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1. INTRODUCTION

In this paper a characterization of traces of the Sobolev space W1P(Q, d¥) is given
for a singular value of e. Let N be an integer, N > 2. Let ¢,p be real numbers,
1 < p < 0. Denote by p’ the conjugate exponent of p, i.e. p' = ;f—l. Let Q be a
domain in RV taken such that the origin belongs to the boundary 99 of Q. The

symbol |z| will stand for the Euclidean norm of z = (z1,...,z5) € RV, that is
N 1/2

z| = z?) .

ol = (% 2%)

By C>(Q0) we mean a set of all infinitely many times differentiable functions
which together with all derivatives can be continuously extended to €. The set
of all functions u € C*(Q) such that suppu does not meet the origin will be
denoted by C$°(Q). We shall define a weighted Sobolev space HP(Q,df) as a
set of all functions with a finite norm |ju|H"?(Q,d°)| = (fQ |u(z)|P|z|*~P dz +

N 1/p
J > |Diu(z) P || dm) , where the symbol D;u stands for generalized derivatives
Q i=1
of u. The space WP(Q,d®) is defined as the closure of C§°(Q) for ¢ < —N and
as the closure of C*°(Q) for € > —N with respect to the norm ”u]I"V’”’(Q,df)” =

N 1/p
<f lu(@)|Plz|® de + [ 3= [Diu()[P|2)® dm) .
Q Q i=1

Let us recall the frequently used concept of a domain with a Lipschitz boundary
(see e.g. [4, Definition 4.3]):

Definition 1.1. A bounded domain  is said to be of the class C%! (notation:
2 € C%') if its boundary can locally be described as a graph of a Lipschitz function
in a neighborhood of each of its points.
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For € C%!, we shall introduce the space H'~'/P?(9Q,d¢) as the set of all
functions defined on 9 with a finite norm

|lu|H'=2/PP(0Q.d°)| = (/|u(x)|”|x|f*”+1 dSn-1(z)

u(@)|z|*/? — u(y)lyl/"|" e
// | [z — y|N -2 | dSy-1(z) dSN—1(y)> ;

o N

where Sy_; is the (N — 1)-dimensional Hausdorff measure in RY. In the sequel we
shall assume 2 € C%1!.

Proposition 1.2 (see [1]). C§°(Q) is dense in HVP(Q, d°).

Proposition 1.3 (see [2]). There exists a unique linear bounded (trace) operator
T: H'(Q,d°) - H'~'/77(0Q,d°) such that Tu = ul,, for all u € C§°(Q), and
there exists a corresponding extension operator R: H'~1/7P(9Q, d°) — H'P(Q, d)
such that TRu = u for all w € H'~V/PP(9Q, d°).

Proposition 1.4. (see [1] and [3]). Let € # p— N. Then the direct decomposition
Wbhr(Q,d*) = H?(Q,d°) @ X holds, where X is the trivial space for e < —N or
€ > p— N and X is the space of constant functions in the case —N <e <p— N.

The last three propositions give a characterization of traces of WP(£,d¢) in the
casee #p— N.

2. DENSITY

The following three assertions show that we cannot expect a similar direct decom-
position in the singular case e =p— N.

Lemma 2.1. Let ¢ > p— N. Then the imbedding
WhP(Q,d°) — LP(,d°P)

holds and the norm of the imbedding is majorized by c ~ With c independent

P
e—p+
of €.

Proof. The existence of this imbedding is proved in [4] (Theorem 8.15) and
the bound for this norm follows from its proof. O
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Theorem 2.2. The space H?(Q,dP~") is dense in W1'P(Q,dP~N).

Proof. Define a sequence of real functions on [0, 0] by

(nt)t/n fort € [0, %],
1 for t € (%,oo).

