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ABSTRACT. It is proved that every additive function is the sum of two almost
continuous (in Stallings’ sense) additive functions and the limit of a sequence
(of a transfinite sequence) of almost continuous additive functions. Moreover, it
is shown that the maximal additive family for the set of all almost continuous
additive functions having the graphs of the second category is contained in the
class of continuous additive functions.

Let R be the set of all reals. A function g: (a,b) — R is said to be almost
continuous (in Stallings’ sense [5]) if for every open set D C R? containing the
graph G(g) of the function g there is a continuous function h: (a,b) — R with
G(h) C D.

A function f: R — R is called additive (see, e.g., [4]) if it satisfies Cauchy’s
equation

fle+y)=f(=)+fly), =zyeR.
It is well known that there exists additive almost continuous function f: R — R
which is not continuous ([3], see also [2]). In this article, I prove that every
additive function is the sum of two additive almost continuous functions and
the limit of a sequence (of a transfinite sequence) of additive almost continuous
functions, and I investigate the maximal additive family for the class of all
additive almost continuous functions with the graphs of the second category.

Throughout the article, I assume the Continuum Hypothesis CH and all
considered functions are real and of real variable.
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ZBIGNIEW GRANDE

Let
Add = {f : f is additive},
AC = {f: f is almost continuous},
C={f: f is continuous},
© = {f: forevery g€ AddNAC, f+ g€ Addn AC}.

Denote by Q the set of all rationals. Every linear basis in R over Q is called

a Hamel basis in R. Let
L, ..I,... (1)
be a sequence of all open intervals with rational endpoints, let w; denote the

first uncountable ordinal number, and let
Tyyeo s Toyenn a<w, (2)
be a transfinite sequence of all reals.

Remark 1. There is a Hamel basis H C R such that for every open interval
I C R the intersection I N H is of the cardinality continuum.

Proof. Let

0#z5€R
be arbitrary, and for every a <w; and n > 1 let -z be the first element Ty of
the sequence (2) such that

rgel,
and the set
k
{$g}ﬁ<a, n>1 U {xa}kSn
is linearly independent over Q. Then the set
H={z: a<w,, n>1}

is a Hamel basis such that
card(HNI)=¢c

for every open interval I. O

If f is a function, we mean by a blocking set of f a closed set K C R? such
that G(f)N K =0 and G(g) N K # 0 for every continuous function g: R — R.
An irreducible blocking set (IBS) K of f is a blocking set of f such that no
proper subset of K is a blocking set ([3]).

It is known that f is almost continuous if and only if it has no blocking set.
Moreover, if f is not almost continuous, then there is an (IBS) K of f, and the
z-projection pr (K) of K is a non-degenerate connected sct ([3]).

Let

K, ...K,..., o< w;, (3)

o . . . . . -9
be a transfinite sequence of all irreducible blocking sets in B~ .
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ON ALMOST CONTINUOUS ADDITIVE FUNCTIONS

THEOREM 1. If f € Add, then there are g,h € AddNAC such that f = g+h.

Proof. Let H be a Hamel basis from Remark 1. For every o < w; there
are points

z,,y, € HNpr (K,)
such that

T, FYg, Yo FTg, for B<a
and

T, FTs, Yo FYps for B<a.

For every a < w; let u ,v, € R be points such that

(z,,u,) € K, (y,,v,) €K, .
Define
U, fr=2z, a<w,
g (z) =< f(x)—v, fz=y,, a<w,
0 otherwise in H ,

flz)—u, fz=2z,, a<w,
hi(z) = ¢ v, ifr=y,, a<w,

f(x) otherwise in H

and let g: R — R (h: R — R) be the additive extension of 91 (of hy)
(see, e.g., [4]).
Observe that for every a < w,,

(Ia7g(xa)) = (Ia>ua) E Ka
and
(Yar h(Wa)) = (U4, va) € K, -
So, the functions g, h are almost continuous, and, evidently,
f=g9g+h.
This completes the proof. O

Remark 2. The inclusion
AddNC cCc©

follows from [1].
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LEMMA 1. Let f: Z — R be a function with the graph G(f) of the second
category in R? | and let g be an upper semi-continuous function with domain a
non-degenerate interval J D Z. Then for every countable sets A,B C R there
is a point x € Z \ A such that f(z)+ g(z) is not in B.

