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ABSTRACT. We introduce k -triangular functions on difference posets and we 
prove a Brooks-Jewett-type theorem for such functions that are defined on a dif­
ference poset (or an effect algebra) satisfying the weak subsequential interpolation 
property. This result enables us to obtain the previously known Brooks-Jewett 
theorems for orthoalgebras and orthomodular lattices. 

1. Introduction 

The events of a quantum-mechanical system <S can be represented by (self-
adjoint) projections on a separable complex Hilbert space 7i ([8]). The set L(7i) 
of all such projections forms a (complete) lattice which is the prototypical exam­
ple of orthomodular lattices and is used as a mathematical model in the quantum 
logic approach to the mathematical foundations of quantum mechanics ([1], [12]). 

On the other hand, the effects of the quantum-mechanical system S can be 
represented by self-adjoint operators A on H such that O < A < I, where O, / 
are respectively the zero and identity operators on Ji ([5]). The set £(H) of all 
such operators A forms a weaker algebraic structure which is the prototypical 
example of the effect algebras and difference posets discussed in this paper and 
originally introduced in [5], [14], [13], [3], and it provides a mathematical model 
for the study of unsharp quantum logics ([5]). 

In this paper, we introduce a weak notion of cr-orthocompleteness for differ­
ence posets (or effect algebras), namely, the Weak Subsequential Interpolation 
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81P10. 
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Property (see Definition 3.2), and we prove a Brooks-Jewett theorem (see Theo­
rem 4.4) for k-triangular and s-bounded (i.e., exhaustive) functions defined on 
such difference posets with values in a triangular semigroup (see Definition 4.1). 
This result generalizes Guariglia's result [7; (3.2)]. Furthermore, we obtain, as 
a consequence of this result, a Brooks-Jewett theorem for semigroup-valued ad­
ditive and s -bounded measures defined on difference posets having the Weak 
Subsequential Interpolation Property (see Theorem 4.7 and the remarks follow­
ing it) which yields Theorem 4.1 of [9], the result (5.1) of [2], and the result (4.2) 
of [7] as special cases. 

Throughout this paper, the symbols V(X), J"(X), and T(X) denote, respec­
tively, the set of all subsets, all finite subsets, and all infinite subsets of a set 
X. The symbols R, Z and UJ denote, respectively, the set of all real numbers, 
all integers, and all nonnegative integers. The notation := means "equals by 
definition". 

2. Effect algebras and difference posets 

F o u 1 i s and B e n n e t t [5] have introduced the following definition. 

2 . 1 . DEFINITION. An effect algebra is a system (L, ©, 0,1) consisting of a set 
L containing two special elements 0, 1 and equipped with a partially defined 
binary operation © satisfying the following conditions Va, 6, c E L: 

(EA1) (Commutative Law) If a © b is defined, then 6©a is defined and a © 6 = 
6 © a . 

(EA2) (Associative Law) If 6©c is defined and a©(6©c) is defined, then a © 6 
is defined, (a © b) © c is defined, and a © (b © c) = (a © b) © c. 

(EA3) (Orthocomplementation Law) For every a E L there exists a unique 
b E L such that a © 6 is defined and a © b = 1. 

(EA4) (Zero-One Law) If 1 © a is defined, then a = 0. 

We shall write L for the effect algebra (L,©,0,1) if there is no danger of 
misunderstanding. Let L be an effect algebra and a, 6 E L. Following [5], we say 
that a is orthogonal to b in L and write a ± b if and only if a © 6 is defined 
in L. We define a < b to mean that there exists c E L such that a JL c and 
b = a © c. The unique element b E L corresponding to a in Condition (EA3) 
above is called the orthocomplement of a and is written as a1 := b. For any effect 
algebra L, it can be easily proved (see [5]) that 0 < a < 1 holds for all a E L, 
that a X 6 if and only if a < 6', that, with < as defined above, (L, < ,0 ,1 ) is 
a partially ordered set (poset), and that L satisfies the so-called orthomodular 

418 



THE BROOKS-JEWETT THEOREM FOR k-TRIANGULAR FUNCTIONS 

identity (OMI): 

ya.be L, a<b => b = a@(a@b')'. 

