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ELIMINATION OF NUISANCE PARAMETERS
IN A REGRESSION MODEL

LUBOMIR KUBACEK

Introduction

In a regression model (&, XB, X), where & is a random vector with the mean
value XB and with the covariance matrix X, a structure of the design matrix X is
considered in the form X= (A, S) and the vector of unknown parameters § in the
form B=(O’', #')’ (' denotes transposition). The matrices X and X are known.

The aim of the experiment is an estimation of the vector @ (necessary
parameters) from a realization of the vector §; & is the vector of nuisance
parameters. (This problem is arisen, e.g. in metrology when systematic influence is
to be eliminated from results of measurement.)

If T is a matrix from the class 9 ={T: TA=A, TS=0)}, then the nuisance
parameters ¢ are eliminated from the transformed regression model (TE. A®,
TXT'); however, it is not clear if the vector T§ has the same information on the
parameter O as the vector &.

The problem is to find such eliminating transformations T from the class J which
do not cause a loss of information on the parameter 6.

1. Definitions and auxiliary statements

The following notations will be used:

B~ ... g-inverse of the matrix B (i.e. BB"B=B; for more detail see [2]),

B, -.- minimum N-seminorm g-inverse of the matrix B (i.c. BB'B=B
(B ,.yB'N=NB_B; the symmetric matrix N has to be at least positive semi-
definite (p.s.d.)).

AM(B) ... column space of the matrix B,

E(E) ... mean value of the random vector §,

Var (&) ... covariance matrix of the random vector &,

cov (€ n) ... cross covariance matrix of the random vectors & and n(cov (&, n)
= E{[§-E(&®)][n—-Em]I'}.

R" ... n-dimensional real linear space.
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If there is given in " an inner product (x, y)=x'Ry, x, ye R", where R is
4 symmetric and positive definite (p.d.) matrix, then the symbol PR means the
projection matrix onto the subspace Jf{(A) with respect to the norm generated by
the considered inner product; P=A(A’RA)"A’R. If an inner product in R" is not
specified, then the generalization of projection matrix following [5] and [6] is used.

Definition 1.1. Let M,, M,, Ms be subspaces of R" with properties: M,NnM,=
0, MinMs=1{0}, MonMy={0}, M, DM DM=R" (@ denotes the direct
sum). A matrix P,.ay with properties

V{xeM}P, X=X, V{ye-/u2®-/“3}Pl.(l)y: 0,

is a projection matrix onto M, along M;® M;. The symbols P, ), Ps 3, have an
analogical meaning.

Remark 1.1. The notation ;@ M, D M; implies MnM =0}, MNM3=
{0}, ManMs=1{0}.

Lemma 1.1. The matrices P, g, P2 2y, P3.3) from Definition 1.1 are unique and
| (identical matrix) =P, )+ P, o)+ P3 ).

Proof is elementary.

Lemma 1.2. Let A, ,, B, ,, C,., be given matrices with indicated dimension.
A matrix X, , with property AXB=C exists iff
(+) AA-CB'B=C.

If the condition (+) is fulfilled, then the class of matrices X is {A"CB™ + Zx —
A"AZ,BB-: Z, is arbitrary matrix with proper dimension}.

Proof. See Theorem 2.3.2 in [2].

Lemma 1.3. Let P be an idempotent n xn matrix and M,=M(P), M=
M —=P). Then R" = M, @ M,, P is the projection matrix onto M, along M, and
1—P is the projection matrix onto M, along M.

Proof is elementary.

Corollary 1.1. If A is arbitrary n X r matrix, then AA~ is the projection matrix
onto M(A) along M(1—AA").

2. Class of eliminating transformations

Lemma 2.1. If the condition M(A)N#(S)={0} is fulfilled in the regression
model (&, (A, S) (0', #')',X), then there exists an eliminating transformation.

