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ON ALMOST CONTINUOUS ADDITIVE 
FUNCTIONS 1 

ZBIGNIEW G R A N D E 

(Communicated by Bubica Hold ] 

ABSTRACT. It is proved tha t every additive function is the sum of two almost 
continuous (in Stallings' sense) additive functions and the limit of a sequence 
(of a transfinite sequence) of almost continuous additive functions. Moreover, it 
is shown that the maxima l additive family for the set of all almost continuous 
addi t ive functions having the graphs of the second category is contained in the 
class of continuous additive functions. 

Let R be the set of all reals. A function g: (a, 6) —> R is said to be almost 
continuous (in Stallings' sense [5]) if for every open set D C R2 containing the 
graph G(g) of the function g there is a continuous function h: (a, 6) —» R with 
G(h) c D. 

A function / : R —> R is called additive (see, e.g., [4]) if it satisfies Cauchy's 
equation 

f(x + y) = f(x) + f(y), x,yeR. 

It is well known that there exists additive almost continuous function / : R —> R 
which is not continuous ([3], see also [2]). In this article, I prove that every 
additive function is the sum of two additive almost continuous functions and 
the limit of a sequence (of a transfinite sequence) of additive almost continuous 
functions, and I investigate the maximal additive family for the class of all 
additive almost continuous functions with the graphs of the second category. 

Throughout the article, I assume the Continuum Hypothesis CH and all 
considered functions are real and of real variable. 

AIMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 26A15, 14L27, 26A51. Secondary 54C08. 
K e y w o r d s : additive function, continuity, almost continuity, Darboux property , transfinite 
sequences. 
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Let 

Add = {/ : / i s additive} , 

AC = {/ : / i s almost continuous} , 

C = {/ : / i s continuous} , 

6 = {/ : for every g € Add D AC , f + g £ Add n *4C} . 

Denote by Q the set of all rationals. Every linear basis in R over Q is called 
a Hamel basis in R. Let 

L.,...,/„,... (1) 

be a sequence of all open intervals with rational endpoints, let u)x denote the 
first uncountable ordinal number, and let 

xx,...,xa,... , OL<LO1, (2) 

be a transfinite sequence of all reals. 

Remark 1. There is a Hamel basis H C R such that for every open interval 
/ C R the intersection I H H is of the cardinality continuum. 

P r o o f . Let 
0 / x j G R 

be arbitrary, and for every a < u1 and n > 1 let -xa be the first element XQ of 
the sequence (2) such that 

X(3^In 

and the set 

lX /3 / /3<Q, n > l U iXaSk<n 

is linearly independent over Q. Then the set 

H = {xl : a < u)x , n > 1} 

is a Hamel basis such that 
card(H n I) = c 

for every open interval I. • 

If / is a function, we mean by a blocking set of / a closed set K cR2 such 
that G ( / ) n K = 0 and G(s) n if / 0 for every continuous function g: R —• R. 
An irreducible blocking set (IBS) K of / is a blocking set of / such that no 
proper subset of if is a blocking set ([3]). 

It is known that / is almost continuous if and only if it lias no blocking set. 
Moreover, if / is not almost continuous, then there is an (IBS) K of / , and the 
x-projection prx(K) of if is a non-degenerate connected set ([3]). 

Let 
Kv...<Kn,... , OL<U)1, (3) 

be a transfinite sequence of all irreducible blocking sets in R2 . 
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ON ALMOST CONTINUOUS ADDITIVE FUNCTIONS 

THEOREM 1. If f e Add, then there are g,h G AddnAC such that f = g + h. 

P r o o f . Let if be a Hamel basis from Remark 1. For every a < uol there 
are points 

such that 

Xa^Уß, Уa^Xß, foг ß < a 

and 

Xa + Xp > y a # 2l/3 > for l3 < a • 

For every a < ux let ua, va 6 R be points such that 

(xQ,ua)eKa, (ya,va)eKa. 

Define 

f ua if x = xa , a < cOx, 

# i ( x ) = ^ /(-r) ~va if x = y a , a < ux , 

0 otherwise in If , 

' f(X) ~Ua H X = Xa, a <LU1, 

hx(x) = < va if x = y Q , a < o ; x , 

/ ( # ) otherwise in IF, 

> R (h : R -» R) be the additive extension of 9\ (o f V and let g: R —• 
(see, e.g., [4]). 

Observe that for every a < tul, 

fcoí/OO) = Ҝ . " J ^ o 
and 

{Va^iya)) =(yaiVa)£ A a ' 

So, the functions #, h are almost continuous, and, evidently, 

f = g + h. 

This completes the proof. 

R e m a r k 2. The inclusion 

D 

Лdd П c C 

follows from [1]. 
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LEMMA 1. Let f: Z —> R be a function with the graph G(f) of the second 
category in K2 , and let g be an upper semi-continuous function with domain a 
non-degenerate interval J D Z. Then for every countable sets A, B C K there 
is a point x E Z \A such that f(x) + g(x) is not in B. 

