

least upper bounds exis t ing in G . In wha t follows, we shall identify g and p(g). 

In this sense, G is a subset of G^ , and the following condit ions are satisfied: 

(a) If X is a nonempty and upper (lower) bounded subset of G . then X 

has the least upper bound (greatest lower bound) in G ^ . 

(b) If z G G ^ , t hen there exist nonempty subsets X and Y of G such that 

X is upper bounded in G, Y is lower bounded in G. and c = sup A ~ 

inf F ill G # . 

R e m a r k 1 .1 . If we suppose tha t G is a lat t ice (linearly ordered se t) , then G* 
is a condi t ionally comple te la t t ice (linearly ordered se t) . When identifying g and 
y(O) , G is a sublat t ice of G # . 

Now, we recall the no t ion of a half par t ial ly ordered group (ef.[•!]). 

Let G be a group wi th the group opera t ion -h. and let < be a part ial order 
on G . The relation < is called compatible from the right if .e.g. z G G and .r < // 
imply ./• + z < /y -f- ^ . An element .r G G is said to be incrcas/ay (dccr( asiny) if 
.r,// G G and x < y imply z f x < z + y (z-\-x > c-f/y). 'J ne set of all increasing 
(decreasing) elemen ts of G will be denoted by Gf ( G j ). 

G is said to be a half partiaily ordered yroup if the following eond ' t ions are 

fulfilled: 

(I) < is a non- trivial part ial order on G . 
(II) < is compat ible from the right. 

(I l l ) G - G] U G [ . 

If Gj is a la t t ice (linearly ordered set) , then G will be called a //(///' hiU/c, 
oidcrcd yroup (half linearly ordered group). 
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MAXIMAL DEDEKIND COMPLETION OF A HALF PARTIALLY ORDERED GROUP 

Let G be a half par t ia l ly ordered group. From the definition of G , it imme­
diately follows: 

(1) If x E G | , then - x E G j . 
(2) If x. y E G j , t hen x + y E G | , 

if x E G[, y £ G[, t hen x + H E G j , H + x E G | . 
(3) If x. a £ G j , x < y, t hen —x < —H. 

We shall apply t he following result [4; Proposi t ion 1.1.3]). 

P R O P O S I T I O N 1.2. Let G be a half partially ordered group such that G[ / 0 . 

Then 

(i) G | is a subgroup of G, and G is a disjoint union of G] and G[. 

(ii) G] and G[ are isomorphic and also antiisomorphic partially ordered 

sets. 

(iii) If x E G | and y E G j , then x and y are incomparable. 

2. The maximal Dedekind completion 
of a half partially ordered group 

In the whole section, G is assumed to be a half par t ia l ly ordered group. T h e 
maximal Dedekind complet ion of G will be cons t ruc ted . T h e me thod from [3] 
for part ial ly ordered groups will be applied for G . 

Let us denote H = G], K = G[. 

From 1.2 (iii) it immediate ly follows: 

L E M M A 2 . 1 . Let X C G, X f- 0 . U(X) ^ 0 . Then: 

(i) Either X C H (and then U(X) C H) or X C K (and then U(X) C K). 
(ii) If there exists g E G . a == s u p X in G . then g E H (g E If) z/ anJ On/u 

z / X C H (X C If), 
(iii) I/ A C II ( N C If), i;/ien s u p J f exists in H(K) if and only if 

s u p j f exists in G, and s u p K in G is equal to s u p X in II(If). 

Analogous assert ions are valid for L(X) and i n f N . 

Let X C G # . Denote 

UG#(X) = {z eG* : z>x for each x E X } , 

L G # ( X ) = {z E G # : z < x for each x E X } . 

R e m a r k 2 .2 . In 2.1, G , IY, If and U(X) can be replaced by G # , II# , K* 
and UCJ#(X), respectively. 

From 2.1 (i), we infer t h a t L(U(X)) C II(If) whenever X C II{If). Hence, 
in view of 1.2 (i), we get the following result . 
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STEFAN CERNAK 

L E M M A 2 . 3 . G # is a disjoint union of II# and K# . 

L E M M A 2 .4 . Let X and Y be nonempty subsets of G, and let V = {./• + // : 

xeX, yeY}. 