Proof. If M(A)NM(S)=1{0), then R"=M D M, D M5, where M,=M(A),
My = M(S) and M is an arbitrary subspace provided R" = M, ® M>@ M. Projec-
tion matrices P;.a), | =P, from Definition 1.1 are obviously the eliminating
transformations.

Definition 2.1.Regression model (€, (A, S)(©', #')', X) is regular if the ranks
of the matrices (A, S),X are R(A, +,, Su.1,) = kit k,<n, R(Z)=n.
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Corollary 2.1. An eliminating transformation exists in the regular regression
model (€, (A, S) (8, ¥')', X).

Theorem 2.1. In a regression model (& (A, S)(O', &). X). where
M((A)N.AM(S)= {0}, the class of eliminating transformations is

T ={T: T=P, )+ ZsP; 35, Zy is an arbitrary n X n matrix},

where P,y and and Ps g, are projection matrices from Definition 1.1 onto
My = M(A) and M; = M(1— (A, S) (A, S)7), respectively. The g-inverse (A, S)™ is
arbitrary however fixed.

Proof. The equation T(A, S)=(A, 0) is solvable for T with respect to Lem-
ma 2.1. Following Lemma 1.2 the class T is {T: T = (A, 0) (A, S)"+Zy(1- (A, S)
(A, S)7), Zy arbitrary}. From (A, 0) (A, S)7[A, S, (I-(A,S) (A.S)] = (A.0.0)
there follows (A, 0) (A, S)~ = P, . Since I-(A, S) (A, S)™ is idempotent and
[1-(A,S) (A,S)7] (A,S) = (0,0), it follows that I1—(A,S) (A.S)” = P,
(Lemma 1.3, Corollary 1.1).

Lemma 2.2. Let the condition M(A)NM(S)=1{0} be fulfilled in a regression
model (&, (A, S) (0',4')', X). Then the following is true:

a) the BLUE (best linear unbiased estimator) of the vector A® is

o (3],

b) for an eliminating transformation T

A[(A)rr) TE=AO
iff
(++) P; 2T (A" )naerA' =0.
P is a projection matrix from Theorem?2.1.

Proof. The statement a) is a consequence of Theorem 1.2 and Theorem 3.1 in
[3]. The statement b) is implied by the fact that the class of all linear unbiased
estimators of the function g(.,..): R X R2—{0}), (6.#) € R "X R* is
{A'Ps. (& LeR"} and by the fundamental lemma of C. R. Rao [4] p. 257.

Definition 2.2. The eliminating transformation which satisfies (+ +) is optimal.

Remark 2.1. In general the condition R(A) = k, <n need not be fulfilled, thus
O need not be unbiasedly estimable. The vector A® provided .#(A)N.#(S)= {0}
represents the class of all linear unbiased estimable functions of the parameter 6.
That is why, the estimator of the vector A@ is given in Lemma 2.2 instead of the
estimator of the vector 6.

Theorem 2.2. Euch eliminating transformation T which satisfies the condition

(+ + +) PJ'(J)(|_T)=O
is optimal.
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Proof. If the condition (+ + +) is fulfilled, the (+ +) implies: P; [T+
(1-DIET'(A);axr A’ = P; oA[(A)naer)] TET =0, because P; 5 A=0.

Corollary 2.2. If M, is an arbitrary subspace of R" (provided R"=
M(A)D.MU(S)D.M;), ther V=P, (-, is an optimal eliminating transformation.

Lemma 2.3. A regression medel (€, (A, S) (0',8'),X)is equivalent to a model

[( T 211’ ]
1-T 221,222

where T is an arbitrary eliminating transformation and X,, = Var (T§), &,
=cov (TE, (I1-TE) = X;,, X,, = Var [(1-T)E].
Proof. Implied by the fact that the matrix

T [ AV |
(I—T)z(o, |)(I—T)
has full rank in columns.