For a, b E L, a is called a subelement of b if and only if a < b. If a is a 
subelement of 6, then, by the OMI, b = a © (a © 6')'. In this case, we define the 
difference b © a by 

6 © a : = (a © 6 ' ) ' . (1) 

2.2. EXAMPLE. Consider the set £(H) of all self-adjoint operators A on a 
Hilbert space H with O < A < 7, where O and 7 are the zero and identity 
operators, respectively, on H. For A,Be £(H), define 

A®B :=A + B <=> A + B<I. 

It is not difficult to show that, under this ©, the system (£(H), ©, O , / ) forms 
an effect algebra [5]. 

More generally, if V is an ordered real vector space ordered by the usual 
positive cone F + = {x E V : x > 0} , then 

y+[Q,y] — {x e V+ : 0<x<y} 

forms an effect algebra under the obvious © operation. In particular, the interval 
R + [0 , l ] = { r G R : 0 < r < 1} forms an effect algebra. 

According to [5], the algebra £(H) serves as the archetypical effect alge­
bra, which motivates the study of effect algebras and unsharp quantum logics. 
N a v a r a and P t a k [14], D v u r e c e n s k i j and R i e c a n [3], and K o p k a 
and C h o v a n e c [13] have introduced the following definition, which is also 
motivated by the structure of £(H). 

2.3 . DEFINITION. Let (P, < ,0 ,1) be a poset with 0, 1 and define 

D(e) := {(a, b) : a, b E P with a < b} . 

The poset (P, <, 0,1) is called a difference poset (DP) if ©: D(Q) —> P satisfies 

(DPI) a © 0 = a VaeP, 
(DP2) if a < b < c, then c © b < c 0 a and (c © a) © (c © 6) = 6 © a. 

2.4. PROPOSITION. Let P be a DP and let a,6 E P with a<b. Then 

(i) 6 © a < b and b © (b © a) = a ; 
(ii) 6 © 6 = 0 ; 

(hi) 1 © 6 < l © a ; 
(iv) 1 0 ( 1 0 6) = 6. 
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P r o o f . 
(i) By (DP2), 0 <a<b implies b©a<b©0 and ( 6 0 0 ) 0 ( 6 0 a ) = a © 0 , 

so (DPI) implies b © a < b and b © (b © a) = a. 
Statements ( i i )-( iv) have been proved in [13]. D 

Let P be a DP. Define a unary operation ' : P —> P by a1 := 1 0 a. By 
Proposition 2.4, we have a'1 = a Va G P and b' < a' whenever a < b in P. 
Two elements a, 6 G P are said to be orthogonal and we write a _L 6 if and only 
if a < bf (if and only if b < a'). Define 

D(Q) := {(a, 6) : a, b G P with a JL 6} , 

and define ©: D(®) -» P by 

a © 6 := (b' © a) 7 . (2) 

The following result has been proven in [14], [5]. 

2 .5 . THEOREM. Let (P, < ,0 ,1 ,©) be a difference poset. Then (P, < , 0 , 1 , © ) , 
where © z8 defined by (2) above, is an effect algebra. Conversely, let (L, <, 0 ,1 , ©) 
be an effect algebra. Then (L, < , 0 , 1 , © ) ? where © is defined by (1) above, is a 
difference poset. 

By Theorem 2.5, difference posets and effect algebras are the same thing. 

2.6. DEFINITION. A subset P x of a difference poset P is called a subdifference 
poset (sub-DP) of P if 0,1 6 Px and whenever a,b £ P± with a < b, it follows 
that bQae Px. 

Clearly, a sub-DP Px of a DP P is a DP in its own right. Also, Px is closed 
under the unary operation a t—> a! := 1 © a. It follows from (2) above that 
a © 6 = (b' © a)' G Px whenever a,b E Px and a _L b. Consequently, every 
sub-DP of a DP is also closed under the induced operation ©. 

3. Orthoalgebras, orthomodular posets, 
orthomodular lattices, and Boolean algebras 

We note that an orthoalgebra ([4], [8]) is an effect algebra L in which the 
zero-one law (Condition (EA4) of Definition 2.1) is replaced by the stronger 
condition: 

(OA4) (Consistency Law) a£L, a® a defined ==> a = 0. 

