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OSCILLATION THEOREMS OF COMPARISON TYPE 

FOR NEUTRAL NONLINEAR FUNCTIONAL 

DIFFERENTIAL EQUATIONS 

S. R. GRACE, Giza 

(Received July 27, 1993) 

1. INTRODUCTION 

We consider the neutral equation 

(1) (*(*) + p(t)x(g* (.))) (n ) + q(t)f (x(g(t))) = 0 

and the forced neutral equation 

(2) (x(t) + p(t)x(g.(t)))in) + q(t)f(x(g(t))) = e(t), 

where n is even, e, a, g*, p, q: [to,oo) —y U = (—00,00), to > 0 and / : (R -> (R are 
continuous, q(t) ^ 0 and not identically zero on any ray of the form [t*, 00), t* ^ to, 

lim g(t) = 00 and lim g*(t) = 00. 
t—>-oo t—>oo 

By a solution of equation (1) (or (2)) we mean a function x: [Tx,oo) -» (R, Tx ^ 
to-, such that x(t) + p(t)x(g±(t)) is ?i-times continuously differentiable and satisfies 
equation (1) (or (2)) for all sufficiently large t ^ Tx • A solution of equation (1) (or 
(2)) is said to be oscillatory if it has an infinite sequence of zeros tending to infinity; 
otherwise, a solution is said to be nonoscilatory. Equation (1) (or (2)) is said to be 
oscillatory if all its solutions are oscillatory 

Besides its theoretical interest, the study of the oscillatory behavior of solutions of 
neutral differential equations has some importance in many applications. Recently 
there has been a lot of activity in establishing sufficient conditions for the oscillation 
of neutral equations of type (1) and/or related equations. See, for example [4-8, 13] 
and the references cited therein. However, theorems on the oscillatory behavior of 
equations (1) and (2) (/ is not a monotonic function) via comparison with that of 
some linear second order differential equations are in general scarce in the literature. 
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The purpose of this paper is to relate the oscillation problem of equations (1) 
and (2) to that of some linear second order equations. In Section 3 we intend to 
reduce the study of the oscillatory properties of equation (1) to that of linear second 
order equation and present four oscillation criteria for equation (1) by examining the 
following for cases for p and O*: p(t) = 0, {0 ^ p(t) < l,g*(t) < t}, {p(t) > l,g*(t) > 
t}, { — 1 < p(t) < 0,g*(t) < t} and in Section 4 we intend to extend the results of 
Section 3 to equation (2). 

The results of this paper are presented in a form which is essentially new and it 
offer alternative means of classifying such equations with respect to oscillation. 

2, PRELIMINARIES 

We denote by 

Rto = (~oo» -*o] U [t0, oo) for any t0 > 0, 

and we consider the spaces: 

C(R) = {/: R -.» R: / is continuous and xf(x) > 0 for x ?- 0} 

and 

CB(R/j0) — {/ € C(U): / is of bounded variation on any interval [a, b] C R*0}-

For our purpose, we need the following three lemmas. The first two lemmas can 
be found in [2], [10] and [15] while for the third one, we refer to [14]. 

Lemma 1. Let u be a positive and n-times differentiable function on an interval 

[to,oo) with its n-th derivative u^ nonpositive on [to,oo) and not identically zero 

on any interval of the form [l*,oo), t* ^ lo- Then there exists a tu ^ to and an 

integer L, 0 ^ L ^ n with n + L odd and such that for t ^ tu 

L^n-1 implies (-l)L+ju{j)(t) > 0, (j = L, L + 1 , . . . ,n - 1), 

L > 1 implies uU) (t) > 0, (j = 1, 2 , . . . , L - 1). 

Lemma 2. Let u be as in Lemma 1, a22d n be even. Then for any constants a 

and O*, 0 < a, a* < 1 aj2d aii iai'ge t 

a .n-2ln-\)( x'(t/2) > ç—^tn-*xln-l>(t) 
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and 

x{t)>W^ӯtn (t)-

Lemma 3. Suppose t0 > 0 and / G C(R). Then f G C#(R i o ) if an only if 
f(x) = G(x) - H(x) for all x G R*() where G: UtQ —•> (0,oo) is nondecreasing on 

(—oo,—t0) and nonincreasing on (t0,oo) and H: Uto —r R and nondecreasing on R4(). 

