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ON d-IDEALS IN d-ALGEBRAS 

J . N E G G E R S * — Y O U N G B A E J U N * * — H E E SIK KIM" 

(Communicated by Anatolij Dvurečenskij ) 

A B S T R A C T . We introduce the notions of d-subalgebra, d-ideal, dfi -ideal and 
d*-ideal in d-algebras, and investigate relations among them. Furthermore, we 
are able to define the idea of a quotient d-algebra and to prove a fundamental 
theorem of d-morphisms for d-algebras as a consequence. 

1. Introduction 

Y. I m a i and K. I s e k i [II] and K. I s e k i [Isl] introduced two classes 
of abstract algebras: namely, BCK-algebras and BCI-algebras. It is known that 
the class of BCK-algebras is a proper subclass of the class of BCI-algebras. 
In [HL1], [HL2] Q. P. H u and X. Li introduced a wide class of abstract al­
gebras: BCH-algebras. They have shown that the class of BCI-algebras is a 
proper subclass of the class of BCH-algebras. J. N e g g e r s and H. S. K i m 
[NK] introduced the notion of d-algebras which is another generalization of 
BCK-algebras, and investigated relations between d-algebras and BCK-algebras. 
In this paper we discuss the ideal theory in d-algebras. We introduce the notions 
of d-subalgebra, d-ideal, $ -ideal and d*-ideal, and investigate relations among 
them. Furthermore, we are able to define the idea of a quotient d-algebra and to 
prove a fundamental theorem of d-morphisms for d-algebras as a consequence. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 06F35, 06A06. 
K e y w o r d s : BCK-algebra, d-(d*-)algebra, d-subalgebra, d-(d#-, d*-)ideal. 

** *** Supported by the Basic Science Research Inst i tute program, 1997, 
project No. BSRI-97-1406. 
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2. Preliminaries 

A d-algebra is a non-empty set X with a constant 0 and a binary operation 
"*" satisfying the following axioms: 

(I) x * x = 0, 
(II) 0 * x = 0, 

(III) x * y = 0 and y * x = 0 imply x = y 

for all x,y in X . 

A BCK-algebra is a d-algebra (X, *,0) satisfying the following additional 
axioms: 

(IV) ((x * y) * (x * z)) * (z * H) = 0, 
(V) (x * (x * y)) * y = 0 

for all x,y,z in X . 

In a BCK-algebra (X, * , 0) the following hold: 

(1) (x * y) * x = 0, 
(2) ((x * z) * (H * z)) * (x * y) = 0 

for arbitrary x, ?/, z G X . 

A non-empty subset 7 of a BCK-algebra X is called a BCK-ideal of X if 

(i) oei, 
(ii) x G 7 and y * x E I imply y G / , 

for all x,y G X . 

PROPOSITION 2 .1 . Fe£ X 6e a d-algebra. If x ^ y and x * y = 0, then 
y * x 7̂  0. 

P r o o f . By (III), it is straightforward. • 

3. d-ideals 

DEFINITION 3 .1 . Let (X, *,0) be a d-algebra and 0 ^ I C X . I is called 
a d-subalgebra of X if x * H G / whenever x G I and y e I. I is called a 
BCK-ideal of Â  if it satisfies: 

(D0) 0 € / , 

(D1) x * y £ I and H G I imply x G I. 

7 is called a d-ideal of X if it satisfies (!)-_) and 

(Z>2) x G I and H G X imply x *y e I, i.e., 7 * X C 7. 
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EXAMPLE 3.2. Let X := {0, a, b, c, d} be a e/-algebra which is not a BCK-alge-
bra with the Cayley table as follows: 

* 0 a ò c d 

0 0 0 0 0 0 

a a 0 a 0 a 

b b ò 0 c 0 

c c c b 0 c 

d c c a a 0 

Then I := {0,a} is a d-ideal of X . 

EXAMPLE 3.3. Let X := {0, a, b, c} be a d-algebra which is not a BCK-algebra 
with the Cayley table as follows: 

* 0 a b c 

0 0 0 0 0 

a a 0 0 a 

b b b 0 0 

c c c a 0 

Then J := {0, a, c} satisfies (Z?2), but not (Dx) since b * c = 0 £ J and c € J, 
but b ^ J, i.e., J is a d-subalgebra, but not a BCK-ideal of X . 

