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I. INTRODUCTION

G. Jungck [4] introduced more generalized commuting mappings, called compat-
ible mappings, which are more general than those of weakly commuting mappings
[12]. Several authors proved common fixed point theorems using this concept ([5]-[6]
and [8]-[10]). In general, commuting mappings are weakly commuting and weakly
commuting mappings are compatible, but the converses are not necessarily true.

Recently, G. Jungck, P. P. Murthy and Y. J. Cho [7] defined the concept of compat-
ible mappings of type (A) which is equivalent to the concept of compatible mappings
under some conditions and proved a common fixed point theorem for compatible
mappings of type (A) in a metric space.

Further, P.P. Murthy, Y.J. Cho and B. Fisher [10] proved some fixed point the-
orems of Gregus type (see [1]-[3]) for compatible mappings of type (A) in Banach
spaces.

In this paper we introduce the concept of compatible mappings of type (B) and
compare these mappings with compatible mappings and compatible mappings of type
(A) in normed spaces. In the sequel, we derive some relations between these map-
pings. Also, we prove a common fixed point theorem of Gregu$ type for compatible
mappings of type (B) in Banach spaces.

* Research partially supported by U.G.C., New Delhi, India. 1991 AMS Subject Classifica-
tion Code: 54H25. Key words and phrases: Compatible mappings, compatible mappings
of type (A), compatible mappings of type (B) and common fixed points.

685



II. COMPATIBLE MAPPINGS OF TYPE (B)

In this section we introduce the concept of compatible mappings of type (B) and
show that under some conditions these mappings are equivalent to compatible map-
pings and compatible mappings of type (A) in a normed space. Throughout this
paper, X denotes a normed space (X, || - ||) with the norm || - ||.

We state two definitions ([11]), which are motivated by [4] and [7].

Definition 2.1. Let S and T be mappings from a normed space X into itself.
The mappings S and T are said to be compatible if

lim ||STz, —TSz,||=0

n—o0

whenever {z,} is a sequence in X such that lim Sz, = lim Tz, = t for some
t e X n—00 n—oo

Definition 2.2. Let S and T be mappings from a normed space X into itself.
The mappings S and T are said to be compatible of type (A) if

li_l)n TSz, — SSz,||=0 and lim ||STz, —TTz,||=0
n oo n— oo

whenever {z,} is a sequence in X such that lim Sz, = lim Tz, = t for some
t 6 X n—00 n—o0

Further, we introduce

Definition 2.3. Let S and T be mappings from a normed space X into itself.
The mappings S and T are said to be compatible of type (B) if

lim ||STxz, — TTxn|| < 3[ lim [|STx, — St|| + lim ||St - S5Sz,||]
n—o00 n—oo n—o00

and
lim ||TSzn — SSa,|| < 3[ lim ||TSz, — Tt|| + lim ||T¢— TTz,||]
n— oo n— 00 n—o00
whenever {z,} is a sequence in X such that lim Sz, = lim Tz, =t for some
X n—oo n— 00
te X.

The following Propositions 2.1-2.3 show that Definition 2.1 and 2.2 are equivalent
under some conditions [11]:

Proposition 2.1. Let S and T be continuous mappings of a normed space X into
itself. If S and T are compatible, then they are compatible of type (A).
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Proposition 2.2. Let S and T be compatible mappings of type (A) from a
normed space X into itself. If one of S and T is continuous, then S and T are
compatible.

From Propositions 2.1 and 2.2 we have:

Proposition 2.3. Let S and T be continuous mappings from a normed space
X into itself. Then S and T are compatible if and only if they are compatible of
type (A).

By suitable examples, P. P. Murthy, Y. J. Cho and B. Fisher [11] have shown that
Proposition 2.3 is not true if S and 7T are not continuous.

The following propositions show that Definitions 2.1, 2.2 and 2.3 are equivalent
under some conditions.

Proposition 2.4. Every pair of compatible mappings of type (A) is compatible
of type (B).