We assume that there exists a differentiate function h: [t0,oo) -» (0, oo) such 

that 

(3) /i(f) ^ min{£, a(£)}, b'(l) > 0 for t > t0 and lim b(£) = oo. 
t—5»00 

For T ^ t0 and all t ^ T, we let 

r(*) = ( / i n - 2 (0M0)" 1 -

3 . OSCILLATION OF EQUATION ( 1 ) 

The following criterion is concerned with the oscillatory behavior of equation (1) 

when p(t) = 0. 

Theorem 1. Suppose f G C(Ri()), to > 0 and let G and H be a pair of contin­

uous components of f with H being the nondecreasing one. Moreover, assume that 

condition (3) holds, p(t) = 0 and 

(4) H(x) sgnT ^ \x\c for x ^ 0 and c is a positive constant. 

If for every constant C ^ 1, the linear equation 

(5) (r(t)y'(t))' + 2{{n\mG(Cgn-\t))q{t)Q(t)y{t) = 0 

is oscillatory, where 

ai , any positive constant if c > 1, 

a2, any constant, 0 < a2 < 1 if c = 1, 

L a 3 l i ( c _ 1 ) ( n _ 1 ) ( l ) , a3 is any constant, 0 < a3 < 1 if 0 < c < 1, 

(6) Q(t) = I 

then equation (1) is oscillatory. 
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P r o o f . Let x(t) be a nonoscillatory solution of equation (1). We may assume 
that x(t) > 0 and x(g(t)) > 0 for t ^ to > 0, since a parallel argument holds if 
x(t) < 0 for t ^ to. By Lemma 1, there exists a li ^ t0 such that 

(7) x'(t)>0 and x ( n - 1 } > 0 iort^h. 

Since x(£) is an increasing function and x^n~l\t) is a decreasing function for t ^ t\, 

there exist positive constants k and k\ such that for t ^ t\ 

(8) s ( / i (* ) ) ^ k 

and 

By successive integration from li to i, we conclude that there exist a t2 ^ t\ and a 
constant k* ^ 1 such that 

(9) x(g(t)) ^ k*gn_1(r) and x(h(t)) ^ kVi71'1^) for t ^ t2. 

Furthermore, let us consider an arbitrary constant b with b > 1. Then, by applying 

Lemma 2, we conclude that there exists a large l3 ^ 2l2 such that 

j n-'2(f\ 

(10) X'('l{t)/2^ b(n-2)\X {t) iovt>t3-

Next, we define the function W by 

•"o—iiiwM "xti"" 
Then for t ^ £3, we get 

(n) W W q(t) x(h(t)/2) + x>(h(t)/2) 

= F(t)q(t) + p^yH/2(^)' 

where 

n2) r(t) - f { x ( 9 { t ) ) ) and r(t) x(n~l}{t) 

(12) F W - ^ ( M ? W P(t)-.,'(/,(t)/2)(/,'(t)/2))-
C12 



The Ricatti equation (11) has a solution on [£3,00). It is well-known that this is 

equivalent to the nonoscillation of the linear equation 

(13) (P{t)u'(t))' + q{t)F(t)u(t)=0. 

Using (3), (9) and (10) in (12) we have 

2x^-1Ht) 2b{n-2)\ 

x'{h{t)/2){h'{t)/2) ^ h'(t)hn-2{t) (14) f ( ' ) - ^ » r t W ш m f f l < мLnJњ = (Җn-2)\)r(t) forí^íз, 

and 

,,-* _ G(x(g(t)))H(x(g(t))) G(k*gn~1(t))xe(h(t)) 
( } W ~ x(h{t)/2) * x(h(t)/2) 

> G ( ^ - i ( 0 ) ^ ( f c ( 0 ) - ^ 

^G(k*gn-1(t))xe-1(h(t)). 

