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ON EXTENSION OF MAPS WITH VALUES
IN ORDERED SPACES

PETER VOLAUF

The aim of this paper is to present an extension of maps defined on a lattice A
and having their values in an ordered commutative group G. Following [5] we
postulate properties of the lattice A in such a way that theorems about the
extension of measures and the Daniell integral are obtained as consequences of the
main theorem.

The construction is a modification of the well-known Daniell scheme which,
modified in another way, has been used also in [1]. In his paper [1] D. H. Fremlin
gave a direct proof of the Matthes—Wright integral extension theorem which states
that the condition of weak o-distributivity of the range of an integral is necessary as
well as sufficient. )

After our presentation of the general construction we derive several results from
the main theorem and discuss the relation of the conditions weak o-distributivity
and g-regularity in the case of o-complete vector lattices.

Notations and notions

An ordered commutative group G is a commutative group with a reflexive,
antisymmetric and transitive relation connected with the group structure of G by
the condition: x <y implies x + z<y +z forall x, y and z in G. A group is said to
be monotone complete (o-complete) if, for each upper bounded, upward directed
family (x;) in G (monotone increasing sequence (x,) in G), there exists a least
upper bound vx; (vx,) in G. _

In analogy with the notion of the order separable Riesz space (= vector lattice)
we call an ordered group G o-separable if every non-empty subset EcG
possessing a supremum contains an at most countable subset possessing the same
supremum as E. It is clear that the monotone o-complete commutative group G is
Archimedean. When an ordered group is a lattice group, then o-completeness.
implies not only that it is Archimedean but also commutative.
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In [7] we introduced the notion of the regularity of a lattice group, but this notion
has a meaning also in an ordered group. We recall that a monotone o-complete
ordered commutative group G is said to be regular if there holds: If (@, «)n. xen iS
an order-bounded double sequence in G such that a, ,\0 (k — ) for each n €N,
then there exists @o€N" (@o: N—N is a function) such that the sequence

( 2 a, ,,,0(,.,) is bounded from above and if b € G, b =0 is an element for which

eN
b< (Za,. ,,,(,.,) for all @ eN™, then b =0.
m=1

As the notion of regular Riesz spaces (=regular vector lattices) is reserved for
Archimedean Riesz spaces possessing the diagonal property or another equivalent
property, see § 70 [3], we shall call a vector lattice, resp. a partially ordered vector
space V, g-regular if the group (V, +) is a regular in the above sense.

Examples

There are many spaces which are regular groups, resp. g- regular vector lattices.
Here are several of them:

(a) Real numbers, or course, resp. R" with a pointwise ordering. -

(b) o-complete regular Riesz spaces. o-convergence is stable and such spaces
have the o-property, in other words, every sequence of o-convergent sequences
has a common regulator of convergence (§ 5, Ch. 6 [8]). If a,.. . \\0 (k — ) for each
n €N and u is the common regulator for (a..), then for every positive real € there

exists @ € N" such that a, 4 <57 ¢ and we obtain b <eu for all £¢>0, assuming

2"
that b is a lower bound of {V Za,.,q,m:(peN"}.

m=1n=1

(c) Let s be the Riesz space of all real sequences and the ordering is
coordinatewise. Let F be the space of all real sequences having only a finite number
of non-zero terms. Since F is an ideal in s, o-convergence is pointwise. If c e F
bounds the double sequence (@, i)n xens @nxEF, n, k€N, such that a, . \0
(k— ), the problem is reduced on a finite number of coordinates and so F is
g-regular. It is well known that F has not the o-property, i.e. is not a regular Riesz
space.

As a next example of a non regular Riesz space which is g-regular is the space
L"*° p real, p>1 see for a detail discussion §6 Ch. VIL [8].

(d) Every commutative, o-complete, linearly ordered group G is regular.
Example of a regular group which is not a lattice group is the multiplicative group
G of reals with ordering =< associated with a semigroup {x€G:x =1 in natural

-ordering}, i.e. x =<y iff y . x '=1. Note that this ordering is not directed.
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Construction

In this part of the paper we consider a relative o-complete and o-continuous
lattice X in which there are given two binary operations + and /, satisfying the
following conditions:

(i) + is commutative.