P r o o f . Let (bk)k be an enumeration of all points of the set B. For k = 
1,2, . . . , let 

Ak = {xeZ: f(x) + g(x) = bk}. 

If for every x £ Z \A we have 

f(x)+g(x)£B, 

then 

G(f)c\jG(f/Ak)u{(x,y): xeA, yGR}, 
k 

and for every k = 1, 2 , . . . , 

G((f~bk)/Ak)=G((-g)/Ak). 

Since the set G(—g) is nowhere dense, every set 

G((f-bk)/Ak), k = l,2,..., 

is also nowhere dense, and, consequently, every set G(f/Ak), k > 1, is the same. 
So, G(f) is of the first category, a contradiction. • 

R e m a r k 3. If the graph G(f) of a function / E (AddP\AC)\C is of the second 
category, then for every open interval I = (a, b) the sets 

{(*,/(*)): xel, f(x)>0} 

and 
{(x,f(x)): x e l , f(x)<0} 

are of the second category. 

P r o o f . If G(f /1) is a subset of the first category, then for every bounded 
open interval J there is a function 

h(x)=ax + b, x G K , a , b E Q , a ^ O , 

such that J C h(I), and, consequently, 

G(f/J)caG(f/I) + (b,f(b)). 

So, G(f /J) is of the first category for every open interval J , and we obtain a 
contradiction, since G(f) is of the second category. Suppose that the set 

{(x,f(x)): x e l , f(x)>0} 
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is of the first category. Since / is a discontinuous additive function with the 
Darboux property, the set { i G R : f(x) = 0} is dense ([4]). There is an open 
interval J G I such that, at its center z, we have f(z) = 0. Observe that, if 
x G J and f(x) > 0, then 

f(z-(x-z)) = -f(x)<0. 

Since the function 

h(x,y) = (2z - x , - y ) , x e J , y G R , 

is a homeomorphism, and the set 

{ ( x , / ( x ) ) : x e l , / ( x ) > 0 } 

is of the first category, the set 

{ ( x , / ( x ) ) : x e l , f(x)<0} 

is the same. But the set 

{ ( x , / ( x ) ) : x e l , f(x)=0} 

cannot be residual in / x R , so we have a contradiction. • 

Now, let 

Jl = {/ G Add n AC : G(f) is of the second category} and 

A = { / : for every 9 6 f i , / + g G ft} . 

PROBLEM 1. Does exist a function / G (Add n .4C) \ C with the graph of the 
first category? 

Remark 4. The inclusion 
A D A M n C 

is true. 

P r o o f . If / G Add H C, then for every function g G ft we have 

/ + g G A M n .AC 

([1]). There is a G R such that 

/ (x ) = a x , x G R. 

Since the function 

F(x , y) = (x, y + ax) , (x, y) G M2 

is a homeomorphism, the graph of the function 

h(x) = g(x) + f(x) = g(x) + ax , x G R, 

is of the second category. So, / + g G £7, and the proof is completed. • 
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THEOREM 2. / / the function / G fi, then there is a function h G fi such that 
f + h is not in AC. 

P r o o f . Let 
H == { t 0 , . . . , t a , . . . } 

be a Hamel basis, let 

M 0 , . . . , M a , . . . , a<u1, 

be a transfinite sequence of all G^-sets of the second category in R2 , and let 

G(uQ),...,G(ua),... , a < a ; 1 , 

be a transfinite sequence of the graphs of all upper semi-continuous functions 
with domains being non-degenerate intervals such that the domains IQ of uQ 

and Ix of ux have positive endpoints. 

There exists a point (xQ,uQ(xQ)) G G(uQ) such that 

f(xQ)+uQ(xQ) > 0. 

Let (s0,?ij0) G Af0 be a point such that the sets {^Q'^o} an<^ {f(xo)+uo(xo)i 
f(sQ)+wQ} are linearly independent over Q . Moreover, if x 0 , s 0 , 1-0 are linearly 
independent over Q, we find v0 such that f(t0) + vQ, f(xQ) + uQ(xQ), f(sQ) + wQ 

are linearly independent over Q . 

Denote by Ex (Fx, resp.) the linear subspace over Q generated by {x0, tQ, sQ} 

({/(to)+vo> f(xo)+uo(xo)> f(so)+wo})-
By Lemma 1 and Remark 3, there is a point xx G I \ Ex such that 0 > 

f(xx) + u^x^ is not in Fx. 
Let (s^w^) G Mx be a point such that the set {svxx} U £'1 is linearly 

independent over Q, and the set {f(s1)+w1, f(s1)+u1(x1)} UF1 is also linearly 
independent over Q . If the points 

XQ , X1 , 6Q , t^ , SQ , 5^ 

are linearly independent over Q, we find a point v1 such that the set {f{t1)+v1, 

f(x1)+u1(x1), f(s1)+w1} UFj is linearly independent over Q, 

Fix an countable ordinal a > 1 and suppose that we have defined points x„, 
(5/3> ^,3) ^ Mr3 anc^5 1f necessary, ^ , 1 < /3 < a , such that 