Now, there are three cases to consider: 

Case 1. c > 1. From (8) it follows that 

xc~l{h(t)) >kc~x for t^ t3 

and hence (15) becomes 

F(t) ^ kc-1G(k*gn-1(t)) for t^t3. 

Case 2. c = 1. In this case 

F(t) ^G(k*gn~1(t)) iovt^h. 

Case 3. 0 < c < 1. From (9), we have 

xc~l(h(t)) ^ (kVi11-1^))"'1 for t ^ t3 

and hence (15) becomes 

F(t) 2 (fc*)c-1(/in-1(*))c_1G(fcV"1(0) ^ t>t3. 

Thus an application of the Picone Sturm Comparison Theorem (see [11]) to equa­

tion (12) yields the nonoscillation of the linear equation 

( r ( % ' W ) ' + 2b{n-^)\G(k*gn~1{t))qm*{t)y{t) = °' 
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where 
' kc~l i f o l , 

Q*(t) = < 1 if c = l , 
^k*c-ih{c-i){n-i)^ if o < c < i. 

This contradicts the hypothesis that equation (5) is oscillatory. This completes the 
proof. • 

In the following theorem, we assume that 

(16) 0 ^ p(t) <: p0 < 1, g*(t) < t and a* is strictly increasing for t ^ t0. 

Theorem 2. Let f e C(Ut{}), t0 > 0 and let the functions G and H he defined 

as in Theorem 1. Moreover, suppose that conditions (3), (4) and (16) hold and for 

every constant C ^ 1. the linear equation 

(17) (r(t)y'(t))' + ^~^V)G(Cgn-\t))q(t)Q(t)y(t) = 0 

is oscillatory, where Q(t) is defined by (6). Then equation (1) is oscillatory. 

P r o o f . Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0, 

x(g*(t)) > 0 and x(g(t)) > 0 for t ^ t0 > 0. Put 

(18) z(t)=x(t)+p(t)x(g*(t)). 

Then z(t) > 0 for t ^ t0 and equation (1) takes the form 

(19) zW(t) = -q(t)f(x(g(t))) ^ 0 for t > t0. 

By Lemma 1, there exists a t\ ^ t0 such that 

(20) z'{t)>0 and z{n~l)(t) > 0 f o r l ^ i . 

Since z(t) is an increasing function and z^n~l\t) is decreasing for t ^ t\. Then there 
exist positive constants k and k\ such that for alH ^ li 

(21) z(h(t)) ^ k 

and 

(22) ^ - ^ ( l K k i . 
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As in the proof of Theorem 1, there exist a constant k* ^ 1 and a t2 #J <i such that 

(23) x(g(t)) ^z(g(t)) < fc*(/n_1(/) and a; (/.(*)) ^ k*hn-x(t) for . ^ / 2 -

Next, using (16) and (20) in (18), we obtain 

x(t) = z(t) - p(t)x(g.(tj) 

= z(t) - p(t)[z(g,(t)) - p(g*(t))x(g. ° g.(t))] 

>z(t)-p(t)z(g.(t)) 

2(l-Po)z(t) for.^ti. 

Thus, there exists a t% ^ f2 such that 

(24) x(g(t)) 2 (l-p0)z(g(t)) for « > t3. 

Using (23) and (24) in equation (19) we have 

z^(t) + (l-p0)
cG(k*gn-l(t))q(t)zc(g(t))^0 for t> t3. 

Therefore, as pointed out by Foster and Grimmer [1], the equation 

_•<»>(_) + (1 - Po)cG(k*gn-1(t))g(t)zc(g(t)) = 0, 

has a positive solution. The rest of the proof proceeds as in the proof of Theorem 1. 
This completes the proof. • 

The following criterion deals with the oscillation of equation (1) when the functions 

p and g* satisfy the following conditions: 

(25) 1 < pi ^ p(t) ^ p-2, g* is strictly increasing and g*(t) > t for t ^ /;0, 

and 

(26) there exists a positive differentiable function /i*: [£o,oo) -» (0,oo) such 

that h*(t) ^ minj fg" 1 o g(t)}, h*(t) > 0 for t ^ t0 and lim /i*(£) = oo, 

where g^1 denotes the inverse function of g*. 