Let u € WhP(Q,dP~"). Let un(z) = u(z)pn(|z|) and denote 2, = Q2N B(0,1),
where B(0 l) stands for the ball with the center at the origin and with the radius

n

‘Pn(t) =

1 Note that for every i = 1, 2, ..., N we have |Dip,(|z])| < n=~!|z|=~! for a.e.
z € Q,. First we shall prove that u, € H'P(Q,dP~") for each positive integer n.
An easy calculation gives

N
lutrt @@ M| < [ lu@Pplal™ do+ 27 [ 3 1Da@)PlapN dz
Q\Q. Q i=1

+np/n(1 + N2P~1p=P) / |u(w)|”|x|p/"—N dz
Q.
=1 + 27", + nP/"(1 + N2P~in=P)I;.

Since n|z| 2 1 in Q\ Q,, we get
L < n? / (@) PleP~N dz < n?[|u|WiP(@, &),
Q

Evidently,
I < |Ju[wir(@,a=N)|".

According to Lemma 2.1 and because |z|P/» < 1 in Q,, there exists a positive
constant c¢; such that

N
) (/Iu(m)|”|x|”/"+”_"’ dz + /ZIDiU(fﬂ)lplxlp/"+p_N dx)
Q Q. =1

< cafJuwhe (e, dr=M)|P.

Thus {un} € H"?(Q,d”~"); note that the sequence |[u|H"?(Q,d?~V)|| may be
unbounded.
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Now, we shall prove that ”u - unIW"P(Q,d”_N)” — 0 for n = oo. Obviously,

v — ua|WhP(Q, d”_N)“p < / lu(z)|” (1 = @n(|2]))?|x|P~N dz
Q.

N
+2P-1</Z
Q. =1

+n”/"/|u(z)|”|z[”/"'N dz)

"

Dau(a)|| (1 = gallz)) "l da

= Ii(n) + 277 (L2 (n) + n?/""PI3(n)).

Since (1—¢,(|z]))” < 1 and |2,| — 0, we have I; (n) — 0 and Iz(n) = 0. According
to Lemma 2.1 we get
p/n—p < enp/n—r( P P Lp p/n+p—N)||P
n I3(n) < cn (p/n) |u|Wh?(Qn,, d )|l
< s/ |lu|WHP(Q,,, dP )|
The facts n?/™ — 1 and |Q,| = 0 give n?/""PI3(n) — 0 which completes the
proof. O

As an easy consequence we obtain the following theorem.

Theorem 2.3. The set C$°(R) is dense in WP (Q,dP~N).

3. DIRECT DECOMPOSITION

Theorem 2.2 implies that in the case ¢ = p — N there is no space X such that
wbte(Q,dP~N) = HY?(Q,d?~N) @ X. Our idea of characterization of traces is to
find a space X such that W1 P(Q,dP~V) = H'?(Q,d?~) + X, but now, the sum on
the right hand side is not direct.

In what follows we will use the following notation:

B,={zeR":|z]<ray >0}, S,={zeR":|z|=ray >0}
Let oy stand for the (N — 1)-dimensional Hausdorff measure of the unit sphere

in RV

We shall prove the decomposition theorem only for the special case 2 = B;.
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Lemma 3.1. Let a be a real number, 0 < a < 1. Then there exists a positive
constant ¢ independent of o such that

/ %(T)E,w—fﬁnfds ~1(z) dSN-1(y) < /ZlDum)lpdSN (@)

5151

for all functions u € C*°(Bjt4).

Proof. FixA>0,0< )< a and u € C*®(Bj+q). For x € B, — B, we define
a function v by v(z) = u(z(X + 1= 1 ) Obviously, v € C=(B; — B;). According to
the classical trace theorem in [5] there exists a positive constant ¢ such that

(3.1) / %%(LSN 1(z) dSn-1(y)
518

:/ %C]SN—I(‘I)CISN—I(?J)

5151

Z|Dv )P dz =cl.

B2\B; i=1

The direct calculation gives

N _ _ ;T
Div(z) = ;Dju(x(A + lmi)) (6 (x + 1?%) +O-DT ),

where §; ; stands for Kronecker’s symbol. Consequently,

o <23 (s (3+ 1)

which yields

N
(3.2) I<

Dyu(e(n+ 7)) =

Now, we use the substitution y = x(\ + llzl ) i.