/Ofy) + up(xp), / ( ^ ) + ^ , f(s0) + Wp, (5 < a , 

are linearly independent over Q, and x^, s^ and such tp for which v~ exist 
are also linearly independent over Q . Denote by Ea (Fa) the linear subspace 
over Q generated by {x0 : (3 < a} U {sp : /3 < a } and such tp for which ^ 
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exist ({f(xp) + Up(xp) : f3 < a} U {/(£#) + Vp\ /3 < a and vp is chosen} U 

{f(sp) + WQ : (3 < a}). By Lemma 1, there is a point 

*„ € / „ \ .E,,,, 

where J a is the domain of the function ua, such that f(xa) + ua(xa) is not 
i n E Q . 

Let ( s a , wa) G M a be a point such that the set {8a, xa} U Ea is linearly in­
dependent over Q, and the set {f(sa)+wa1 f(xa)+ua(xa)} U F a is also linearly 
independent over Q. If the set {ta,xa,sa}UEa is linearly independent over Q, 
then we find a real va such that the set {f(ta)+va, f(sa)+wa, f(xa)+ua(xa)} 
UFa is linearly independent over Q. All points x a , s a , a < cO1, and such points 
ta for which va exist form a Hamel basis H1. Let h be the additive extension 
on R of the function 

Ua(Xa) i f ? = X a > a < W P 

^ l W = { v a i f X = ' a G # 1 \ {X/3> 5/3 : P < U\} > a<Uly 

wa if x = 5 a , a < ux . 

Since 

and 

едnG(«j^ 

G(/i) n Ma -t 0 
for every a < w 1, the function /i is almost continuous ([3]), and its graph G(h) 
is of the second category. Suppose that 

f{x) + h(x) = 0 

for some x > 0. Then 
x = r1z1 + ...rkzk, 

where r i € Q \ {0} and z{ G H1 for i <k. Thus 

t-1(/ + li)K) + --- + t*fc(/ + l^)(^) = o, 

which is a contradiction with the linear independence of 

(f + h)(Zl),...,(f + h)(zk). 

But 
(f + h)(xo)>0 

and 
(f + h)(Xl)<0, 

so / + /i has not the Darboux property. Thus f + h is not almost continuous 
([3]), and the function / is not in the collection fi. This completes the proof. 

D 
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PROBLEM 2. Are the following equalities true: 

AddnC = @ = A ? 

THEOREM 3. If f G Add, then there is a sequence of functions fn G AddnAC, 
n> 1, such that f = lim / . 

n—•co 

P r o o f . Let H C K be a Hamel basis satisfying the condition from Re­
mark 1. For every a < LJ1 there is a sequence of points 

* a . n e # n P r x ( ^ a ) > n = l , 2 , . . . , 

such that 
Xa,n + XP,k 

if 

( a , n ) ^ ( / 3 , f c ) , / 3 < a , fc,n = l , 2 , . . . . 

For each point xa n there is a point ya n such that 

(x ,v ) G K , a < cO, , n > 1. 
\ a,ni ya,n/ ^ a ' 1 ' — 

Define, for n = 1, 2 , . . . , 

^={yfi 
k if x = xQłfc , a < a^ , fc > n , 

(x) otherwise in H , 

and let fn be the additive extension of j n on R. Since 

( * « , n > I / « , n ) e * « n G ( / n ) 

for a < u± and n > 1, all functions fn are almost continuous. Moreover, if 
x = x k, a < u1, k > 1, then / n ( x ) = f(x) for n > fc, and if x G II, and 
x / x a ? f c for all a < uj1 and fc > 1, then fn(x) = /(x) for all n > 1. So, 
/ = lim / on PI and, consequently, on R. Thus the proof is completed. • 

n—>oo 

THEOREM 4. If f G .Add, t/ien £/iere z8 a transfinite sequence of functions 
fa G Add n w4C, a < a;, , 8uc/i t/iat l i m / = / , i.e., 

a 

Vx 3/3<CJ 1 Vux>a>P fQ(x) = f(x). 

P r o o f . Let a Hamel basis LI be the same as in the proof of Theorem 3. 
There are pairwise disjoint sets Ta, a < u1, such that every set 

HnPix(Ka)nTa, a < u ; 1 , 

is uncountable. For each a < LJ1 let 
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be a transfinite sequence of all points of the set 

HnPrx(KJnTQ, 

and let 
gjx)={ya,0 i f X = Xa,^ ^>(3>a, 

{ f(x) otherwise in H , 

where ya n are points such that 

and let fa be the additive extension ga on K. Analogously as in the proof of 
Theorem 3, we can observe that all functions f are almost continuous and 

7 J Ot 

limf = / . 
a Ja J 

This completes the proof. • 
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