(i) Assume that one of the following conditions is satisfied: 

(a{) X and Y are upper bounded subsets of II. 

(a2) X is an upper bounded subset of K , and Y is a lower bound at 

subset of K. 

Then V is a nonempty and upper bounded, subset of H . 

(ii) Assume that one of the following conditions is satisfied: 

(a.j) X is an upper bounded subset of II, and Y is an upper bo undid 

subset of K . 

(O4) X is an upper bounded subset of K, and Y is a lower bounded 

subset of II. 

Then V is a nonempty and upper bounded subset of K . 

P r o o f . Since X and Y are nonempty, V is nonempty as well. 

Suppose t h a t (a2) is satisfied. Then there exist elements x'. y' G G with 

x < x', y' < y for all x G X, y G Y. According to 2.1 (i), we get x'. y' G Iv . 

By (II), we have x + y < x' + y. Since x' is decreasing, x' + y < x' + y'. Hence. 

x + y < x' + y'. W i t h respect to (2), we have x + y G II and x' + y' G II. 

Assume t h a t (O3) is fulfilled. T h e n there exist elements x', y' G G such that. 

x < x', y <y'. From 2.1 (i), we infer t h a t x' G II and y' G K. By using of (II). 

we obta in x + y < x' + y. As for x ' is increasing, we get x' + y < x' + y'. Hence. 

x + y < x' + y ' . Applying (2), we have x + y e K and x7 + H; G Iv . 

The remaining assertions can be verified similarly. • 

R e m a r k 2 .5 . T h e dual lemma to 2.4 also holds t rue . 

For an element z G II# we denote 

UH(z) = {h£H : /i > z} , L H ( z ) = {h G II : /! < z} . 

Symbols UK(z), LK(z) have an analogous meaning for z G A^# . In view of (b). 

the sets UH(z), LH(z) are nonempty subsets of H. Hence. UH(z) is lower 

bounded , and LH(z) is upper bounded in II. We get an analogous result for 

subsets UK(z) and LK(z) of K. 

Therefore 

if zЄ Я # , 

if z Є K # . 
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MAXIMAL DEDEKIND COMPLETION OF A HALF PARTIALLY ORDERED GROUP 

We intend to define a binary operation zx + z2 in G # . The following four 
possibilities can occur: 

(a',) zvz2eH#; 

by (4), we have z1 = s u p L / / ( z 1 ) , z2 = supL H (z 2 ) in H^1. Hence, 2.4 (i) yields 
that the set Z = {hx + h2 : hx G LH(z1) , h2 G LH(z2)} is a nonempty and 
upper bounded subset of H. 

(af2) ; „ : 2 6 i f # ; 

then (5) implies that zx = supLK(zx) ^ z2 = inf UK(z2) in A"# . Similarly as in 
(a\), we get that Z = |kL + k2 : k± G LK(z1), k2 G L 7 K ( Z 2 ) } *s a nonempty 
and upper bounded subset of H. 

(ajj) Zj G H#, z2 G A"#; 

from (4) and (5), it follows that z± = sup LH(z1) in H#, z2 = sup LK(z2) in 
A^# . By using of 2.4 (ii), we obtain that the set Z = | l i 1 + k2 : h1 G LH(zl), 
k2 G LK(z2)} is a nonempty and upper bounded subset of K. 

(a!,) ^ G K # , Z2 G IY # ; 

according to (5) and (4), we get zx = sup LK(z1) in AT# , z2 = inf UH(z2) in 
II# . Analogously as in (ag), we get that Z -= {/cj + b2 : kx G LK(zx), li2 G 
UH(z2)} is a nonempty and upper bounded subset of K. 

With respect to (a), we can conclude that, in all four cases, there exists sup Z 
in G # . In the cases (a^) and (a2) ((a^) and (a^)), there exists also supZ in 
H# ( K # ) . But 2.2 yields that supZ in G # coincides with supZ in H# (K#). 

The operation + in G # is defined as follows. We put zx + z2 = sup Z in G # 

for each zx,z2 G G # . 