B,—B, J=1

(3.3) e=1(y-(1- )lfl)
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This transform is a composition of two transforms, the first being given by z =
y(1- l!:y%) and the second by = £. The first transform is radial and transfers S,
on Sr(b 1=a for all 7 € (1,2). Since in the radial direction this transform is a shift,

I—A)N—l

the Jacobian is equal to (1 -t , therefore the Jacobian J(y) of the transform

(3.3) is J(y) = ﬂﬂw]\—#—,— For y € By4+x \ B; we have 0 < J(y) < 351\_—1, which

yI¥=
together with (3.1) and (3.2) gives

~ N-1 N

Slsl Bl+,\\Bl ]=1

Due to the smoothness of u, letting A — 04 we obtain the assertion of the lemma.
O

Define two linear integral operators I, L by

;77\/]72|N_" / u(y) dSn-1(y)

Siu

(Ku)(z) =

and

(Lu)(z) = u(z) — (IKLu)(z).

Lemma 3.5. The operator K is bounded from W'?(B;,d?~") into W'P(By,
dP~N) and the operator L is bounded from W'?(B,,d?~") into H“?(B;,d?~ V).

Proof. According to Theorem 2.3 we can consider u € C*°(B;). Denote
v(z) = (Ku)(x). Holder’s inequality and Fubini’s theorem give
2

[e@reras= [| L [uwasw-io)
B B

1 }l

P
|z|P~N da

1
< /—2-/ lu(y)|P dSn—1(y) dSy_y1(x)rP~N dr
onrN-1
S.S,

0

= / lu(y)|P dSn—1(y)r?~ N dr < |ju|WhP (@, @),
08,

which yields
@4 Rl B < o).
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Obviously,
2
v(z) = - /u(zlx[)SN_l(z)

T

S1
and consequently,

N
2 T; 2£lli ou
Div(z) = ;;/ZDJ'U'(Z}:EI)ZJ'H dSn-1(2) = o Tal® / o, W) dSn-1(v),
S, I=1 S|z

where 2 5w stands for the derivative with respect to the outer normal. Since T_I"v
m}lvrr, we obtain in an analogous way the estimate

(3.5) ||D,-v|L”(Bl, d”—N)I < c||u,|W1”’(Bl , d”_N)”

which together with (3.3) gives the first assertion of the lemma.
Now, we shall prove the boundedness of the operator L. The inequality (3.5)
implies
| Diu = Diw|LP(By,dP~™)|| < (1 + o) |[u|WhP(By,dP~N)|.

It remains to estimate ||u - U|L”(Bl,d‘N)||. We have

IIU*UIL”(Bl»d‘”)IIP=ZS/

2
<=

[ (@) = u@) dSx-1)| dSx-s(@yr ar
S,

onrN-1
1

7,1\/1_1 / lu(z) — u(y)[P dSn—1(y) dSn—1(z)r~ dr.

0
The substitutions z = r, y = rn give
/ / fu(z) — w(y)P dSy -1 (y) dSy—1 ()
S,.S,

— p2N-2 / [u(rg) — u(rn)|? dSy—1(n) dSn—1(&).

5151

For r € (0,1) denote the right hand side by J(r) and set w(§) = u(rf), z € S;.
Lemma 3.1 yields

T S et / / L L dSy-a(©) dSwa (o

N
a2 [ S [Daw(€)] dSy1(6) = car?* N1 [ 3 ipat@)r asw-i (@)
S, 1=1 S, =1
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Thus,

1

/ =N / i |D;u(z)[P dSn -y (z) dr

0 S, 1

l[u = v|LP(By,d~M)|” < =
ON

<2 1, —Ny||P
< L fufwho(y, V)|

and we are done. O

A function u is said to be radial if and only if v has a constant value on each
sphere S;, 0 < 7, i.e. u(z) = u(|z/,0,0,...,0) for all z € B;.