We let 

p* = -^—i and r*(ť)=(/.'.(ť)/.r2(0) '• 
Plf>2 
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Theorem 3. Suppose f £ C(.Rto), to > 0> the functions G and H are defined as 

in Theorem 1 and let conditions (4). (25) and (26) hold. If for every C ^ 1 the linear 

equation 

(27) (r*(t)y'(t))' + 2{£
C_ ^^(1)0(0gn-\t))q{t)y(t) = 0 

is oscillatory, where Q\ is the same as Q defined by (6) with h replaced by h*, then 

equation (1) is oscillatory. 

P r o o f . Let x(t) be a nonoscillatory solution of equation (1) and assume that 
x(t) > 0, x(g*(t)) > 0 and x(g(t)) > 0 for t ̂  t0 > 0. As in the proof of Theorem 2, 
we define the function z(t) by (18) and assume that there exists a t2 ̂  t\ ^ to such 
that (20)-(22) hold for t ̂  h and (23) holds for t^t2. 

Next, using (20) and (25) in (18), we have 

^^i&Hm-^Ht)) 

> 

p(g:\t)) 

z(9-\t)) 

PÍ9*\t)) p(g, 

z(9^(t)) z(g^og^(t)) 

J (z(g:1og71(t))-x(g:1og:1(t))\ 

•*\t))\ p(g^1og71(t)) ) 

P(9*\t)) p(g:1(t))p(g:1og:\t)) 

>?J—^z(g;1(t)) fort^h. 
PlP2 

Thus, there exists a t3 ^ <2 such that 

(28) x(g(t)) > p*z(g;1 o g(t)) for t > t3. 

Using (4), (23) and (28) in equation (19), we have 

-<n>(0 +P*'G(k*gn-l(t))q(t)zc(g;1 og(t)) ^ 0 for t^ t3. 

Applying the same argument as above, we led to the desired contradiction. • 

The following theorem is concerned with the oscillatory behavior of equation (1) 
when the function g • <?*, f and p satisfy the following conditions: 

(29) - p * < p(t) < 0, for some p+, 0 < p* < 1, g*(t) and g*(t) = g~l o g(t) 

are increasing, g*(t) < t and g*(t) < t tor t ̂  to, and 

(30) f(x) sgn x ^ \x\c for x ?- 0 and c > 0. 
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Theorem 4. Let f e C(Utl)), t0 > 0 and let conditions (29) and (30) hold. If the 
linear equation 

(31) (r(t)y'(t)) + ^-L-^Q(t)q(t)y(t) = 0 

is oscillatory where the function Q is defined by (6), and all bounded solutions of 

the equation 

(32) w^(t)-q(t)(\w(g*(t))\c)sEnw(g*(t))=0 

are oscillatory, then equation (1) is oscillatory. 

P r o o f . Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0, 
x(9*(t)) > 0 and x(g(t)) > 0 for t ^ t0 > 0. We define the function z(t) by (18). 
Then for t ^ tx ^ t0, z^n\t) ^ 0 and z^n~l\t) is of one sign. We shall show that 

z(
n~l)(t) >0fort^t1. In fact, if z{n~V(t) ^ 0 for t ^ tu there exists a t2 ^ tx so 

that 

^(n~1}(^) ^ -b < 0 for some b > 0 and * ̂  *2. 

Hence 

(33) z(J) -> -oo as £ -» oo. 