(i) f x,y,zeX, x<y,thenx+z<y+z, x/z<y/z, 2/y<z/x.

(iii) ¥ x., y.€X, n=0, 1, 2, ..., x../ %0, Y./ Yo, then x,+y,/ x,+y, and
X./y0,/ X0l Yo.

iv) fx,eX,n=1, 2, ..., x.\iXo, y € X, then y/x./'y/x,.

(v) If x, yeX and x<y, then y=x +y/x.

It is clear that a o-complete Boolean algebra or a o-complete Reisz space are
examples of the given structure. The interpretation of operations + and / is evident
in both cases. Now we start with a triple (A, T,, G), where

A denotes a sublattice of a lattice X which is closed under the operations +,/
and members of A dominate the elements of X, i.e. for all x e X there exist
elements u, v € A such that us<x<v,

G denotes a monotone complete, o-separable, regular group and

To: A — G is a map satisfied

(i) If x<y, then To(x)<To(y) and To(y) = To(x) + To(y/x).

(ii) If x, ye A, then To(x) + To(y) = To(xvy) + To(xAy) and To(x +y) <
To(x) + To(y).

(i) If x,e A, n=1, 2, ..., x./'x0 in X, then To(xo) = Vv Tu(x,).

Let us denote

A, ={yeX:3(x,)pen in A, X, /'y in X}.
A;={yeX:3(x)nen in A, x,\Jy in X}.

Just as in [5] def. 5 we find that T, may be extended to A, by writing T, : A, - G,
T:(y) = v To(x.), whenever (X.)..n iS sequence in A increasing to y € A,.
Observe that the supremum of (To(x.)).~ exists; as y is dominated by some
v €A, so does To(v) bounds (To(X.))aen- It is easy to see that the map T, has the
following properties: '

(i) T, is unambiguously defined and is a monotone map.
@) If x,yeA,, then T (x)+ Ti(y) = Ti(xvy) + Ti(xAy)and Ti(x +y) <
Ti(x)+ T:(y). '
(iii) If x,eA,, n=1, 2, ..., xo€X and x,/'x, in X, then xoe A, and T:(x0)
= VvTi(x,).
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We define T*: X—>G
T*(x)=A{T\(y):x<yeA,}.

The infimum always exists beéause the set {T.(y):x<yeA,} is bounded from
below and downward directed (A, is a lattice and T, is a monotone map).

Proposition 1. The map T* has the following properties :

(i) T* is an extension of T, and T* is an increasing map.

(i) Ifx,y € X, then T*(xvy) + T*(xay) < T*(x)+ T*(y) and T*(x +y) <
T*(x) + T*(y).

(iii) If x,e X, n=1,2, .., x€X, x,/x in X, then T*(x) = vT*(x,)

Proof. We prove only (iii). It is clear from (i) that T*(x) = T*(x,). G is
o-separable and hence there exist sequences (X,, «)xens X».x € Ay, n; k € N such that
foreveryn e N x, «=x, .+ forall keNand (Ti(x...) — T*(x.))\O0 (k— =). Let
@ € N". Using mathematical induction and the properties (i) and (ii) of T, we have

m-—1

T,(\/x,, o) = Ti(Xm oem) + 2 (Ty(Xn.om;) — T#(x.)). From this we obtain

T Vtacvin) = T Votaim) = TH)+ TH0) S 3 Ti i) = T+
£ T#(x,),

and so

\{|T1<Vx"“"("’) =

n=1

1|<3

(ST =T + (s,

We have

0<T*(x) - V T*(x)<Ti( Vi, ron) = VT

=1 n=1

<V T Vitnow) = VT ()< V (Z[T,(xnw,) T*(x.)])

= m=1‘n

and with respect to the regularity of G, T*(x)= vT*(x,,).'

Proposition 2.