Definition 3.3. Let us define spaces V1?(B;,d?~") and X (B;,d?~"). The
space V1'P(B;,dP~") is defined as the closure of all radial functions from C*(B;)
in the space WP(By,d?~"), the norm of a function u is equal to the norm of u
in W1P(B;,dP~"). The space X (Bj,d?~") is the set of all functions u = u; + us,
where u; € HYP(B,,d? ") and u, € VV?(B;,d?~"). The norm in this space is

given by

[u]X(Br,d>™)|| = _inf (JlualH*P(B1,d?~N)| + ||u2l VI (By,d?~M)]|).

u=u;+u2
Let us prove the basic decomposition theorem.
Theorem 3.4. The spaces WY?(B;,d*~N) and X (B,,d?~N) coincide and the
norms are equivalent.
Proof. Letu€ WYP(B;,d?~"). From Lemma 3.2 we immediately obtain

u X (B1,d=M)|| < ||Lu|HYP(By, d?= V)| + || Ku|W P (By, a2~
< cflulwhP(By, a7 N)).

The reverse inequality is a direct 60115equence of the obvious imbeddings
HY2(By,d?~N) — Wbi?(By,d?~N) and V1P (By,d?~N) — WLP(B,,dP~ V).

Note that it is possible to prove a similar decomposition theorem for more general
domains. However, for the characterization of traces in Theorems 4.11 and 5.4 we
shall need only the special case Q = B;. O
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4. DIRECT THEOREM

Definition 4.1. Let G C 99 and 0 < s < 1. Define the space WS’P(G,dE) as
the set of all functions u« defined on G with a finite norm

a2, ) = ([ @l asy-1(a)
G

|z

u(x) —u(y)|?, . 1/p
+/ | (_)yIN-(ﬁr)lp‘lwl dSN—l(y)dSN-l(x)) .
GG

Now, our aim is to prove the direct trace theorem. By P, for » > 0 we will denote
the set P, = {x € RN : z = (2',0),|2'| < r}. We make use of the weighted Sobolev
space H (ll’g’(Bl, dP~N) which is defined as the space of all functions u on B; with a
finite norm

Hu|H1'p By, d"N)| = (/(u z)|P|z|” N(lnﬁ)_pdx

1/p

+ [ S D@ Pla dz)
B 1=1

which was introduced by Kufner, Kadlec in [6]. Similarly, by L?(P;,d=N*(In 2)~7)
we understand the set of all functions u defined on P, with a finite norm

(/[u ', 0)?|2’ |-N+1(1n lz—l)—”dsN_l(x))l/p.

The following two assertions will be used in the proof of Lemma 5.11 below.

(a2 (n2) )

Proposition 4.2 (see [1]). The spaces W?(By,d?~"N) and H(l)(Bl,d”‘N) co-
incide and the norms are equivalent.

Proposition 4.3 (see [1]). There exists a unique bounded trace operator

T: H(By,d?~N) = L7 (PI,d—N“ (m %)_p).

Lemma 4.4. There exists a unique bounded trace operator
T: WhP(By,dP~N) = LP(P,dP~N).

Proof. This follows immediately from Propositions 4.2 and 4.3 and from the
obvious fact that |z|P~" < c|z|™V (In %)_p on Bj. a
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Now, we will prove that the trace operator T is bounded as a mapping from
Whe(By,dP=N) in Wi-1/PP(P,,dP~N). We will proceed as follows: We decompose
the space W?(By,d?~") in accordance with Theorem 3.4. In Theorem 4.7 we estab-
lish the boundedness of T: W1P(By,d?~N) — W1-1/P2(P dP—N). Proposition 1.3
implies that T is a bounded operator from H'?(B;,d?~") into H'~1/»?(P;, dP~N).
This and the result of Theorem 4.9 yield the boundedness of T: H'"P(B,,d?~N) —
Wi=1/pp(P, dp=N).