From the definition, we immediately obtain: 

(2') If z-,, z2 G H# , then zx + z2 G H# , 
if zx,z2 G A # , then zx + z2 G H#, 
if zx G H# , z2 G X # , then z1 + z2 G A^# , z2 + zx G K # . 

Remark 2.6. The operation + in G # need not be associative, in general. 
Thus G # fails to be a semigroup, in general (see 3.5 (A)). Hence, in this point, 
the situation essentially differs from that concerning partially ordered groups. 
Namely, if G is a partially ordered group, then C7# is a semigroup ([3; p. 94]). 

In the following lemma, we show that the operation zx + z2 in G # does not 
depend on a choice of subsets of G having supremum equal to zY and supremum 
or infimum equal to z2 in G # . 
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L E M M A 2 . 7 . Let zx,z2 £ G^ , and let Xx, X2 be nonempty subsets of G. 

Assume that some of the following conditions is satisfied: 

( b L ) Xx C H, X2 C H, z:l — s u p X 1 , z2 = s u p X 2 in G# , 

(b 2 ) Xx C K, X2 C K, ^1 =-- sup X x , z2 = inf X 2 zn G # , 
(b 3 ) X x C H, X2 C JC. zx -- s u p X 1 , z2 = sup X 2 in G^ , 
(b 4) XXC K, X2CH, ^1 == s u p X 1 , z2 = inf X 2 in G* . 

Then zx + z2 = supjx-,^ + x2 : xx £ X 1 , x 2 £ X 2 } in G # . 

P r o o f . Suppose t h a t the condit ion (b 4) is satisfied. T h e n zx £ K& . 

z2 £ LT# . By the definition of the operat ion + in G # , we have z{ + z0 = 

sup{fc1 + h2 : kx £ LK(zx), h2 £ UH(z2)} in K#. According to (2r). 
2 i + 22 ^ A ^ holds. Let us form the set V = {xx + x 2 : U+ £ X x , T., £ X^.,}. 
From (2), we infer t ha t V C K. Since X x is a nonempty upper bounded sub­
set of K, and X 2 is a nonempty lower bounded subset of H. 2.4 (ii) yields 
t ha t V is a nonempty upper bounded subset of K. Whence , there exists an 
element v £ K# , v = s u p V in K# . We have to show t h a t ^1 + z2 = r. From 
•-^i - LK(zx), X 2 C UH(z2), it follows t ha t V C Z , and so D < zx + z 2 . Now, 
we prove t h a t ^1 + 22 < U, i.e., UK(v) C UK(zx + z 2 ) . Let O £ UK[v). Then 
g >v, and thus O > xx + x 2 for each xx £ Xx, x 2 £ X 2 . Since xx £ K. by (1), 
— xx £ Lf, and we get —xx + O < x 2 , —x1 + O < z2 < /i2 for each b2 £ UH(z.y) 

and g > xx-\-h2. Then (II) yields g — h2>x1, g — h2>zx > k} , g > kx + h0 for 
each fcx £ LK(zx), h2 £ UH(z2). Therefore O > zx + z 2 , and so O £ ^ ( 2 ^ 2 9 ) . 

If ( b 1 ) - ( b 3 ) are fulfilled, the proofs are similar. • 

L E M M A 2 . 8 . Let zx,z2 £ G* , zx< z2 . Then 

(i) zx + z < z2 + z for each z £ G# , 

(ii) z + Z-L < z + z2 for each z £ iL# . 

(iii) z + 21 > z + z2 /Or each z £ /\~# . 

P r o o f . We shall prove only (iii). Inequali t ies (i) and (ii) can be verified in 
a similar manne r . 