On the other hand, if z(£) < 0 for t^ t2, then we have 

0 < x(t) < -p(t)x(g*(t)) < p*x{g*(t)) 

<pl~{9*°9*{t)) < ... <P?-{9*,n{t))> 

where we define g*in as follows: 

9*i(t) =9*(t)> 

9*„,{t) =9* 0 K , - i W » m > !• 

We note that for any l, G*7n (£) < t and hence for each t and arbitrary ra, x(g*in (t)) 
is well-defined. Since p™ -> 0 as ??i —.> oo, we conclude that x(t) -» 0 as t -» oo. 
Consequently, z(r) -» 0 at t -» oo, which contradicts (33). Therefore, we must have 
z^n~l\t) > 0 for t ^ li, and hence by Lemma 1, we see that z'(t) > 0 for t ^ ^ . 
Next, we consider the following two cases: 

Case 1. Let z(t) > 0 for t ^ h. From (18) and (29) we have 

(34) x(t) > z(t) for t^T^h. 
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Using (30) and (34) in equation (19), we obtain 

z<">(<) + q(t)z°(g(t)) < z^(t) + q(t)iM^Axc{g{t)) = o, 

for g ̂  T. By a result in [1], it follows that the equation 

vln)(t) + q(t)vc(t) = o, 

has a positive solution. Now, an application of Theorem 1, yields a desired conclusion. 
Case 2. Let z(t) < 0 for t ^ t\. From the above proof we see that z(t) -> 0 as 

t -> oo and z^n~l)(t) > 0 and z'(t) > 0 for t^ h. Now, we let v(t) = -z(t) > 0 and 
hence we have 

(35) (-iyv{i)(t) > 0 fori = 0 , l , . . . , n - l , a n d ^ * i . 

From (18) and (29), if follows that 

x{g*(t)) >—)r;v(t)>v(t) ioit^tu 

and hence there exists a T\ ^ 11 so that 

(36) x(g(t)) ^ v(g:1 o g(t)) = t;(G*(*)) for t > T±. 

Using (30), (35) and (36) we get 

(37) vin){t)>q{t)f^M^{g{t)) 

>q(t)vc(g*(t)) f o r O T i . 

Integrating (37) from t tow, repeatedly ?i-times, letting u —•> oo and using (35) we 
find that 

r°° (f _ c ^ - 1 

(38) « ( < ) > y g(g) ( n _ i ) i ^c(g*(g))dg-

But by a result of Philos [16], if inequality (38) has an eventually positive solution 
v(t), then the corresponding equation 

r°° (f _ c ^ - 1 

Át) = jt q(s)[
1^rw(g*(s))ds, 

also has an eventually positive solution w(t). It follows that equation (32) has the 
eventually positive solution w(t), a contradiction. This completes the proof. • 
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To illustrate the results of this section, we consider the equations 

(39) (x(t) +px(t - m)) ( n ) +q(t)Sechx(t)(\x(t)\c) sgnx(t) = 0 

and 

(40) (r(t)y'(t))' + 2((n
J!2)!)gWSechCr-1o(t)t/(t:) = 0, 

where n is even, C, p, B and m are constants, C ^ 1, the functions r,q: [to,oo) -+ 

(0, oo) are continuous and the function Q is defined by (6). We consider the following: 
(i) when p = 0, we let r(t) = t2~n

y B = 1 and h(t) = £, 
(ii) when 0 < p < 1 and m > 0, we let r(£) = £2 _ n , B = (1 - p)c and /i(r) = t4, 
(iii) when p > 1 and m < 0, we let r(^) = ( H m ) 2 _ n , H = (^f)c and li(t) = H m . 

From Theorems 1-3, equation (39) is oscillatory if equation (40) is oscillatory pro­
vided that (i)-(iii) hold respectively 

Oscillatory behavior of equation (40) has been intensively studied in the literature. 
Here, we give the following most important conditions for the oscillation of equation 
(40): 

^ 2 ( ^ - 2 ) ! ) (I) W (/„ £)) (/^WSechCV-QWd,, . 4B 

(see [17, Theorem 1]). 

(II) There exists a differentiable function v: [to,oc) —> (0,oo) such that 

^ P / j [ ^ ^ ^ ( ^ ( ^ S e c h C s ^ - ! ^ 1 ] 6s = oo, 

(see [3, Theorem 4]). 