Lemma 4.5. There exists such a positive constant c that for all u € C*([0,1]),

11 1
— p
M dy 2P ?dz <e¢ Iu'(x)l”x”_l dz.
|z -yl
0

Proof. The left hand side of the inequality can be expressed as the sum of two

integrals,
// |u dy P2 dx
lz - yl"

and

11
I2 :/ 'U(IIJ)—U( )I dy.’l)p 2d!L‘
lz -yl

0z

Let us estimate I;. Obviously,

1z -
P
I S//( ! /lu'(t)ldt) dyz?~% dz.
T -y
00 y

Assume first that p > 2. Then 2P~2 < max(1,2773)[(z — y)?~2 + y?~2], and so

I < maX(1,2”‘3)[010/I (z
J[ s

y P
iy / [o'(8)] dt) (x —y)P~2dyda
Yy

z P
}_y/]u'(t)ldt) yP~? dydx] = max(1,2P7%)(I1; + L12).
Y
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Using Example 6.8 in [7] with ¢ = p — 2 and Fubini’s theorem we obtain
1
I

/l/lu (x)[P(z —y)P*dady = ———/lu (z)[PzP~ du.

/ W(014t) (@ - 9~ dy

To estimate ;2 we use Fubini’s theorem and Example 6.8 in [7] with e = 0:
11 1
Ly < c// [u(z)|PyP 2 dzdy = Fc_—l/Iu’(x)F’x”—ld.’c.
0y 0

Thus,

1
I £ cl‘/|u'(:1:)|”a;”‘l dz
0

for p > 2. Now, suppose 1 < p < 2. Fubini’s theorem and Example 6.8 in [7] with
e =0 yield

(4.1) j
|

1
< C/ Iu’($)|PyP—2 dzdy = p_f_l / IU’(I)|p$p_l dz.
00 0

—

z

p
( ! /|u'(t)|dt> dzyP~2dy
=y
y

T

o

To estimate I; we use Example 6.8 in [7] with ¢ = 0 and Fubini’s theorem; we obtain

11 11 1
B< [[wwraea<e [[Wwer a2 [Werea.
0z 0z 0

The last estimate and (4.1) give the desired inequality. 0O

Lemma 4.6. Let N > 2. Then there exists a positive constant ¢ such that the
inequality

1 c
——————dSy_ < ——
/ |z —y[NFo=T 7N 1) < [|x] - |

lyl=r
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holds for all z € RN and r > 0.

Proof. Denote the integral on the left hand side by In(z). For |z| = r the
inequality is obvious. Therefore assume |z| # r. In view of the spherical symmetry

of In(z) we can suppose that z = (0,0,...,|z|) € RV. Recall that for y € RN we
write y = (¥',yn), ¥’ € RVN~1. The substitution yy = r cos¢ gives
dSn_2(y) de
In (rz,‘ / / N+2p—l

((Jz| = rcosp)? + (rsinp)?)

0 |y'|=rcosep

/ rN-1ginVN=2,
=O0N-1
(|z|2 + 7% = 2|z|r cos p)

Fap=i de.

Let 0 < ¢ < . We have
(4.2) (Jz| = 7)? < (Jz| = r)? + 4|z|rsin® g = |z|* + r? — 2|z|r cos .
If |z| < 37, then 7 < 2(r — |z|), and so

r2p? < 4an®(|z| — r)? < 4n®(|z|* + % - 2|z|r cos p).

If |z| > 3r, then

2

[ 2 4 o) - 2] < [l = r)? + tfalrsin? 2],

r2p? < 2alrg? <
In both cases we have
ro < 2n(|z)? + r? — 2|z|r cos @) /2,
which, together with (4.2), yields

|lz] = 7] +re < (1 +2r)(J2]* + 12 = 2|z|r cos ) /2.

Consequently,
N-2
N 1 ! sin pdyp
< (1+2n)NtP / N+p—1'
5 (Il =r[+7¢)
For N = 2 we have
s
+1
1 (.'L') — (1 + 2n)7)+1 / T (1 + QTI)P ].
2 p+1 p*
J (||z|—-1‘l+rzp) p ||x|—r|
If N > 3, integration by parts gives
N -2 c
1 < (1 +2n)NHr= 1————I B —
which completes the proof. O
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Theorem 4.7. Let N > 2. Then the trace operator
T: VP (By,dr~N) —» Wi-Vre(py dr=)

is bounded.