In a d-algebra, a BCK-ideal need not be a d-subalgebra, and also a d-sub-
algebra need not be a BCK-ideal as shown in the following example. 

E X A M P L E 3.4. Let X := {0, a, b, c} be a d-algebra which is not a BCK-algebra 
with the following Cayley table: 

* 0 a ò c 

0 0 0 0 0 

a a 0 0 ò 

b b c 0 0 

c c c c 0 
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Then I := {0, a, b} is a BCK-ideal which is not a d-subalgebra of X, while 
J := {0, c} is a d-subalgebra which is not a BCK-ideal of X. 

Clearly, {0} is a d-subalgebra of every d-algebra X and every d-ideal of X 
is a d-subalgebra, but the converse need not be true. 

E X A M P L E 3.5. Let X := {0, a, b, c} be a d-algebra which is not a BCK-algebra 
with the following Cayley table: 

* 0 a b c 

0 0 0 0 0 

a a 0 0 ò 

Ь b b 0 0 

c c c c 0 

Then I := {0, a} is a d-subalgebra of X , but not a d-ideal of X, since a* c = 
b(£I. 

LEMMA 3.6. If I is a d-ideal of a d-algebra X, then 0 G I. 

P r o o f . Since I ^ 0, there exists x in I and hence 0 = x * rr G / by (D2). 

• 
Note that every d-ideal of a d-algebra is a BCK-ideal, but the converse need 

not be true. In Example 3.5, I := {0, a} is a BCK-ideal of X, but not a d-ideal 
of X. 

PROPOSITION 3.7. Let I be a d-ideal of a d-algebra X. If x G I and 
y * x = 0. then y G / . 

P r o o f . Assume that x e I and y * x = 0. By Lemma 3.6 and (Dx), we 
have y G / . This completes the proof. • 

DEFINITION 3.8. Let X be a d-algebra. A d-ideal I of X is called a dtt -ideal 
of X if, for arbitrary x,y, z G X , 

(L>3) x * z G / whenever x * y G / and y * z £ I. 

E X A M P L E 3.9. Let X be a d-algebra as in Example 3.5. Then K := {0, a, b} 
is a d11 -ideal of X . 

Obviously, every d$ -ideal is a d-ideal, but the converse need not be true. 
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E X A M P L E 3.10. Let X be a d-algebra as in Example 3.2. Then L := {0, a} is 
a d-ideal which is not a d$-ideal of X , since b* d = 0 £ L, d* c = a G L, but 
b* c = c £ L. 

Note that we can see that d$ -ideal C d-ideal C d-subalgebra and d$ -ideal 
C d-ideal C BCK-ideal in d-algebras. 

In a d-algebra X, the identity (x * y) * x = 0 does not hold in general. For 
instance, in Example 3.5, we know that (a*c)*a = b*a = b^0. 

DEFINITION 3 .11 . A d-algebra X is called a d*-algebra if it satisfies the 
identity (x * y) * x = 0 for all x, y G X. 

Clearly, a BCK-algebra is a d*-algebra, but the converse need not be true. 

EXAMPLE 3.12. Let X := { 0 , 1 , 2 , . . . } and let the binary operation * be de­
fined as follows: 

[ 0 if x < y , 
x * y := < 

t 1 otherwise. 

Then (X, * , 0) is a d-algebra which is not a BCK-algebra (see [NK; Exam­
ple 2.8]). We can easily see that (X, * , 0) is a d*-algebra. 

THEOREM 3.13. In a d*-algebra, every BCK-ideal is a d-ideal. 

P r o o f . Let I be a BCK-ideal of a d*-algebra X and let x G 7, y G X. 
Since (x * y) * x = 0 for all x,y G X , it follows from Proposition 3.7 that 
x *y £ I. Hence I is a d-ideal of X. • 

The following corollary is obvious. 

COROLLARY 3.14. In a d*-algebra, every BCK-ideal is a d-subalgebra. 