One can easily conclude that condition (I) (or; (II)) together with (i)-(iii) is suf­
ficient for the oscillation of equation (39). 

Also, we see that the equation 

/ 1 \ (n) 
ix(t) - -x(t-2)j +G(t)(|x(l-4)|c)sgnr7j(l - 4 ) = 0, t > 4 and c> 0 

where n is even and q: [t0, oo) -» (0, oo) is continuous, is oscillatory by Theorem 4 if 
the equation 

(t2-ny'(t))' + ^A—^q(t)Q(t)y(t) = 0, 

is oscillatory, where Q is defined by (6) with h(t) = t — 4, and all bounded solutions 
of the equation 

uin) - q(t)(\u(t - 2)|c) sgnu(t - 2) = 0, 

are oscillatory 
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Remark. In the results presented above, one can relate the oscillation problem 
of equation (1) to that of some linear equation of the form 

(41) {r(t)y'(t))'+qi(t)y(t) = 0, 

where r,q\: [to,oo) —» (0,oo) are continuous and f°° -4 -̂ = oo. From this observa­
tion, we can proceed further in this direction and reduce the study of the oscillatory 
properties of equation (1) to that of linear first order delay equation of the form 

(42) v'(t)+q2(t)v(h(t))=0, 

where the functions q2,h: [to,co) —> (0,oo) are continuous, h(t) < t, h'(t) > 0 and 
lim h(t) = oo. 

t-+oo 

To obtain such results, it is sufficient to reduce the study of the oscillatory prop­
erties of equation (41) to that of equation (42). 

To this end, we let y(t) be a nonoscillatory solution of equation (41) and assume 
that y(t) > 0 for t ^ to > 0. By Lemma 2 in [2], there exists a t\ ^ to such that 
y'(t) > 0 for t^tY. Now, 

ft 1 
y(t)=y(ti) + J (r(s)y'(s)) — ds 

= y(h) + ( f ^ ds) (r(t)y'(t)) -J*[J"-L ds) (r(u)y'(u)) du 

*'ww(/,'^4 
There exists a t2 ^ ti such that 

(43) y(t) > y(h(t)) > r{h(t))y'{h(t))(J ^ds) for t > t2. 

Using (43) in equation (41), we have 
/ fh{t) x \ 

(44) v)'(t)+qi(t)l —dujiu(h(t))^0 fovt^t2, 

where w(t) = r(t)y'(t). Integrating (44) from t to z and letting z -» oo, we obtain 

/

OO / rh(s) ^ \ 

Qi(s)i ^r-du)iu(h(s))ds. 
620 



The function w is obviously strictly decreasing for t ^ £2- Hence, by Theorem 1 

in [16], we conclude that there exists a positive solution v of equation (42) with 

lim v(t) = 0. This contradicts the assumption that equation (42) is oscillatory. 
t—• oo 

From the above discussion, one can reformulate the results of this section by 

replacing the equation of type (41) with equations of type (42). Here we omit the 

details. 

4 . OSCILLATЮN OF EQUATЮN ( 2 ) 

The oscillatory behavior of even order forced equations of type (2) with p — 0 

and/or related equations has received intensive study in recent years. For general 

discussion on this subject, we refer to [9, 18] and the references cited therein. We 

observe that most of these criteria depend heavily on the assumption that the func-

tion f(x) is nondecreasing for x ф 0, and as pointed out by Wong [19], it is useful 

to study the oscillatory properties of equation (2) and/or related equations when 

n > 2 and without the assumption that f(x) is a monotonic function. Therefore, the 

purpose of this section is to show that under the effect of certain forcing term, the 

stucly of the oscillatory behavior of equation (2) with / is locally of bounded varia-

tion is reduced to the oscillation of some homogeneous linear second order ordinary 

differential equations of type presented in Section 3. 

We assume the following hypothesis on the forcing term: 

(46) There exists an ?г-times differeiitiable function fc: [čcьoo) ~> K such that 

k(n)(í) = e(t) and k(t) is oscillatory; 

and 

(47) there exist sequences {u.j} and {гŕЛ such that lim Uj = oo = lim u*-

and k(гij) = inî{k(t): t ^ Uj} and fc(Hj) = sup{fc(í): t ^ u^}. 