Proof. In accordance with Definition 3.3 assume that « € C*(B,). Define a
function v of one real variable by v(r) = u(z) for r = |z|. Using Lemmas 4.6 and
then 4.5 we obtain

' 0)|P
/ / Iu(:l; 0) u(y 79)' dSN—l(y’)lzllp_N dxl

|z —y!|VHe=2

lz'|<1 |y |<1

/ / )o@ [ [ e Ao dSwoale) N dodr

le'|=r |y'|=r

<Cl/ [u(r) = v(o)|? / “ ,l Ip dSy_a(z")r?~N dodr
jorl=r
11
:JN_lcl/ IU(Lli—)—l—dg rP 2 dr cz/lv )PrP~ dr
00 Ir =l

1

2] / o' (r)|? / 2P~ dSy_1(z) dr
ON
S,

0

Il

1 N
<c3 //Z [Diu(z)|P|z|P~N dSy_1(z) dr < 03”u|W1"’(Bl,d”‘N)||p.
085, =1

To complete the proof we observe that, by Lemma 4.4,

|l L7 (Pr )] < e By, =

Lemma 4.8. Let N > 2. Then there exists a positive constant ¢ such that

/ llz’l(P—N)/P — |y’l(P—N)/P|p

1 J111—=N
|.’L'l _ y,|N+p_2 dy S CI(L |

RN -1
for all ' € RN-1,
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Proof. Remark that the inequality is trivial for 2’ = 0. Therefore we can
assume z' # 0. Denote the integral on the left hand side by I(z’). Substituting
y' = |2'|t we get

— |t|(p=N)/P|P
v [ =1 |
I(‘T,) - lz’l / l/\ _ t|N+p—2 dt

RN-1
— y4 — P
_ Ix'II_N |1 —|t|® N)/pl i+ |1 - |t|® N)/p| g
|A = t|N+p—2 [A = t|N+p—2
1t1<3 It]>3
=2 (LN + L(V),
where A = li_:l Let us first estimate J3(A). According to Lemma 4.6 we obtain
F _ dSn_1(t) 7 |1 — rlP=N)/p|p
- N N-1
J2(/\)_ /Il_r(P )/T’IP md’rsc. —IT—_—Tlp——dT
1/2 |t]=r 1/2

Since the integrand is O(1) as r — 1 and O(r=") as r — 0o we have J(\) < 0.
Now, let us estimate Jy(A). If p > N, then the integrand is a continuous function on
[0, %] and, consequently, integrable. If p < N, the integrand is O(|t|P~V) as |t| = 0
and so, using the spherical coordinates, we obtain again J;(\) < oo which completes
the proof. a

Theorem 4.9. Let N > 2. Then H=1/p»(Py dp=N) — Wi-1/pr(p; gr~—N).

Proof. Letue€ H'Y/PP(P, d?~VN). Since |z[P~N < c|z|'~N on P;, we have

/Iu(z)ll’,x|p-N dSn-1(z) < c“ulHl—l/P,P(Pl,dp—N)”P'
Py

To estimate the corresponding seminorm we use Lemma 4.8:

u(z’,0) — u(y’,0)|P e
/ | (ll/ ‘)ylle.Jp-ﬂ)l dy’lz 'p N 42!

e’ |<1 |y'|<1
’ J(p—N)/p _ (y',0) | 'l(P—N)/plp
p—1 |U(T ,0) || uly,v)y I,
© le'l<1 |y'|<1 | —y'|NHP-2 e
z'|<1 |y'|<
mll(p—N)/P _ |y'|(p—N)/p|”
) Pll 2 - ly’ dz’
+| /1 ‘ /1 'U(y )‘ |l" _ ylll\+p—2 ¢y dx
' | <1 |y'|<

<227 M1+ o)||u|H PP a7
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As an easy consequence of Proposition 1.3, Lemma 3.4, 4.7 and 4.9 we have the
following Lemma.