Consequently, every orthoalgebra is an effect algebra (or a difference poset). 
There are many effect algebras (or difference posets) that are not orthoalge-
bras [14], [5]. The effect algebra £(H) of Example 2.2 is one such [13], as well 
as the interval effect algebra R+[0,1] (see [5]). 
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Recall that an orthomodular poset (OMP) [8] may be regarded as an orthoal-
gebra L that satisfies the following additional condition ([4]): 

a, b G L , a Lb => a V b exists and a V b = a © b. 

It can be shown (see [4]) that this condition is equivalent to the coherence law: 

a,b,c€:L, a l M c l a => a©b_ l_c . 

It can also be shown (see [5]) that an effect algebra L is an OMP if and only if it 
satisfies the coherence law. An orthomodular lattice (OML) may be defined as an 
OMP which is also a lattice. A Boolean algebra may be defined as a distributive 
OML. It has been shown in [5] that every Boolean algebra is an effect algebra 
L that satisfies the coherence law and the following law of compatibility: 

For all a, b G It, there exist avbvc G L such that bx © c and a1 © (&x © c) 
are defined, 

a = ax © c and b = bx © c. 

Let P 1 be a sub-DP of a DP P . For a,b,c G P x , we write c = a \/Pl b (resp., 
c = a APl b) to indicate that c is the least upper bound (resp., greatest lower 
bound) of a and b in the poset (P1? < ) . 

For the remainder of this paper, we assume that P is a difference poset (i.e., 
an effect algebra). 

3 .1 . DEFINITION. Let Px C P be a sub-DP. Then Px is called 

1. a sub-OMP if a, b G P x , a JL 6 =-> a VPl b exists; 
2. a sub-OML if a, 6 G Px = > a VP l b exists; 
3. a Boolean subalgebra if it is a distributive sub-OML. 

Note that if Px is a sub-DP of P , then a pair of elements of Px is orthogonal 
in Px if and only if it is orthogonal in P . A subset X of P is called jointly 
orthogonal if it is pairwise orthogonal and is contained in a Boolean subalgebra 
B of P . We define 

J(P) := {X C P : X is jointly orthogonal} . 

Recall that a sub-OML Lx of an OML L is called a SIP-sub-OML ([9], [2]) 
if and only if it satisfies the Subsequential Interpolation Property: 

For every orthogonal sequence (<^) i€w C Lx and for every N G l(u), there 
exist M G J(iV) and b E Lx such that 

a. < 6 V i G M , a ^ f t ' V i G c O \ M . 

Lx is called a SCP-sub-OML if and only if it satisfies the Subsequential Com­
pleteness Property: 

For every orthogonal sequence (ajiew £ Lt there exists M G J (CJ ) such that 

the supremum \J a{ exists in h\> 
ieM 
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Take Lx = L in the above definitions to get the definition of a SIP-(resp., 
SCP-) OML. 

3.2. D E F I N I T I O N . 

(i) A sub-DP Px of P is called a WSIP-sub-DP (resp., WSCP-sub-DP) if and 
only if it satisfies the Weak Subsequential Interpolation (resp., Weak Subequential 
Completeness) Property: 

For every sequence (ai)ieuj € J(Pi)j there exist a subsequence (aik)keLJ of 
(ai)ieuj a n d a SIP-sub-OML (resp., SCP-sub-OML) Q of P± that contains 

(aik)kew 
Take P 1 = P in the above definitions to get the definition of a WSIP- (resp., 

WSCP-)DP. WSIP-orthoalgebras and WSCP-orthoalgebras are defined simi­
larly ([9]). 

(ii) A DP P is called an orthosummable difference poset (resp., a a-difference 
poset) if for every (resp., for every countable) X G J(-P), the supremum 

0*== V ©^ 
FG-F(X) 

exists in P. If P is also an orthoalgebra, we say that P is an orthosummable 
orthoalgebra (resp., a a-orthoalgebra) ([11]). For more about orthosummable 
orthoalgebras, we refer the reader to ([11]). 