(a) Let x<y, xeA (x€A,, resp. xeAz) y€A,, then T*(x) + T “(y/x)
= Ti(y).
(b) If x,€ Az, n=1,2, ..., x,\x in X, then T*(x) = AT*(x,).

* Proof.

(a) Let xeA, u.€A, u,=x, n=1, 2, .., u,/'y, yeA,. We have T\(y)
= vTo(u,) and To(x) + To(u./x) = Ty(u,) with respect to (i) from preporties of
T,. Now u,/x /'y/x and To(x) + Ti(y/x) = T\(y).LetxeA,andx, €A, n=1,2,
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vy X /x. TH(y/x) < T*(y/x,) = Ti(y) — To(x.), which implies T;(x)

+ T*(y/x) < Ti(y). Finally, let x € A,. There exists a sequence (x.), X, €A,

Xn \,x and T*(x)= ATi(x.) (G is o-separable). Since x <y € A,, we can manage
=<y, n=1,2,.., and result follows from the above.

(b) We can put Xo€A, xo=x,. Now we have xo/x,/xo/x and T*(xo/x)
= vT*(xo/x,) = V(T*(x0) — T*(x,)) = T*(x0) — AT*(x,), using Prop. 1 (iii).
According to (a) T*(xo/x) + T*(x) = T*(xo), and so result follows.

Denote by L the set of all x e X for which

v{T*(y):x=yeA,} =A{T*(z2):x<z€A}.

Proposition 3.
(a) If xeL, yeX, x<y, then T*(x)+ T*(y/x)=T*(y).
(b) If x,eL,n=1, 2, ..., x,\ux in X, then T*(x) = AT*(x,).

Proof.

(a) Letx€A,, y,€A,, y<y,. With respect to Prop. 2 (a) T*(y/x) < T*(yi/x)
= T*(y,)— T*(x)and T*(x) + T*(y/x) < T*(y).If x e L, we have forall u € A,,
usx T*(y/x) < T*(y/u) < T*(y)— T*(u) according to the above.

We omit the proof of part (b) as a consequence of part (a) and Prop. 1. (ii), (iii).

Let K be a subset of X. K is said to be a o-monotone subset of X if K contains
suprema and infima of convergent monotone sequences of elements of K, i.e. if
(x.) is a sequence in K, x € X and x, /'x, then x € K and dually.

We shall prove in the next Proposition that L is a o-monotone subset of X.
Denote by Z the intersection of all o-monotone subsets of X which contain A.

Proposition 4. L is a o-monotone subset of X, and so ZcL. Z is, in fact, the
smallest o-monotone subset of X which contains A.

Proof. We shall prove only that L is a c-monotone subset of X. It is clear that
L contains A. According to Prop. 1 (iii) if x, €L, x, /x in X, we have x e L. Let
Y- €L, y.\y in X. T*(y) = A T*(y.) with respect to prop 3 (b). It is sufficient to
show that T*(y) = v{T*(u):y=ueA,}.

We use dual arguments as in the proof of (iii) Prop. 1. Let u, «€ A, Un i <

Un ke1 < Yn, N, k €N such. that C/T*(u,._,‘) = T*(y,). For all @ eN" we have
k=1

T*(y)— v{T*(u):y=uecA}<T*(y)-T* ( A At o)<

m=1n=1

<T*(y) _,,.Z\T*<Z\1 un.q,m) = i/l (T*(y) - T*(Z\_l “'--W)))g

<V (Z17°00) = T(n 0.
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Since T*(y.) — T*(ttn.+))\O (k— ) for all neN and G is a regular group, the
result follows.
Denote by T the restriction of T* to Z.

Theorem 1. The set Z is a sublattice of X. The map T is the extension of T, and
has the following properties : '
() If x,yeZ, x<y, then T(x)<T(y), T(x)+ T*(y/x)=T(y).

@Gi) If x,yeZ, then T(xvy)+T(xay) = T(x)+T(y) and T*(x+y) <
T(x)+ T(y).