Lemma 4.10. Let N > 2. Then the trace operator
T: WhP(By,dP~N) —» W'=1/pp(py aP~N)

is bounded.

Using the local covering of the boundary from Definition 1.1 and standard tech-
niques it is not difficult to extend Lemma 4.10 in the following way.

Theorem 4.11. Let N > 2. Then the trace operator
T: WhP(Q,dP~N) » wi-1/Pr(gqQ, dp—N)

is bounded.

5. EXTENSION OPERATOR

Now we will construct an extension operator R corresponding to the operator T'.
First we will deal with the particular case of the cylindrical domain C = {z € RV :
xz = (z',zn),|z'| < 1,0 < 2y < 1}. Recall that the Hardy-Littlewood maximal
operator is defined for u € Ll (RM) by (Mu)(z) = sup ﬁfa |u(y)| dy, where the
supremum is taken over all balls B in RY such that x € B. Let oy_; € C®(RN™1)
be a function satisfying [ ¢@n_i(z)dz =1, pn—_1(z) > 0 and pn_1(z) = 0 for

1

RN-
|z > 1.
Lemma 5.1 (see [8]). Let a be a real number. Then the inequality
| Mu|LP (RN |2|*)|| < ef|u|LP (RN, |2]*)||
holds for all u € LP(RY | |z|*) if and only if —-N < a < N(p — 1).

Lemma 5.2. Let N > 2. Then the operator R defined by

, 1 z' -y N
R = e [ ena () u)ay

|z’ —y'|<zn
is a linear and bounded mapping from W'=1/P»(Py dP=N) into W1P(C,dP—N).
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Proof. Letue W-1/PP(P, dP~N). Extend the function u by zero for (z',0),
|z'] > 2. We will denote this extension again by u. We can write

X ’ _ 1 X z' - yl u(ylvo) - ’u(xl,O) /
(D;Ru)(z',zn) = N1 / DMN_I( TN ) TN dy

le'—y'|<zn

fort=1,2,...,N—1 and

1 ' -y
Ovri@ o) == [ (a=Menat(E2E)
lz'—y'|<zn
N-1

— Z Dipn— 1(‘1" —y> xNyi)”(ylvo)x_Nu(‘T,’o)d ’

i=1 TN

Let us estimate Iy = ”RuILP(C, dP"N)”P. We have

e [l [ e

|z'|]<1 O g’ —y'|<zn
1 ! P ' P p—N '
+ —FT lu(y',0)|Pdy’ | 2% " day da’ ) = c(Jo1 + lo2).
pl<ife] " jei—yl<en

By Fubini’s theorem we obtain

1
Ip1 € / ( / |Mu(z',0)|P|2' P~ da;') dzy.
0 zn<|z'|<1

According to Lemma 5.1 we have

(5.1) I < / |Mu(z')|Pl2’|P~N da’ < e / lu(a") |2’ [P~V da’
'1;']<1 |I'|<2
< e ||luWiee(py dr=N)||”
Let us estimate Ipp. If p < N, then the inequality |2'| < @y yields 5 N < |2/|P~N.
Analogously as in the estimate of Iy; we get

1
(5.2) Iz < /( / |Mu(2',0)|P|a’ P~V da:') day
0 Jo'|<zn

< czllulwl_l/”’p(]’;g,(lp_N)”P‘
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Let p > N. Using Holder’s inequality we obtain

1
22N B
Ipz < / /%( / lu(y’, 0)[P[y'|? Ndy')
X

lo|<1 2] ~N 'y’ |<en

N-p Pl
X ( / ly'| =1 dy') dzy dz’.

|z’ —y'|<zN

Since IZ—:—F < 0, we can use the obvious estimate

TN
N—p
= ' nN=r ’ N-2 —L+N 1
/ ly'| 7=t dy' < / |y|1'—1dy=0N_1/r11+ dr = cgz "
|z’ —y'|<zn ¥ |<zn 0

It implies that

1
mee [ [ [ w@0Ph P aydo e
T

N
lz’]<1 |z!| |’ —y'|<z N

03// / lu(y’, 0)[Ply'|P~N dy' da’ dan.