According to 2.3 and 2.2, bo th elements zx and z2 belong either to H# or to 
K#. Consider the case z1,z2 £ H# . Assume tha t z £ K# . From (2'), it follows 
t h a t z + zx £ K* , z + z2 £ A^# . We have 2 + zx = sup{fc + /?.. : fc £ L K ( : ) . 

ftl G: ^W}^ Z + ^2 = SUp{fc + /l2
 : fc G LK<+)> ft2 G ^ / / ( ^ i ) } U1 A ' * ' W ° 

have to prove t h a t z + zx > z + z 2 , i.e., t h a t Ux(z + zL) C UK(z + c./). Let 
O £ UK(z + zx). Hence O £ K, g > z + zl, g > fc + hx . Since fc £ K . we 
get —fc + O < /7L for each h{ £ UH(zx). Whence , —fc + g < ^1 . The hypothesis 
z, < z2 implies t h a t — fc + .O < - 2 • Therefore — fc + .O < /i9 . Because of fc £ /\ we 
get g > fc + /i2 for each fc £ LK(z), h2 £ UH(z2). We conclude tha t ,O > .: + z.2 . 

and so g £ UK(2: + z 2 ) . HI 
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Assume that there exists an inverse z' G G # to z G G # . Since 0 G # , it is 
easy to see that the following resul ts hold true: 

(V) If ze # # , then z' G # # , 
if z G K* , then z' e K*. 

R e m a r k 2 .9 . If z G G # , then, in general, z need no t have an inverse in G # 

(see 3 .5 (C) ) . 

Let Mh(G) (I(K#)) be the set of all elemen ts of G # (K#) possessing an 
inverse in G # . T h e set of all elemen ts of # # having an inverse in G # ( tha t 

is in # # ) is the maximal Dedekind comple t ion M(H) of a par t ial ly ordered 
group # (cf. [3]). 

The following lemma is an immedia te consequence of 2.3. 

L E M M A 2 . 1 0 . Mh(G) is a disjoint union of M(H) and I(K#). 

By in terchanging UH (UK) and LH (LK) in ( a 1 ) - ( a ^ ) , we get a set W 

ins tead of the set Z. W i t h respec t to 2.5, W is a nonemp ty and lower bounded 

subse t of G . Then there exists w G G # , w = inf W. 

L E M M A 2 . 1 1 . Let zx,z2 <E Mh(G). Then zx + z2 = w. 

P r o o f . Let zl,z2 G Mh(G). From 2.10, we infer that zl (z2) belongs 

ci ther to M(H) or to I(K*). Assume that z1 G I(iv"#), z2 G M(H). Since 

/ ( / v # ) C K* and M(H) C # # , we have zl+z2 = s u p { k 1 + b2 : fe1 G LK(zx) , 

h2 G J ' / / ^ ) } ' w = i n f{^ i + h2 : k[ G UK(zl) , h2 G LH(z2)} . Since k, < A:7, 

and //'> < b2, we get kx + h2 < k[ + h'2. Hence zx + z2 < w. We have to verify 

tha t w < z{ + z2, i.e., Lf<(w) C LK(z1 + z2). Le t g G LK(w). Then O G A', 

// < l/1. Hence, O < k\ + h'2 for each k'{ G ^ ( ^ x ) , b2 ^ LH(z2). From (II), 

wĉ  infer t ha t O — b2 < k'{ , and so g — li2 < z1 . According to 2.8 (i), we have 

fj < z{ + h'}. The assump t ion zx G Mfl(G) implies that there exists an inverse 

to :, in G # . Then according to 2.8 (iii), —zx + g > h'2 for each h'2 G LH(z2). 

TluM'efore —z{ + g > - 9 . Applying 2.8 (iii) again we ob ta in g < z{ + z.,, and so 

ge LK(z{ ^z2). 

Proofs o;' the rcHiiaining cases are similar. • 

R e m a r k 2 . 12 . If z{,z2 G G # , then, in general, the elemen ts z{ + z.} and w 
need not be equal (sec 3 .5 (B)) . 

R e m a r k 2 . 1 3 . Let : , . : 2 G Mfl(G). Then the dual lemma to 2.7 is also valid. 

L E M M A 2 . 1 4 . U / ^ G + f ) is a group. 

V r o o f. At first, we prove tha t the opera t ion + is associa t ive, i.e., (z{ + z.}) 

\ .:.. -:• .:, f ( :2 + .:.) for each c , ^ 2 . : : , G M, , (G) . 
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Let zl1z2,z3 G Mh(G). According to 2.10, each of the elemen ts zx . c , , z3 

belongs ei ther to M(H) or to L(K#). Only two cases will be inves t iga ted. Proofs 

of the remaining cases are analogous. 