Proof. Let (b,), be an enumeration of all points of the set B. For k =
1,2,..., let
A ={xecZ: f(z)+g(x)=0b.}.

If for every z € Z\ A we have
f(z) +g(z) € B,

then

G(f)c |G /A4)U{(zy): €A, yeR},
k

and for every k=1,2,...,
G((f - bk)/Ak) = G((*Q)/Ak) :
Since the set G(—g) is nowhere dense, every set
G((f —b)/A), k=1,2,...,

is also nowhere dense, and, consequently, every set G(f/A,), k > 1, is the same.
So, G(f) is of the first category, a contradiction. 0O

Remark 3. If the graph G(f) of a function f € (AddN.AC)\C is of the second
category, then for every open interval I = (a,b) the sets

{(z,f(z:)) zel, f(z) >O}
and
{(:r,f(x)) zel, f(:c)<0}

are of the second category.

Proof. If G(f/I) is a subset of the first category, then for every bounded
open interval J there is a function

h(z) =azx +b, z€R, a,beQ, a#0,
such that J C h(I), and, consequently,
G(f/J) CaG(f/T)+ (b, f(D)).

So, G(f/J) is of the first category for every open interval J, and we obtain a
contradiction, since G(f) is of the second category. Suppose that the set

{(:v,f(x)) cxel, f(z)>0}
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ON ALMOST CONTINUOUS ADDITIVE FUNCTIONS

is of the first category. Since f is a discontinuous additive function with the
Darboux property, the set {z € R: f(z) = 0} is dense ([4]). There is an open
interval J C I such that, at its center z, we have f(z) = 0. Observe that, if
z € J and f(z) >0, then

(= (2 —2)) = —f(a) <0
Since the function
hz,y) = (2z — z,—y), zel, yeR,
is a homeomorphism, and the set
{(z,f(z)): z €I, f(z)>0}

is of the first category, the set

{(a:,f(a:)): zel, f(z) <0}
is the same. But the set
{(m,f(x)) zel, f(z —0}
cannot be residual in I x R, so we have a contradiction. O
Now, let
Q={f€eAddn AC: G(f) is of the second category} and
A={f: forevery geQ, f+ge€Q}.

PROBLEM 1. Does exist a function f € (AddN.AC)\ C with the graph of the
first category?

Remark 4. The inclusion
ADAddNC
is true.

Proof. If f € AddNC, then for every function g € 2 we have
f+ge Addn AC
([1]). There is a € R such that

f(z) = azx, r € R.

Since the function

F(z,y) = (t,y +az), (z,y) € R?
is a homeomorphism, the graph of the function
h(z) = g(z) + f(z) = g(z) + ax, r e R,
is of the second category. So, f+ g € ©, and the proof is completed. 0
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THEOREM 2. If the function f € Q, then there is a function h € Q such that
f+h is not in AC.

Proof. Let
H={t0,...,t oo}

be a Hamel basis, let

My,....M_,..., a<w,,

[e3

be a transfinite sequence of all G-sets of the second category in R?, and let
G(ug), .., Guy),. .., a<w,

be a transfinite sequence of the graphs of all upper semi-continuous functions
with domains being non-degenerate intervals such that the domains I, of u,
and I, of u, have positive endpoints.

There exists a point (z,, uy(z,)) € G(ug) such that

f(zy) +uy(zy) > 0.

Let (sq,w,) € M, be a point such that the sets {z,,s,} and {f(z,)+uy,(z,),
f(so)+w0} are linearly independent over Q. Moreover, if z,, s, t, are linearly
independent over Q, we find v, such that f(t,)+ vy, f(zy)+uy(zy), f(s)+w,
are linearly independent over Q.

Denote by E; (F|, resp.) the linear subspace over Q generated by {z,t,,s,}
({f(to)+vov fzo)tug(zy), f(50)+w0} )

By Lemma 1 and Remark 3, there is a point x; € I\ E; such that 0 >
f(z) +uq(z,) is not in F,.

Let (s;,w,) € M, be a point such that the set {s;,z,} U E| is linearly
independent over Q, and the set { f(s,)+w,, f(s))+u,(z,) } UF, is also linearly
independent over Q. If the points

Ty, Tyy oy by Sos 8

are linearly independent over QQ, we find a point v, such that the set {f(t1)+v1,
f(zy)+u(z,), f(s;)+w, } UF, is linearly independent over Q.