Olz’|<1 e’ —y'|<zn
. . . ' —y / ) .
Using the substitution = =t and Fubini’s theorem we obtain

Ips < 03/ / / lu(z' —t'zn,0)|P|2" — t'an|P~N da’ dt’ day.

0)t'|<1|z'|<1

The substitution 2z’ = 2’ — t'ay gives |2'| = |2’ — t'an]| < |2'| + |t'|en < 2, which
immediately yields

oz < s / / [u(z")|P|2'|P~N dz' dt’ < 03Hu|W1 Ve (py, dp=N)||7.

lt'l<1 |2' |<2
The last estimate, (5.1) and (5.2) imply
(5.3) Iy < cqllu|WE=VPe(Py ar=N)||".
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Now, let us estimate I; = ||DiRu|W1'1’(C, d”‘N)Hp. Using Fubini’s theorem we

obtain
=]
' 0) — /’0 4
( / / ( / |u(y ’ ) u(x )I dy') '.Z"lp_N dzy dz’
TN
|z’|<1 O |z’ —y'|[<zN
1
1 ! _ ! p
+ / /( T / [u(y,0) u(a:,O)]dy,) z’}’v_Nda:Ndz')
Ty TN
[='|<1[z'] |le'—y'|<zn

= C5(Ii1 + I,'2).

By Holder’s inequality and Fubini’s theorem we have

'
T

=’
lu(y’,0) — u(a’,0) e -
I; < / [y — 2| NP2 e dzy|z'|P N dy’ dz’
,zll<l 'zl_yll<lzll III_,yll N
1 lu(y’,0) —u(z',0)|", , .
<wrpmz | [ e e
[2']<1 |2’ —y'|<[2’|
Since |y'| — |z'| < |y’ — 2’| < |2'], we have |y’| < 2|2'| < 2. Thus, extending the

integration domain we obtain
(5.4) I < cof|u[W=1/Pe(py, ar= )|,

To estimate I;; we use analogous techniques as in the estimate of Ips. If p < N,
then Holder’s inequality and Fubini’s theorem yield

1
uly) - ul@)” y — o[V -
(5:5) I < / / = :[:’lN-HJ I2 / | N+p—1 dey|z' P~ dy' da’
TN

l']<1 |z’ —y'|<1 l='—y']

< or|fu|Wr1/Pe(py, dr )P

In the case p > N we get

1
1 / - ’,0 P
Ii2 < CS / / _ﬁ' / Iu(y ’0) xpu(x )‘ Iyllp'—N dyl dfl'N d.’l',
N

N
[='|<1 [’} [z'—y'|<zN

lu(y’,0) — u(@’,0)[” ,_n
S / / ly — 2/ |N+r—2 ly'|P~" dy' dz’

Jlz'|<1 |z’ —y'|<1
< col[u|W=1/Pr(Py,ap= ) |7
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The assertion of the lemma follows from the last estimate, (5.3), (5.4) and (5.5).

Lemma 5.3. Let N > 2. Then there exists a linear bounded operator
R: W'=V/re(py dp=N) & WP (C,dP~N)
such that RTu = u for all u € W1=V/pp(Py dr=N).

Proof. Lemma 3.2 in [9] yields the existence of a linear bounded operator
S: Wl—l/P’P(Pl,d”‘N) — W“‘/P"’(Pg,d”‘N) such that Su = u on P;. The opera-
tor R is now the superposition of S and of the extension operator from Lemma 5.2.
It is easily seen that TRu = u if u € W'=1/P2(P, dP~N), which completes the proof.

)

As an immediate consequence we have the following theorem.
Theorem 5.4. Let N > 2. Then there exists a linear bounded operator
R: W=/ (9Q, dP~N) - wir(Q,dP~N)

such that TRu = u for all u € W'=1/P?(9Q, dP~N).
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