Let zx G M(H), z2lz3 G I(K*). Since M(H) C H*, I(K#) C A # . with 

respec t to 2 . 7 ( b 2 ) , we ob tain (zx + z2) + z3 = sup{/IL + k9 : b. G LH(z{) . A\, G 

L K ( z 2 ) } + i n f U K ( ^ 3 ) = s u p { ( b l + k 2 ) + k3 : h ^ y z j , k2 G LK(c2) . k3 G 

M % ) } = s u p { / i 1 + (fc2 + fc3) : hxeLH(zx)1 k2ELK(z2), k3eUK(z3)}. 
On the o ther hand , according to 2.7(1+), we have zx + (z2 + z3) = sup LH(zx) + 

sup{A,2 + fc3: k2eLK(z2), k3eUK(z3)}=sup{hl + (k2 + k3): hleLH(z{). 

k2 € LK(Z2)I k3 € UK(Z3)}-

Now, let z1?z2,z3
 G I(K*). Then 2.7 (b3) implies that (zx + z2) + c3 = 

sup{k x + k2 : kx G LK(zx) , k2 G UK(z2)} + s\xpLK(z3) = s u p ^ k j + k2) + k3 : 
kx^LAzi)i k2eUK(z2), k3eLK(z3)}=sup{k1 + (k2 + k3): k{elK(z{). 

k2 G UK(z2), k3 G LK(z3)} . In view of 2.11 and 2 . 7 ( b 4 ) , we get c1 + (c2 + c3) = 

m\-)LK(zx) + inf{k 2 + k3 : k2 G UK(z2) , k3 G FK(z3)} = sup{k . + (A\2 + k3) : 

klGL/^(z1), k2eUK(z2), k3£LK(z3)}. 

It remains to verify that z1 + z2 G Mh(G) whenever z p z2 G Mh(G). Let 

z p 22 G Mh(G). There are elemen ts z p z'2 G Mh(G) wi th 21 + 4 = z[ + c t = 0. 

z2 + 4 = z2 + z2 = 0. By using of associativity, we get (z{ + c2) + ( 4 + z[) = 

Zj + (z2 + 4 ) + 4 = 0, (z'2 + 4 ) + (zx + z2) = 4 + ( 4 + z j + z2 = 0. Hence 

4 + z[ is an inverse to zx + z2 in G # , and thus zx + z2 G Mh(G). • 

The par t ia l order < is non- trivial on Mh(G) because of < is a non-trivial 
par t ia l order on G. From 2.8 (i), it follows that < is compa t ib le from the right. 
From 2.8(h) and 2.8 (iii), we infer that Mh(G)] = M(H) and M}(G)[ = 

L(K#). 

By using of 2.10, we have ob tained the following result . 

T H E O R E M 2 . 1 5 . Let G be a half partially ordered group. Then Mh(G) is a 

half partially ordered group, and M J G ) ! = M(H), Mh(G)[ = / ( A # ) . 

A half par t ia l ly ordered group Mh(G) is said to be the maximal Dcdckind 

completion of G. 

In [1] (in [5; p. 162]), it was proved that the maximal Dedekind complet ion 
of a la t t ice ordered group (linearly ordered group) is a la t t ice ordered group 
(linearly ordered group) . From this fact and from 2.15, it follows: 

T H E O R E M 2 . 1 6 . Let G be a half lattice ordered group (half linearly ordend 
group). Then the maximal Dedekind completion Mh(G) of G is a half lattice 
ordered group (half linearly ordered group). 
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MAXIMAL DEDEKIND COMPLETION OF A HALF PARTIALLY ORDERED GROUP 

3. Inverse elements in G& 

Elements of G ^ having an inverse in G^ will be characterized in this section. 

We shall use the no ta t ion X1 = LH(z), Y1 = UH(z) if z E H#, and X = 

LK(z), Y = UK(z) if z E K*. Fur the r denote -X = {-x E G : x E X}. 

Symbols — y , —X11 —Yx have an analogous meaning. 

L E M M A 3 . 1 . 

(i) Assume that z E H^ . Then there exists z' E H# such that z' = 
s u P ( - y i ) =: i n f ( - - Y 1 ) . 