(iii) T is continuous from above and below, i.e. if x,eZ, neN, x€ X, x,/'x in
X, then x€Z and T(x) = vT(x,) and dually.

(iv) If I: Z— G is a map which satisfied (iii) and is the extension of T,, then
I=T.

Proof. Denote by B, = {yeZ:zvy, xayeZ, T(x) + T(y) = T(xvy)
+ T(xAy)}, where x € Z. Since B, is a o-monotone subset of X and contains A,
B, o Z. (i) is evident, (ii) has just been proved, resp. Prop. 1. (ii) ; (iii) is clear from
the definition Z and Prop. 1 (iii), resp. Prop. 3 (b). Finally {x e Z: I(x) = T(x)} is
a o-monotone subset of X and contains A which implies (iv).

Remark 1. The latest Theorem is a generalization of Theorem 7 in [5] in two .
directions. We abandon the two structures of the range of the map — a linear and
a lattice one. On the other hand if we consider the Reisz space as the range of the
map the examples in (c) part I show that our assumptions are weaker than the ones
in[5].

m

- Consequences

As the first consequence of Theorem 1 we obtain the theorem about an
extension of monotonic group homomorphisms. A mapping f from one /-group H
to another G is called a monotonic homomorphism if it is a group homomorphism
and preserves an ordering, i.e. if x<y in H, then f(x)<f(y) in G.

We shall work with o-complete /-group. It is known that they are commutative,
Archimedean, relatively o-complete and o-continuous lattices. Let H and G be
o-complete /-groups and f be a monotonic homomorphism from H to G - f is said
to be sequentially smooth if (x,).en, X. € H, x. O implies f(x,)\0 in G.

Theorem 2. Let H be a o-complete I-group and G be an o-separable and regular
l-group. Let A be a sub I-group of H such that every element of H is dominated by
some element of A. Let f, be a monotic sequentially smooth homomorphism from
A to G. Then there exists a sub l-group B of a group H which is a o-monotone
subset of H and a monotonic homomorphism g from B to G which is an extension
of fo and sequentially smooth.
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Proof. Arguing as in Theorem 23.6 page 129 [3], it can be verified that the
o-complete o-separable [-group G is a complete /-group. From now on observe
that all assumptions of the construction of part II are fulfilled, interpreting the
binary operation / as the minus in /-group, i.e. x/y:=x +(—y). Wecanput B=Z,
where Z is the sublattice from Theorem 1 and define by g the restriction f* to B
(f* is an analogy of T*). Now we have to prove that B is a subgroup of H and g
preserves +.

From the properties of f* we have f*(x)+f*(y) = f*(x +y)forallx, ye H. We
show the reverse inequality for the elements x, y € B. There exist sequences (x.),
(y.) in A, such that x,<x, y.<y, for each neN, f*(x) = vf*(x.), f*(y)
= vf*(y.), because G is o-separable.

According to Prop. 2 (b) we have f*(x.)+f*(y.) = f*(x.+y.) foreach neN.
Finally f*(x)+f*(y) = v(f*(x.) +f*(yx)) = Vf*(xa +y.) < f*(x +y). The fact
that B is a subgroup of H follows without difficulty.

As the second consequence of the main theorem is the theorem concerning an
extension of a measure defined on an aigebra o and having values in an ordered
group G to a measure on the smallest o-algebra containing <.

Let m be a set function on an algebra & of subsets of a fixed set Y and having
values in a monotome o-complete, comutative group G. m is said to be a measure
on & with values in G iff

(i) m(A)=0 for every A e A, m(@)=0.

(ii) m(A)= \7 (Zm(A,.)) for every disjoint sequence (A,) of elements &/
k=1 \n=1

whose union is A.

It is easy to observe that a measure m has the following properties :

(iii) m(A)<m(B) whenever A, Bes{, A cB.

(iv) m(A)+m(B)=m(AuB)+m(AnB) for every A, Be A.

(v) m is continuous from above (below) on <.

Theorem 3. If m is a measure on an algebra of with values in a monotone
complete, o-separable, regular group G, then m has a unique extension m* on
a o-algebra & generated by an algebra A.