3.3. Remarks. 
(1) Evidently, every SIP-OML is a WSIP-DP, but not conversely as can be 

seen from the Wright triangle example [4]. 
(2) For a DP P , WSCP implies WSIP, but not conversely as can be seen 

from F. J. F r e n i c h e ' s example [6; Theorem 7]. 
(3) Evidently, every WSIP-orthoalgebra is a WSIP-difference poset, but not 

conversely as the interval difference poset R + [0,1] of Example 2.2 shows. In fact, 
R+[0,1] is orthosummable, but not even an orthoalgebra. 

(4) It is not difficult to show that a a -difference poset is a WSCP-DP (and, 
hence, a WSIP-DP). However, the converse need not be true as can be seen from 
Example 3.9 of [10]. 

4. Results 

Before we state and prove the main result (Theorem 4.4), which may be 
considered as both a Brooks- Jewett theorem (see [9], [2], [7]) and a Vitali-Hahn-
Saks theorem (see [16], [6]) for fc-triangular and s-bounded functions defined 
on a WSIP-difference poset with values in a triangular semigroup, we need to 
establish a few more definitions. 
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Let 5 be a commutative semigroup. Recall that a nonnegative functional 
/ : S —• [0,oo) is called triangular ([16]) if it satisfies the following conditions: 

(TO) f ( 0 ) = 0 , 
(T) \f(x + y)-f(x)\<f(y) Vx,yeS. 

4 . 1 . DEFINITION. A pair (£, / ) where S is a commutative semigroup endowed 
with a nonnegative triangular functional / is called a triangular semigroup. A 
sequence (x{)ieu) C S is said to converge in S if the corresponding nonnegative 
sequence (f(%i))iGuJ converges in [0, 00). 

We now consider examples of triangular semigroups. Consider the commu­
tative semigroup [0,oo] (or [0, 00)) and define a functional / : [0,oo] —> [0, 00) 
by f(x) := x for all x G [0, 00]. Evidently, [0, 00] endowed with this / forms 
a triangular semigroup. More generally, let S be a commutative semigroup and 
let d be a semi-invariant pseudometric on S, namely a pseudometric satisfying 
the inequality 

d(x + z,y + z) < d(x,y) Vx ,y , z G S , 

or, equivalently, the inequality 

d(x + x\y + y1) < d(x,y) + d{x\y') Vx, x', y,y' e S. 

Define / : S-* [0,oo) by 

f(x):=d(x,0) V x G S . (3) 

One easily verifies that / satisfies (TO) and (T), and therefore ( 5 , / ) is a trian­
gular semigroup. 

Finally, if S is a commutative uniform semigroup, then it is known (see 
[15]) that the uniformity of S can be generated by a set V of continuous semi-
invariant pseudometrics d on S. Thus, for each d G P , (3) defines a triangular 
functional / on 5 , and therefore ( 5 , / ) is a triangular semigroup. 

4.2. DEFINITION. Let P be a DP and let c/>: P -> [0,oo). Following [16], we 
say that <j> is k-triangular (k £ (0,00)) if it satisfies 

(TO) </>(0) = 0, 
(kT) \(f)(a 0 6 ) - 0(a) I < k(j)(b) whenever a, b G P and alb. 

It is easy to check that a function </>: P —> [0,00) with (f)(0) = 0 is 
k -triangular if and only if 

\<j)(b)-(j)(a)\<k(l)(bea) 

whenever a,6 G P with a <b. Moreover, if <f> is fc-triangular with k G (0,1) , 
then (j) is identically zero on P. Henceforth, we shall consider fc-triangular 
functions with k > 1. 
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4.3 . DEFINITION. Let ( 5 , / ) be a triangular semigroup, P a DP, and 
0: P —> S. We say that 0 is k-triangular if the composite functional 
/ o 0 : P —> [0,oo) is fc-triangular. We say that c/> is s-bounded (or exhaus­
tive) if for every sequence ( a j ^ G «/(P), we have 

lim </>(a.) = 0 . 
i—>oo 

Recall that the convergence of the sequence ( 0 ^ ) ) ^ ^ to 0 in S means that 
the corresponding nonnegative sequence ( / ( 0 ( a j ) ) converges to 0 in [0,oo). 
We say that 0 is additive if 

(i) ^(o) = 0 , and 

( n v n 

0 a t ) = ]£ <Kai) for e v e r y finite ( a z : i = 0 , . . . , n} e J ( P ) . 
t=0 ' i=0 

Since any pair of orthogonal elements in P is jointly orthogonal, then, as a 
consequence of (ii), we have 

(ii)' a, 6 e P and a Lb = > 0(a © b) = 0(a) © 0(6). 