(ii) Assume that z E K# . Then there exists z" E K& such that z" = 

s u p ( - A ) = i n f ( - y ) . 

P r o o f . 

(ii) Let z E K#. According to (5), we have z = sup AT = inf Y. By using 
of (3), from x < H, we get — x < —y for each x E X , y GY. Hence there exist 
c " , c* E / \ " # , z" = sup( -AT) , 2* = i n f ( - y ) . Since z" < z*, we have to show 
tha t .:* < z", i.e., UK(z") C UK(z*). Let g E UK(z"). Then g > z". Thus 
O > —./; and — O > x for each x E A . Hence — O > z , and so —g E y and 
O E — y . From this , we infer t h a t O > z* and O E UK(z*). 

The proof of (i) is analogous. D 

LEMMA 3 . 2 . Assume that the following conditions are fulfilled: 

(i) If z E J/# , lAen ^ { ^ - x x : x1 E X x , Hx E Yx} = 0 m G . 

(ii) If z t K # , then V{> - V : -C E A , 2/G 7 } = 0 m C7. 

Then z has a right inverse in G ^ . 

P r o o f . Assume t h a t z E K^ , and let z" be as in 3.1 (ii). We want to show 
tha t z" is a right inverse to z in G ^ . W i t h respect to (2'), we obta in z + z" E 
/ / # , c -f 2'7 = sup{x -f- H : x E X , HE — y } = sup{x — y : x E X , HE y } 
in G ^ . The assumpt ion implies t h a t sup{x — H : x E A , H E y } = 0 in G. 
Hence, sup{T — ;O : a: E X , HE y } = 0 in G # as well. Therefore z + z" = 0, 
and thus z" is a right inverse to z in G9^ . 

Assume tha t (i) is satisfied. In a similar manner , can be verified (cf. [1]) t h a t 
z' is a. right inverse to z in G^ : . D 

R e m a r k 3 . 3 . In an analogical way, we obta in t h a t z' (z") is a left inverse to 
z in G # whenever f\{~xx + yA : x{ E Xx , y1 E Y±} = 0 (\J{-x + y : TEA, 
// E Y} = 0) in G . 
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T E I E O R E M 3 . 4 . 

(i) Assume that z G H^ . Then z G Mh(G) if and only if the following 

conditions are satisfied in G: 

(ci) A i J / r - * i : * i £ * i . H i ^ 1 } = 0, 
Wi) M-Xi+Vi- x1eX1, y1eY1} = o. 

(ii) Assume that z G K^ . Then z G Mh(G) if and only if the following 

conditions are satisfied in G: 

(c2) \l{x-y: x e l , yeY}=0, 
(c'2) \/{-x + y: xeX, y e Y} = 0. 

P r o o f . 

(ii) Le t z G K^ , and let bo th condi t ions (c2) and (c2) be satisfied. Then IT2 
and 3.3 yield that the elemen t z" = inf( — Y) is an inverse to z in G ^ . Hence 
z G Mh(G). Conversely, let z G Mh(G). Since z e K*, X C K and 1' C K. 

In view of (3), from x < y we infer that — x < —y for each x G X , u G V . 
Since x is decreasing, x — y < 0 for each x G l , u G F . Le t g £ G, x — O < (/ 
for each x G X , i / G 7 . By (II), we get x < g -f y for each x G X , and thus 
z < g + y - As for g G / / , by using of 2.8 (ii), — O -f z < y holds for each y G V . 
and so —g-\-z < z. The assump t ion z G Mh(G) implies that there is an inverse1 

to z in G ^ . According to 2.8 (i), we get —g < 0 and O > 0. We conclude that 
\J{x - y : x G X , y G F } = 0 in G, and (c2) is valid. T h e proof of (cV) is 
analogous . 

(i) can be proved in a similar manner (cf. [1]). < 

The question of the independence of the condi t ions (c{) and (c'. ) ( (c.J and 

(c/>)) remains open. 

EXAMPLV 3 .5 . Let G be the addi t ive group of all in tegers with the na tura l 
linear order, and let H be the lexicographic produc t II = C c C. If h.hf G // . 
h = ( c p c 2 ) , /!/ = (c/pc-:2), c-.r'. G G (/ = 1.2). then // < h' if and only if c, < r\ 
or c{ = r.'j and c.; < r/>. The operat ion f in H is defined componentwise1. // is 
a linearly ordered group. 