Lemma 2.4. One version of the matrix
A, 0\~ i 21 2
9 D — . N B
( 09 S’)m(D), (2‘2.17 E2‘2)
(notations from Lemma 2.3) is

(Bl,l s BI‘Z)
b
BZ,I ] BZ,Z

where

Bii=(A")rnw Bia=—{1=(A" )0z yA" JELE 2(8 )mee)s

B,,=—{I- (s’)fn(zz z)s’}EEQEZ.I(A,);n(.)s B,,=(S)n,

(%) =Z0 — E2E5[5 — X,(8 ), S 122250,
(**) = z2.2 - 22,1}:1—,1[21,1 - 21,1(A');(:...)A’]Eﬂz],z .

Proof. See in [1], Theorem 3.1.
Theorem 2.3. The BLUE of the vector A® in the regression model (&, (A, S)
(6, #), %), M(A)NM(S)=1{0)}, can be expressed in the form

AB = A[(A)7) (TE—E, X5, 1-S[(S)nanl'} (1-TE],

where («) is the notation from Lemma 2.4 and the others are from Lemma 2.3.
Proof follows immediately from Lemma 2.2, Lemma 2.3 and Lemma 2.4.
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Ren}_a\rk 2.3. The estimator from Theorem 2.3 can be also expressed in the
form A@ = A[(A'), ez ToE, where

To=T-X,,X:,{1-S[(8)ne.] }(I-T)

(T is an arbitrary eliminating transformation) since Var (To§) = (). It means that
T, is optimal with respect to Definition 2.2.
Corollary 2.3. If TE(1-T)' =0 for an eliminating transformation T, then T is
optimal. The equality TE(1—T)' =X,, implies (x)=X,; = TET and To=T.
Corollary 2.4. If | = T=SC holds true for an eliminating transformation T, then
the estimator A® from Theorem 2.3 is A® = A[(A")nqery) TE. In this case there
is {1=S[(8)nay'} (1=T) = 0 and (x) = Var (TET'). (See Corollary 2.2.)

Lemma 2.5. Onec of the matrices (A, S)~ is [(g,)_ ]’ = Q and one of the

m(E)

P -

matrices (g,) is [(AA" + SS').nA, (AA’+8S'),x)S].
m(X)

Proof. It suffices to verify the relations (A, S)Q(A,S) = (A,S), X[(AA’
A
+ SS)wA, (AA' + SS)aSl(g) = (A SIAA + SS)mA, (AN’

+ SS8).»S|'E :nd (A, S)[(AA" + SS').xA, (AA’ + SS§').xS|'(A,S)
= (A, S). The relations #((A) = M(AA' + SS') = UM(A,S), #(S) = M(AA’
+ 8S’) = (A, S), implied by Theorem 6.2.5 in [2], have to be utilized.

Lemma 2.6. Let 57 be an n-dimensional random vector with E(n)=p and
Var (n)=X. Then P{n—pu € M(Z)}=1.

Proof. Let R(¥)=r<n. Then there exists an n X r matrix J with property
T=JJ'. If F' is such a matrix that F'd=1, then E[F(n—p)]=0 and
Var [F'(n —pu)]=1. For a vector ngo=p+JF'(n—n) there holds: E(n—1n¢)=0
and Var(n—1no) = Var[(I-JF)n—p)] = (I-JF)J'(-FJ) = 0 >
P{n—pu = JF'(n—n)} =1. Since M(J)= M(X), the statement is obvious.

Theorem 2.4. T=AA'[(AA’' +SS’), @]’ is a unique optimal eliminating trans-
formation with the property P{T§ =A®) =1, where A® is the estimator from
Theorem 2.3 and Lemma 2.2a), respectively.