Proof. We use result from part Ii in an obvious way. The system 2* with set
theoretical operations U, N and — (set theoretical difference) has all the properties
of the lattice X from part II. It is clear that a measure m, resp. an algebra £, have
the properties of T, and A in part II. Consider the system Z from Theorem 1. Z is
a o-monotone system and the extension m* of m has all the properties of
a G-valued measure on Z. By its definition Z is the smallest monotone system of
sets which cantains &, i.e. the smallest o-algebra containing <.

Remark 2. The above result should be compared with Theorem 3 in [7], where
the method of measurable sets was used. The case vector valued measure is
discussed, in fact, at the end of this paper.
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In his paper [1] D. H. Fremlin, using a direct method, proved the well-known
Daniell integral scheme for a linear map T, whose domain is a Riesz subspace F of
a Dedekind o-complete Riesz space E and having values in a weakly o-distributive
Dedekind o-complete Riesz space G.

Let G be a Dedekind o-complete Riesz space. Then G is said to be weakly
o-distributive if and only if whenever (a..«)..«e~ iS an order-bounded double
sequence such that a, «\\0 (k— ) for each n €N, then

A Va,,‘(,)(,.,:cpeNN}=O.
n=1

First let us formulate our result of an extension of a linear map having values in an
ordered vector space V and then consider the condition of g-regularity in case
when V is a Riesz space.

Theorem 4. Let X be a Dedekind o-complete Riesz space and A be a Riesz
subspace of X such that every element of X is dominated by some member of A.
Let V be a monotone complete, o-separable and g-regular vector space. Let
T:A—YV be linear, monotone and sequentially continuous. Then T has an
extension T* to a linear, monotone and sequentially continuous map from Z to V,
where Z is the smallest o-monotone sublattice of X containing A.

Proof. The above assumptions imply that we may use the result of Theorem 1.
It will be sufficient to realize that the extension T* is a linear map and Z (the
o-monotone sublattice of X from Theorem 1) is a vector subspace of X. The
desired result follows from the fact that for real a>0 T*(ax) = aT*(x), for all
x €A UA; and T*(—x) = —T*(x) for all x € Z, resp. T* is additive on Z.

Let us discuss the conditions of g-regularity and weak o-distributivity of a Riesz
space V.

Let (a..«) be an order-bounded double sequence in V such that a,, . \\O (kK — ®)

for each n eN. Since for each @ e N" \7 (Za,,.w)) = (/a,.,q,(n,, g-regularity
m=1‘n=1 n=1

implies weak o-distributivity of V. -
Conversely we prove that if V is weak o-distributive, then V is relatively

g-regular, i.e. if whenever (a,.«) is an order-bounded double sequence in V such

that a,..\0 (k— ) for each neN and such that there exists @,eN" that

(zan.wn(n)> la’l-w('l)) :(pGNN} =O'
n=1

Let ¢ be a positive element in a Dedekind o-complete Riesz space V. Denote
Vic] = {(beV:—acsb=ac, real a>0}. It is obvious that V[c] is also
a Dedekind o-complete Riesz space and has an order unit c. By the fundamental
Krein—Kakutani vector lattice representation theorem there exists a compact
Hausdorff space S such that V[c] is isometric and lattice isomorphic to C(S). It is

, m

is bounded, then /\{ \”/ (

meN m=1\n=
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well known that in this case (C(S) is o-complete) S is totally disconnected and the
closure of a countable union of clopen subsets of S is clopen. The proofs of the
following lemmas are known and therefore may be omitted (see [10]).

Lemma 1. When C(S) is a Dedekind o-complete and (f.) is a sequence in C(S)
which is bounded below, then

{ses:inf'fn(s)></"\fn)(s)}
- n=1
is a countable union of closed nowhere dense Baire sets.‘ ’ )

Lemma 2. If C(S) is weakly o-distributive, then each subset of the union of
a countable family of closed nowhere dense Baire sets is nowhere dense.