Theorem 5. Let p(t) = 0, / Є C(Шtlì), t0 > 0, and let the functions G and H 

be defìned as in Theorem 1. Moreover, assume that conditions (3), (4), (46) and 

(47) hold and for every constant C ^ 1, the equation (5) with Q defìned by (6), is 

oscillatory, tlien equation (2) is oscillatory. 

P r o o f . Let x(t) be a nonoscihatory solution of equation (2), say x(t) > 0 and 

x(g(t)) > 0 for t ^ t0 > 0. Set x(t) = v(t) -f k(t), then from equation (2) 

(48) VW(t) = -q(t)G(x(g(t)))H(v(g(t)) + к(g(t))) ^ 0 for t> t0, 
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and hence, v^(t), i = 0 , 1 , . . . , n - 1 are of constant sign for t ^ to. Now, we show 
that v(t) is eventually positive. Otherwise, there exists a t\ ^ lo such that v(t) < 0 
for t ^ t \ . Since x(t) > 0, it follows that 0 < v(t) + k(t); or 0 < -v(t) < k(t) for 
t ^ t\, a contradiction. Hence, we must have v(t) > 0 for t ^ to- By Lemma 1, there 
exist a î ^ to and a constant di > 0 such that 

(49) 0<U ( n - 1 } ( r ) <^di and v'(t) > 0 for r ^ i i . 

Integrating the first inequality in (49) (n — l)-times from t\ to t, we conclude that 

there exist a t2 ^ t\ and a OJ2 > 0 such that v(t) ^ d2t
n~l for t ^ t2, and hence, 

~W ^ d2t
n~l + |k(r)| for £ ̂  i*2- ~*y (47), there exist a constant a7 ̂  1 and a t2 ^ t2 

such that 

(50) x(o(i)) ^dgn-\t) fov t^t2. 

Next, by (47), there exists N such that for t ^ UN ^ t2 

(51) x(*) = v(t) + k(*) ^ v(t) + fc(wA/) = w(£). 

Clearly, v'(t) = w'(£) and v^(t) = u/n)(£). Moreover, 

iD(£) = v(t) + k(uN) ^ V(UN) + k(uN) = X(UN) > 0. 

Thus, by (4), (50) and (51), equation (48) is reduced to 

w^(t) +q(t)G(dgn-l(t))wc(g(t)) < 0 for * £ *2. 

The remainder of the proof proceed as in the proof of Theorem 1. 
In the following oscillation results for equation (2), we assume that 

(52) 0 < p(t) = p = constant < 1 and g*(t) = t — m, m is a positive constant; 

or 

(53) p(t) = p = constant > 1 and g*(t) = t + m, m is a postive constant, 

and condition (47) is replaced by 

(54) the function k(t) is periodic of period m, i.e., k(t ±m) = k(t), where the 
constant m is defined as in (52) or (53). 

• 
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Theorem 6. Let f E C((Ri()), t0 > 0, and let the functions G and H be defined 

as in Theorem 1. Suppose that conditions (3), (4), (46), (52) and (54) hold. If for 

every C ^ 1, the equation 

{r{t)y'{t))' + 2{{n'-2)\)G{C9n'l{t))q{t)Q{t)y{t) = °' 

is oscillatory, where Q is defined by (6), then equation (2) is oscillatory. 

P r o o f . Let x(t) be a nonoscillatory solution of equation (2) and assume that 

x(t) > 0, x(t - m) > 0 and x(g(t)) >0toit^t0>0. Set 

(55) v(t) + k(t) = x(t) +px(t - m). 

Thus, as in the proof of Theorem 5, we see that v(t) > 0 and (49) holds for t ^ t\ 
and there exist a constant d ^ 1 and a t ^ t2 such that (50) holds for t ^ t2. 