Proof. P; ) from Lemma 2.2 is fixed as P gy=1—(A, S)[(g) ] and the
m(E)

same is done in Theorem 2.1. An arbitrary eliminating transformation can be thus
written as

T=(A, o)[(g:)mm]' +z,{|—(A, S)[(g:)mm]'}

and the condition (+ +) can be rewritten as
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[-a9[(5) o] 1=[(5).0(0)+ = (s) (e )12

(8 §)faeo.

because

a.9)( Qf);m]'hz( S ) | o)

and
AI - ' AI~ - A" o
fi-as)(s) | 1=(s), . (0)=(o):
With respect to Lemma 2.5 and Lemma 2.6 there holds
P{TE=AA'[(AA'+SS'),.x]'E) =1,

because

-9 3),.) o= -1

(Lemma 2.6 implies that almost each realization of the vector § is x=(A, S)
(0, #') +Xu 1nd from the rewritten condition (+ +) it follows that

AI -— ’ A’ - ’
z{l— A,s[ , ]}x:Z{l— A,s[ , ]}Zu=0.
W1-A9)|(g) W-A9)|(g)
Theorem 2.5. In the regular regression model (&, (A, S)(0', #')', X) the
BLUE:s of the vectors A© und S ire:

AO=P,&, SI=Pgt,
where
P.=A(A'LA)'A'L, L=X'(1-P5 ),
Ps=S(S’KS)"'S'K, K=X"'(1-PX ).
The mutrix Pa is Py qy(Definition 1.1) onto M,=M(A) and Pg is P, onto

M= M(S), where M= M(1— P 's) is :tn orthogonal complement of the subspace
M@ M, with respect to Mahalanobis inner product {(x, y) = xX'E7 'y, x, y € R".

Proof. If the notations
(A'Z A =[AZ'A-A'T!IS(S'T'S') 'S’ E AT,
(A'X'8)?=[S'E'S-S'T'A(A'T'A)'A'E'S]
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(the existence of the inversion of the indicated matrices is ensured by the
assumption of the regularity of the considered regression model) are used, then the
BLUE of the vector (', #')" is

(g) = [(::)‘3"(‘\, S)]_'(g:)z—lg=

_ Aﬂx-lA)ll, _(Alz—lA)uAlz—IS(SIE—IS)—I ]'(Alz—l g_
[-—(S'}Z"S)"S’E"A(A’E"A)"‘, (8'T'S)* S’E") a

gee

A’ (1-PE A A'E" — [A'E"1(1-P5)A] AL S
[S'E!(1-PE")S]"'S'E"! —[S'E!(1- P¥")S]'S'L'PE"

_[(A'LA)'A'L _ .
=[(sksy1sk]E > A0=Pat =P

Furthermore it is obviously valid that M(Pa)=M(A)=M,, Pi=Pa., M(Ps)
= M(S) = ‘/“2, Pé: P., PAPS = PsPA = 0, Pz:;‘ls) = PA + Ps 'nd
(Pia's) Z7'(1-Pa—Pg)=0.
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UCKJIIOYEHUE MEUWAIOIIMX [TAPAMETPOB B PETPECCUOHHOU MOIEJIU
Lubomir Kubacek

Pe3iome

B perpeccuonnoi mozienu (€. (A, §)(6', #')’, X) ¢ Mewatouum napametpom & MccieayeTes Kiace
Bcex uckmovarowmx tpancopManuin 7 = {T: TA=A, TS =0}. Ucknouatowas TpancdopManus ss-
NsleTCs ONTHMAanbHOW, ecnu TpaHcdopMuposanHas Mogens (TE, AO, TZT') nossoasieT MOCTPOMUTDH
TaKylo JIMHEHHYI0 HeCMeLIEHHYIO OLIeHKY BeKTopa A 6, y KOTOPO#H KOBapHaLlMOHHAst MaTpULa TaKast Xe
camas, Kak y Haunyyileil JTMHeHHOM OLeHKH B epBOHavanbHoi Mosienu. HaiineH knacc onTumManbHbIx
MCKJTIOYAIOUIMX TpaHchOopMaLmid.
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