Proposition 5. When a Riesz space V is weakly o-distributive, then V is
relatively g-regular.
Proof. Let (a...) be a double sequence in V bounded by an element ceV.Let

a,..\O (k— ) for each n €N, @,eN" and d € V such that d= Za,.‘w,., for all
n=1

m eN. V[cvd] may be identified with C(S), where C(S) is weakly o-distributive.
Denote by € a system of all clopen subsets of S. Let e € V, e =0 be a lower, bound
of '

\=/ Z n q,(,.,:qJeN"}.

We have ¢ € V[cvd]~C(S). Let e#0, i.e. (after identification) there exists an
xo€S, e(xp)>0. S is totally disconnected, then there exist €>0 real and Ce €,
C+#0 such that £-yc(x)<e(x) for all xeC. a,« € V[cvd] ~ C(S) for all

n, k eN. Since A a...=0, according to Lemma 1 there exist Baire sets A, such
k=1 -

that a, «(x)\O0 (k— ) for all xeS—A,. Let A=CJA,.. With respect to

n=1
Lemma 2 A~ (the closure of A) is nowhere dense. Let C,#0, C,e%, C,c
C — A". Sequences of continuous functions (a.,, «)x e, monotonously converge on
C,, pointwise so, by Dini’s theorem the zero function is the uniform limit of
(a,. K )xen for each n eN. For every n €N there exists @(n)eN such that p(n)=

@o(n) and a,, ,m(x) < 2,,,,1 for all x € C,. Hence Z A omy(X) < for all xeC,.

On the other hand a set

B= {x eC;: ( \7 i an.«p(u))(x) > i a,.,q,(,.)(x)}

m=1n=1 n=1
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is nowhere dense, according to the lemmas above. In this way there exists
a non-empty C,€ €, C,=C,—B~. We have

e()S( V. T ran) ()= T n. el <5 <e(x)
for all x € C,, a contradiction.

Remark 3. A simple example shows that we cannot prove more because the
space m of all bounded real sequences with coordinatewise ordering is weakly
o-distributive but not g-regular. Indeed, if b € m, denote by b(1), b(2), b(3), ... its
coordinates. Hence b = (b(1), b(2), b(3), ...). Now we can set b, (i) =0 if i <k and
b.(i)=1 whenever i=k. It is clear that b,\\O (k— ) in m but if we define

}:a,,‘,,,(",> unbounded for all
= meN

n=1

a,.=b, for all nelN, we have a sequence (

@ eN".
Remark 4. There are several papers discussing an integral with values in
ordered spaces, however, from other points of view. See, for example [9], [4], [6]-
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O MPOJOJKEHMM OINEPATOPOB C 3HAYEHMAMH
B MMONYYNOPAZOYEHHbIX ITPOCTPAHCTBAX

Iletep Bonaydg

Pe3iome

B nepsoit wacTH u3naraercs oblas Teopus — NPOROJDKEHME Orepatropa ONPERENECHHOrO Ha
nogMHoXectse A MoXecTBa X €O 3HAYEHHAMM B perynsipHoi J-rpymmne I (o-nonHas x-rpymma I
Ha3bIBAETCS PETYNSAPHON, €CIIH BbINOJHACTCA |

o m
czan \O(kooyn=1,2,3,..,> /\{ \V; Za,,‘,,,(,,,:weN"}=O).
m=1pn=1]
CJICHCTBMCM 3TOM TECOpHH ABIAIOTCA TECOPEMA O MPOJOJIKECHNHA U3OTOHHONO I‘OMOMOp(b;BMa O -TIOJTHOM -
a-rpynnbt X B peryaspHyto Jji-rpynny I', TeopeMa O NpONOKeHHH uHTerpaia Jlakmena u Teopema
0 TPONOMKEHUM MCPbI CO 3HAYEHMSAMM B repynsipHoil Jji-rpynne I'. B nocnemHoit 4actu paGoThi
BBIACHACTCA YCIOBME PEryISPHOCTH B TOM Ciyuae Korma I” nvHeitHas CTPYKTYpa.
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