Next, by (49) and (54) in (55), we have 

x(t) = v(t) + k(t) - px(t - m) ^ v(t) + k(t) - p[u(£ - m) + k(t - m) - px(£ - 2m)] 

^ ( l - p ) ( i ; ( * ) + *(*)) for t^t2. 

By (54), there exists a ts ^ t2 such that £(£3) = inf k(s) and for £ J£ £3 
t2^s^.t2~{-rn 

(56) a;(0 ^ (1 - p)(v{t) + k(t3)) = w(t). 

Clearly, w'(t) = (1 - p)u'(i) and w'n>(i) = (1 - p)v^(t) and w(t) > 0 for t^ t3-

Thus, by (4), (50) and (56), we have 

w(n){t) + ( 1 -p)G(dgn-1(t))q(t)W
c(g(t)) < 0 for t> t3. 

The rest of the proof proceeds as in the proof of Theorem 1. • 

The following theorem, condition (26) of Theorem 3 takes the form: 

(57) hi(t) = min{i,g(t) + m} and h[(t) > 0 for t ^ £0. 

Theorem 7. Let / G C(Ut{)), t0 > 0, and assume that the functions G and H be 
defined as in Theorem 1. Moreover, suppose that conditions (4), (47), (52), (54) and 
(57) hold. If for every constant C ^ 1, the equation 

p-1 
((j.r2(r)/ií(t)rV(*))' + 2^{{n_2yf(C9n-1{t))Qx{t)q(t)y(t) = 0, 
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is oscillatory, where Q\ is the same as Q defined by (6) with h replaced by h\, then 

equation (2) is oscillatory. 

P r o o f . Let x(t) be a nonoscillatory solution of equation (2), say x(t) > 0, 

x(t -F m) > 0 and x(g(t)) > 0 for t ^ t0 > 0. Define the function v by (55) and 

proceeds as in the proof of Theorems 5 and 6, we see that (50) holds for t ^ t<i. 

Using (49) and (54) in (55) we have 

x(t) = - (v(t — m) F k(t — m) — x(t — m)) 
P 

= - (v(t - m) + k(£ - ?n)) - — (v(t - 2m) F k(t - 2m) - :r(£ - 2m)) 

v — 1 
^ *—5-(t ; ( t -m) + k(t-m)), t ^t2. p 

By (54), there exists a £3 ^ £2 such that k(^) = inf k(s) and for t ^ ts, 

P - 1 
p2 

x(t) ^ —--— (v(t — m) -F fc(í — m)) = гv(í — m) 

It is easy to check that w(t) > 0, w'(t) = ^r-v'(t) and uj(n)(0 = ^ - v ( n ) ( 0 for 

t ^ £3 and equation (2) takes the form 

P2 w(»)(ť) + Í L — G ^ - Ҷ Í ) ) ^ ) ^ ^ ^ ) _ m ) < 0. 

The remainder of the proof proceeds as in the proof of Theorem 1. D 

SOME GENERAL REMARKS 

1. The results of this paper are new, easily verifiable and can be extended to more 

general cases when the function H satisfies superlinear or sublinear conditions given 

in [3] and [18]. 

2. The results of this paper are applicable to equations (1) and (2) when the 

function f(x) is nondecreasing for x 7- 0. In this case, we take f(x) = H(x) and 

G(x) = 1. Also, we do not stipulate that the function g in equations (1) and (2) be 

either retarded, advanced and mixed type. Hence our results may hold for ordinary, 

retarded, advanced and mixed type equations. 

3. The results of this paper are the complement of the results obtained by Kwong 

and Wong [12]. Also, we note that the results in Sec. 4 answer some problems raised 

by Wong [18]. 
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4. As in the remark in Sec. 3, the oscillatory properties of equation (2) that given 
in Sec. 4 can be reduced to that of first order delay equations of type (42). Here we 
omit the details. 

5. It is interesting to obtain results similar to Theorem 4 for equation (1) when / 
is locally of bounded variation, also to obtain criteria similar to Theorems 6 and 7 
when the functions p and O* are defined as in equation (1). 
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