DEFINITION 3.15. If a d* -ideal I of a d-algebra X satisfies 

(D4) x*y G I and y*x G I imply (x * z) * (y * z) G / and (z*x) * (z*y) G / 

for all x, ?/, z G X, then we say that / is a d*-ideal of X . 

In Example 3.3, the set I := {0, a} is a d*-ideal of X . Obviously, every 
cT-ideal in a d-algebra is a d$ -ideal, but the converse does not hold in general. 

E X A M P L E 3.16. Let X := {0, a, 6, c} be a set with the following Cayley table: 

* 0 a b c 

0 0 0 0 0 

a a 0 0 a 

b c 6 0 c 

c c b 6 0 
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Then (X, * ,0) is a d-algebra, but not a BCK-algebra. We can see that I := 
{0, a] is a d$ -ideal, but not d*-ideal, since 0 * a = 0 G / and a * 0 = a G / , but 
(c*0)*(c*a) = c*b = b^I. 

LEMMA 3.17. ( I s e k i et al. [IT1]) Let I be a BCK-ideal of a BCK-algebra 
X. If x el and y * x = 0 then y G / . 

THEOREM 3.18. If (X, * , 0) is a BCK-algebra, then every BCK-ideal of X is 
a d*-ideal of X. 

P r o o f . Let I be a BCK-ideal of X and let x G I and y G X. Since 
(x * y) *x = 0 by (1), it follows from Lemma 3.17 that x*y G I, proving (D2). 

Assume that x*y e I and y *z G / for all x,?/, z G I. Then ((x*z) * (y *z)) 
* (x *y) = 0 by (2), and hence (x * z) * (y * z) G I. Since y * z e I and since I 
is a BCK-ideal of X, it follows that x * z e I. This proves (D3). 

Let x *!/, y * x G / for all x, y G X. Then, by (IV) and (2), we have 

((z * x) * (z * y)) * (y * x) = 0 and ((x * z) * (y * z)) * (x * y) = 0 , 

respectively. It follows from Lemma 3.17 that (z * x) * (z * y) G / and (x * z) * 
(y * z) G i", proving (DA). This completes the proof. • 

Remark 3.19. 

(i) In a d*-algebra, the concept of d-ideal, d-subalgebra and BCK-ideal 
coincide. 

(ii) In a BCK-algebra, the concept of d-ideal, dP -ideal, cT-ideal and 
BCK-ideal coincide. 

4. Quotient d-algebras 

Let ( X ; * , 0 ^ ) and (Y;*,0Y) be d-algebras. A mapping / : X -> Y is 
called a d-morphism ([NK]) if f(x * y) = f(x) * f(y) for all x,y £ X. Note 
that f(0x) = 0Y. A d-algebra (X;*,0X) is said to be d-transitive ([NK]) if 
x * z = 0 and z * y = 0 imply x * y = 0. Every BCK-algebra is a d-transitive 
d-algebra, but the converse does not hold in general. See Example 3.2. 

Let / be a d*-ideal of a d-algebra (X; * , 0X). For any x, y in X, we define 
x ~ y if and only if x * y G / and y * x G / . We claim that ~ is an equivalence 
relation on X. Since 0 G / , we have x * x = 0 G / , i.e., x ~ x, for any 
x G X. If x ~ y and y ~ z, then x * y , y * x £ I and y*z,z*y£l. By (I)3) 
x*z , z*x G I and hence x ~ z. This proves that ~ is transitive. The symmetry 
of ~ is trivial. By (D4) we can easily see that ~ is a congruence relation on X. 
Using the notion of d-transitivity we obtain: 
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PROPOSITION 4 . 1 . Let / : X -> Y be a d-morphism from a d-algebra X 
into a d-transitive d-algebra Y. Then K e r / is a d*-ideal of X. 