A family $ of s-bounded functions 0 : P —> £ is called uniformly s-bounded 
if for every sequence ( a j ^ G J(P), we have 

lim </>(aJ -= 0 uniformly in 0 G $ . 
i—>oo 

Henceforth, unless otherwise stated, we assume that P is a difference poset, 
( 5 , / ) is a triangular semigroup, the symbols kt(P,S), s(P,S), and sa(P,S) 
denote, respectively, the set of all k-triangular, all s-bounded, and all additive 
and s-bounded functions 4>: P —> 5 . 

4.4. THEOREM. (Brooks-Jewett) Let P be a WSIP-difference poset, and let 

(<Une . \ { o } £ fct(P, 5) H s(P, 5) be suc/i fcat 

lim f(4>n(
a)) =- 7o(a) ^25^5 Va € P-

Then 70 is k-triangular. Moreover, 70 is s-bounded if and only if (0n)n € a , \{O} 
is uniformly s-bounded. 

P r o o f . We first show that 70 is fc-triangular. Evidently, 70(0) = 0. Let 
a,b G P with a ± b. By the fc-triangularity of each </>n, we have for every 
n G u \ {0} that 

l 7 o ( ^ © ^ ) - 7 o ( a ) l 

< M * 0 b) - / (< />> © b)) J + | / ( 0 n ( a © b)) - f(<pn(a)) \ + \f(^n(
a)) - 7o(<0| 

< |7o(a e b) - / ( 0 n ( a © b)) J + fc/(^n(&)) + | / (</>>)) - 7o (<0| • 
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Since 70 is the pointwise limit of ( / o ((>n)neuJ\{o} > w e c a n ^n^ f° r e y ery e > 0 
an n0 E UJ \ {0} such that 

W " ©&)-/(</>„> e&)) | < f , \f(K0(a)) -7 o(a) | < f , 

and 

/ (^no(6))<7 0 W + ^ . 

Hence, for every e > 0, we have 

|7o(a 0 6 ) - 7o(*)l < f + fc70(&) + f + § < klo(b) + e , 

which implies that 
h0(a®b)-lo(a)\<k7o(b), 

and therefore 70 is k-triangular. 

Next, assume that (^n)new\{o} *s uniformly 5-bounded. To show that 70 

is 5-bounded, let (a{)ieuJ E J(P) and e > 0 be given. By the uniform 
s-boundedness of ((pn)neuJ\{o} > there exists i 0 G w such that for every i > iQ 

and every n G w \ {0}, we have 

/ ( * > « ) ) < ! • 

Moreover, the hypothesis that lim f((/>n(a)) = 70(a) VaEP implies that for 

every a G P there exists n(a) 6 w \ {0} such that 

|/(^n(.)(«))-70(a)|<f • 

Hence, for every i > iQ, we have 

7o(«i) < | 7 o K ) - / ( ^ n ( a i ) K ) ) l + / ( ^ ( a i ) K ) ) <£> 
which shows that 70 is 5-bounded. 