We apply the idea of the proof of Lemma III.3 from [1] to construct a half 
linearly ordered group G with G] ~ II that is not a linearly ordered group. 

Let a be a symbol, and let O -f / / be the1 set of symbols O •+• JI •-•. [a < f> : 
h G / / } . Denote by G a (disjoint) union of G and O -f / / . The operat ion and 
the order < on /I will be extended on the whole G in the following way. Vor 
each / / . / / G / / we put (O-[- /<< (O 4 //') = --//-f /«•'. h-t-(a r h') - </--(-- // - // '• . 
(O -f //) -f //' = O f- (/! -f- /*•') • Further we put a -f // < O -1- //' ii' and only ii' /< .̂. // 
a < // and /// incomparable . Then G turns into a half liiuvudy ordered group 

388 



MAXIMAL DEDEKIND COMPLETION OF A HALF PARTIALLY ORDERED GROUP 

such that G | = H, G[ = a + H. Since G] ^ 0, G fails to be a linearly ordered 
group. 

Form the sets: 

x1 = {(b1,c)eH: bxeC, b!<o, ceC}, 

Y1 = {(c1,c)eH: c L G C , c ^ l , c G C} , 

X2 = {(62, c) : b2 G C , 62 < 1, c G C} , 

^ = {(03,0): c2GC7, C 2 > 2 , C G C } , 

X 3 = {(63, c)eH: 63 G C , b3 < 2 , c G C} , 

Y3 = {(c3, c) G H : c3eC, c3 > 3 , c G C } . 

We have xi < y{ for each xi G X ? , ^ G Y{, (i = 1,2,3). Therefore there 
exist elements U1,U2,U3 G H& such that IT = supNz- = infy^ (i = 1,2,3) in 
H#, and Xz = LH(U2), yz = t I H ^ ) (i = 1,2,3). From a+;r2 ,a+y z G a + fl, 
a- + ?f < a + x? for each xi G K^, yi G Yz- (z = 1, 2, 3) it follows that there are 
elements zx,z2,z3 G (a + H)# such that zi = sup{a + ^ : ^ G y^} = inf{a + x- : 
x, G X J (7 = 1,2,3) in {a + H)#, and {a + y% : y% G VJ = L a + „ ( ^ ) , 
{a + .ry: x ( G X } = [ / f l + ^ ) (z = 1,2,3). 

(A) We get zx+ z2= sup{(a + i /J + (a + x2) : yx G ^ , x2 G X 2 } = 
sup{ -y 1 + x2 : Vi £ Y±, x2 G K2} = s u p ^ = vx in H# ; (2! + 22) + 23 = 
Ut + 23 = sup{xx + (a + y3) : xL G X x , y3 G Y3} = sup{a + (-xx + y3) : 
J-j G Kx , y3 G Y3} = sup{a + y3 : y3 G y 3} = z3. On the other hand, 
z2 + z3 = sup{(a + y2) + (a + x3) : y 2 G F 2 , x3 G X 3 } = sup{-y 2 + x3 : y 2 G 7 2 , 
X 3 G X 3 } := SUpKx = Ul5 2-L + (22 + 23) = 2-L + Ux = SUp{(a -f 1/^) + ^ : 

2 / I - P 2 / I J
 G K } = s uP{ a+(2/ii+2/ij) : VivVij e Yi) = sup{a+2/2 : i/2 G F2} = 22 . 

Hence, (2X + z2) + z3^ zx + (z2 + z3). 
(B) We have seen in (A) that zx + z2 = vl. But w = inf VV = inf {(a + xx) + 

(a+y2) : x1 G Xx , y2 G Y2} = i n f l - x ^ ^ : xx G X1 , y2 G Y2} = inf Y2 = U2 . 
Therefore zx+ z2 7-= Û. 

(C) There does not exist f\{yl—xl : xx G Xx , ^ G 7 J in G. With respect 
to 3.4 (i) the element U1 G G^ has no inverse in G#. 
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