P r o o f . The properties (£)-_) and (D2) are simple. If x*y,y*z G K e r / , then 
f(x)*f(y) = 0 y = f(y)*f(z). Since Y is d-transitive, we obtain f(x)*f(z) = 0 
and hence x * z G K e r / , which proves (J>3). Let x * y, y * x G K e r / . Then 
/ (x) * /(H) = 0 y = /(H) * f(x). By (III) we obtain f(x) = /(H). It follows that 
f((x * z)*(y * z)) = f(x * z) * f(y * z) = (f(x) * f(z)) * (/(H) * f(z)) = 0 y 

and hence (x * z) * (y * z) G K e r / . Similarly, (z * x) * (z * y) G K e r / , which 
proves (D4). • 

EXAMPLE 4.2. Let X be a d-algebra as in Example 3.3, and let 7 be a 
d-transitive d-algebra as in Example 3.2. Define a map / : X —•> Y by / (0) = 
f(a) = 0, /(b) = f(c) = a. Then / is a d-morphism. Obviously, K e r / = {0, a} 
is a d*-ideal of X . 

We denote the congruence class containing x by [x]7, i.e., [x]7 = {y e X \ 
x ~ H}. We see that x ~ y if and only if [x]j = [y]7. Denote the set of all 
equivalence classes of X by X / J , i.e., X / J = {[x]7 | x G X } . 

LEMMA 4.3 . Let I be a d*-ideal of a d-algebra (X; * , 0 ) . Then I = [0]7 . 

P r o o f . If x el, then X * 0 G J * X C J and hence x G [0]7, i.e., J C [0]7. 
Since 

[0]7 = {x e X | x - 0} 

= { x G X | X * 0 , 0 * X G J } 

= { x G X | x * 0 G J} ( 0 G J ) 

C I , ((Dl)) 

it follows that I = [0]7. D 

THEOREM 4.4. Je£ (X; * , 0) be a d-algebra and I be a d*-ideal of X. If we 
define [x]7 * [y]j := [x * y]j (x,y G X), then (X/J ; * , 0) is a d-algebra, called 
the quotient d-algebra. 

P r o o f . Since ~ is a congruence relation on X , x * y ~ x' * y' for any 
x ~ x ; , ?/ ~ 2/'- This means that [x]7 * [y]7 = [x * H]7 is well-defined. Let 
!>]/, M/ ^ X / J with [x]7 * [H]7 = [0]7 = [y]t * [y]j. Then [x * H]7 = [0]7 = [H * x]7 

and x *y, y * x e I. Thus x ~ y a n d [x]7 = [y]7. The rest is trivial, and so we 
omit the proof. • 

PROPOSITION 4.5 . Let I be a d*-ideal of the d-algebra X. Then the mapping 
7r: X —> X / J defined by TT(X) = [x]7 is a d-morphism of X onto the quotient 
d-algebra X / J and the kernel of ir is precisely the set I. 
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P r o o f . Since [x * y]j = [x]j * [y]j, n is a d-morphism. By Lemma 4.3 we 
know that 

Kei7r = {xeX\ TT(X) = [0 ] 7 } 

= {x G X | [x]j = [0],} 

= {x e x | x ~ 0} 

= [0]/ 
= / . 

THEOREM 4.6. If f: X -*Y is a d-morphism from a d-algebra X onto a 
d-transitive d-algebra Y, then X/Ker f = Y. 

P r o o f . Assume \i\ X/Keif -r Y such that ii([x]Kerf) = f(x). If M K e r / 
= blKer/ t h e n z * </, 2/ * * € K e r / , and so f(x) * / (y ) = 0 = / (y ) * f(x). By 
(III) we have f(x) = / ( y ) , i.e., /x([z]K e r /) = / i([y]K e r /) • This means that /i is 
well-defined. For any y G y , there is an x G X such that y = f(x) since / is 
onto. Hence fi([x]Kerf) = f(x) = y, which means that /z is onto. If p([x]Ker f) ^ 
/ i ( [y]K e r /) then either x*y g K e r / or y * x £ K e r / . Without loss of generality, 
we may assume rr * y £ K e r / . It follows that / (x ) * / (y) = /(a; * y) ^ 0 and 
hence / (x ) ^ / ( y ) . This means that /x is one-one. Since fi([x]Kerf * fe/]Ker/) = 

."([* * 2l]Ker/) = / ( X * 2/) = /(*) * f(y) = ^(MKer/) * Mb-Ker/)> /* i s a 

d-morphism. Thus we have X/Kei f = y , completing the proof. • 
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