Conversely, assume that 70 is 5-bounded. To show that (<j>n)neuj\{0} is uni­
formly 5-bounded, suppose the contrary. Then, by passing to a subsequence if 
necessary, we may assume that there exist a sequence (a{)ieuJ E J(P) and an 
e > 0 such that 

/ ( » , ) ) > e V * e a , \ { 0 } . (4) 

Now, using WSIP, pick a subsequence (ai:j)jeu) of ( a i ) i e t J and a SIP-sub-OML 

Q of P containing ( a . . ) ; . £ u . Then, by [7; 3.3], (</>U\Q) n&LJ\{0} is uniformly 

5-bounded. Hence, there exists jQ € to such that 

/ ( * > . * ) ) < e V n G u , \ { 0 } , 

which contradicts (4). • 

If we take S = [0, oo) in Theorem 4.4, which is clearly a triangular semigroup, 
we obtain the following theorem. 
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4.5 . THEOREM. (Brooks- Jewett) Let P be a WSIP-difference poset, and let 

lim (j) (a)—: (j)Q(a) exists Va € P. 
n—>-oo 

Then <j>Q is k-triangular. Moreover, 4>Q is s-bounded if and only if (<r\i)nc=tj\{o} 
is uniformly s-bounded. 

Rema rk . Note that Theorem 4.4 (resp., Theorem 4.5) contains the result (3.3) 
(resp., the result (3.2)) of [7]. 

Let P1 be a subdifference poset of P . A function <j>: P —* S is called 
P1-s-bounded (or Px-exhaustive) if for every sequence (a i ) i 6 ( J € J(PX), we 
have lim </>(aJ = 0. A family $ of P.-s-bounded functions is called uniformly 

i—•oo 

Px-s-bounded if for every sequence (ai)ieu G J(P\), we have 

lim (^(aj = 0 uniformly in </> G $ . 
i—*oo 

Here is another consequence of Theorem 4.4. 

4 .6. THEOREM. Let P1 be a WSIP-subdifference poset of P, and Ze* 
(^n)new\{o} ^e a seQuence °f k-triangular and Pt-s-bounded functions from 
P to S (resp., to [0, oo)) such that 

lim f((j>n(a)) = : 70(a) ( resp., lim (f)n(a) = : 7 0 (a) ) exists V a G P - . 
n—•oo n—^oo 

Then 70 is k-triangular. Moreover, 70 28 P-^-s-bounded if and only if (0n)nGaA{O} 
25 uniformly P^s-bounded. 

The following result is a consequence of Theorem 4.6. 

4 .7. THEOREM. Let P1 be a WSIP-subdifference poset of P, S a commuta­
tive uniform semigroup, and (fJ>n)neu> a sequence of additive and P-^-s-bounded 
functions from P to S such that 

lim fin(a) = Lx0(a) MaePl. 
n—>oo 

Then (y>n)neu) is uniformly Px-s-bounded. 

P r o o f . Suppose contrariwise that (/In)nGcj is not uniformly Pj-s-bounded. 
Then, by passing to a subsequence if necessary, we may assume that there exist 
a sequence (a^)ieu} G J (P X ) , d G V (where V is the set of continuous pseudo-
metrics tha t generate the uniformity of S), and € > 0 such that 

d(fii(ai),0)>e V i e w . (5) 
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Define, for every i e cO, a function <f>•: P —> [0, oo) by 

^ ( a ) : - = d ( M . ( a ) , 0 ) ( o e P J . 

Evidently, the sequence ( 0 J i e w is 1-triangular and P x-s-bounded. Moreover, 
the hypothesis that lim ^(a) = fiQ(a) Va E P-_ implies that lim <^(a) = 0 o (a) 

*—•OO i—y-oo 

Va £ Px. Now apply Theorem 4.6 to the sequence ( ^ ) i e c j \ / 0 } to get the desired 
contradiction to (5). • 

R e m a r k s . 
(1) If we assume in Theorem 4.7 that P1 = P is an orthoalgbra, then we see 

that this theorem yields Theorem 4.1 of [9] as a special case. 
(2) If we assume in Theorem 4.7 that P x = P is an orthomodular lattice, 

then we see that this theorem yields the result (5.1) of [2]. 
(3) If an orthomodular sublattice G (as defined by [7]) of an orthomodular 

lattice L contains the largest element 1 of L, i.e., G is a subalgebra of L ([12]), 
then a SIP- (resp., SCP-) sublattice of L in the sense of G u a r i g 1 i a [7] is the 
same thing as a WSIP- (resp., WSCP-) sublattice of L in our sense. In this case, 
we note that Theorem 4.6 (resp., Theorem 4.7) contains the result (4.1) (resp., 
the result (4.2)) of [7]. 
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