Fix an countable ordinal @ > 1 and suppose that we have defined points z 8
(sﬁ,wﬁ) € M[i and, if necessary, vg, 1< B < a, such that

f(xg)"‘uﬁ(mg), f(t[j)+vﬁa f(35)+w37 B <a,

are linearly independent over Q, and Tz, Sg and such tg for which vy exist
are also linearly independent over Q. Denote by E, (F,) the linear subspace
over QO generated by {z5: 8 <a}U{s,;: B < a} and such ty for which v,
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ON ALMOST CONTINUOUS ADDITIVE FUNCTIONS

exist ({f(:cﬁ) +ug(zg) : B < a}u {f(tﬂ) +vg: B<a and vy is chosen} U
{f(sB) twg: B< a}). By Lemma 1, there is a point

z, €I \E,,
where I, is the domain of the function u,, such that f(z,)+ u,(z,) is not
in F,.

Let (s,,w,) € M, be a point such that the set {s,,z,} U E, is linearly in-
dependent over Q, and the set {f(s,)+w,, f(a:a)+ua(xa)} UF, is also linearly
independent over Q. If the set {t_,z,,s,}UE, is linearly independent over Q,
then we find a real v, such that the set {f(t,)+vg, f(s5) Wy, f(x,)+u,(z,)}
UF, is linearly independent over Q. All points z,s,, a < w;, and such points
t, for which v, exist form a Hamel basis H,. Let h be the additive extension
on R of the function

u (z,) ifz=2z,, a<uw,
hi(z)=< v if e =t, € H \{z5,85: B<w}, a<uw,
w ifr=s5,, a<w,.
Since
G(h) N Glu,) # 0
and
G(h)N M, #0

for every a < wy, the function h is almost continuous ([3]), and its graph G(h)
is of the second category. Suppose that

f(z) +h(z) =0
for some x > 0. Then
a::rlzl—i—...rkzk,
where 7, € Q\ {0} and z, € H, for ¢ < k. Thus
PR (z) (R () =0,

which is a contradiction with the linear independence of

(f+h)(zy)-- o, (f+h)(2).
But
(f +h)(zy) >0
and
(f +h)(z,) <0,

so f + h has not the Darboux property. Thus f + h is not almost continuous
([3]), and the function f is not in the collection Q. This completes the proof.
O
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PROBLEM 2. Are the following equalities true:
AddNC=0=A"7
THEOREM 3. If f € Add, then there is a sequence of functions f, € AddN.AC,
n > 1, such that f = lim f,_ .
n—oo

Proof. Let H C R be a Hamel basis satisfying the condition from Re-
mark 1. For every a < w, there is a sequence of points
ma,nEHﬂprx(Ka), n=12,...,

such that
TonF Lok
if
(ayn) # (B,k), B<a, kyn=1,2,....
For each point z,, ,, there is a point y, , such that

(xa,mya,n)EKa’ a<w, n>1.

Define, for n =1,2,...,

gn(7) = { Yak

f(z) otherwisein H,

fz=z,,, a<w, k>n,

and let f, be the additive extension of g, on R. Since

(za’n’ ya,n) 6 Ka n G(fn)

for o < w; and n > 1, all functions f, are almost continuous. Moreover, if
r=2z,,,a<w,k>1,then f (z) = f(z) for n >k, and if z € H, and
x # ra”k for all & < w, and k > 1, then f (z) = f(z) for all n > 1. So,
f= nango f,, on H and, consequently, on R. Thus the proof is completed. O

THEOREM 4. If f € Add, then there is a transfinite sequence of functions
fo € AddNAC, a < w,, such that lim f, = f, i.e.,
[s3

Ve 3f<w; Yw,>a>f fo(z) = f(2).

Proof. Let a Hamel basis H be the same as in the proof of Theorem 3.
There are pairwise disjoint sets T, a < w,, such that every set
Hnpr (K,)NT,, a<w,
is uncountable. For each a < w; let
(xa,g)g<w1
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be a transfinite sequence of all points of the set
Hnpr,(K,)NT,,

and let .
fe=2_ 4, w,>0>«
aa(a)={ Yo e 1> P2
f(z) otherwise in H,

where Ya,s are points such that

($o¢,5’ya,,@) € Kﬁh avﬂ <w13

and let f  be the additive extension g, on R. Analogously as in the proof of
Theorem 3, we can observe that all functions f_ are almost continuous and

liénfazf.

This completes the proof. O
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