Proof. Suppose that S and T are compatible mappings of type (A), then we
have

0=_lim [|STz, — TTx,| < i[ lim ||STz, — St||+ lim ||St — SSzn|]
n—oo n—oo n—oo
and
0= lim ||[TSz, — SSz,|| < §[ lim ||TSz, — Tt||+ lim (Tt - TTz,||]
n— o0 n— o0 n—00
as derived. O

Proposition 2.5. Let S and T be continuous mappings of a normed space X into
itself. If S and T are compatible of type (B), then they are compatible of type (A)

Proof. Let {z,} be a sequence in X such that lim Sz, = lim Tz, =t for
n—ro0 n—0o0

some t € X. Since S and T are continuous, we have

lim (|STz, — TTa,| < i[ lim [|ST2, — St||+ lim ||St — SSx,||]
n—00 n—00 11— 00
=||St - St|| =0

and

lim |TSz, — SSz,|| < [} lim |TSz, — Tt|| + lim ||Tt - TTz,||]
n-—oo n—00 n—00
=||Tt-Tt|| =0.

Therefore, S and T are compatible mappings of type (A). This completes the proof.
O
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Proposition 2.6. Let S and T be continuous mappings of a normed space X into
itself. If S and T are compatible of type (B), then they are compatible.

Proof. Let {z,} be a sequence in X such that lim Sz, = lim Tz, =t for
n—oo n—oo0

some t € X. Since S and T are continuous, we have

lim SSz, = St = lim STz,

n—oo n—oo

and
lim TSz, =Tt = lim TTx,.

n—oo n— oo

By triangle inequality, we have
|STzy, — TSzy|| < |STxp, — TTxn|| + || TTx0 — TS0

Letting n — oo and taking into account that S and T are compatible of type (B),
we have

li_)m |ISTz, — TSz,|| < lim ||STz, — TTx,| + ILm |1 TTz,, — TSz,
n oo n— o0 n oo
< 3[ lim ||STz, — St|| + lim ||St — SSz||
n—o0 n—o0
+ lim (|TTz, — TSz,||]
n—oo
0.

IN

Therefore, S and T are compatible. This completes the proof. a

Proposition 2.7. Let S and T be continuous mappings from a normed space X
into itself. If S and T are compatible, then they are compatible of type (B).

By unifying Proposition 2.4-2.7, we have

Proposition 2.8. Let S and T be continuous mappings from a normed space X
into itself. Then

(1) S and T are compatible if and only if they are compatible of type (B);

(2) S and T are compatible of type (A) if and only if they are compatible of

type (B).

The following examples show that Proposition 2.8 is not true if S and 7" are not
continuous.

688



Example 2.1. Let X = R, the set of all real numbers, with the Euclidean norm
|| - |l- Define S and T: X — X as follows:

L ifz#0, L ifz #£0,
S(z) = = # and T(z)= = #
1 ifz=0, 2 ifzx=0.

Then S and T are not continuous at ¢ = 0. Consider a sequence {z,} in X defined
by z, =n,n=1,2,.... Then for n = oo we have

1 1
Stp=——t=0, To,=——+t=0
n4 x?

and
lim ||ST%n — TSz.|| = lim ||n® —n®|| = 0.
n—o0 n—oo

However, the following limits do not exist:
lim ||STz, — TTz,| = lim ||n® — n?|| = oo,
n—o00 n—00
1 .. .
5 lim (ST, ~ 50|+ lim [}S0 — SSz. ]
— 11 8 _ : _ 160 —
=1 [nlgr;o In® = 1]l + lim fl1-n ] =00
and
lim ||TSz, — SSz,|| = lim ||n® = n'®|| = oo,
n—o00 n—oo
1, .. .
3 [nll_)rrgo TSz, —TO| + nlgr;o |70 — TTx,l|]
= L[ lim |In® = 2|+ lim |2 —n*|]] = oo.
n—oo n—o0

Therefore S and T are compatible but they are neither compatible of type (A) nor
compatible of type (B).

Example 2.2. Let X = [0,6] with the Euclidean norm || - ||. Define S and T:
X = X by

z ifz €]0,3), 6—=z ifz€]0,3),
S(zr) = and T(z) =
6 if € [3,6], 6 if = € [3,6].

Then S and T are not continuous at ¢t = 3. Now, we assert that S and T are not
compatible but they are compatible of type (A) and hence compatible of type (B).
To see this, suppose that {z,,} C [0, 6] and that Sz,, T,, = t. By definition of S and
T, t € [3,6]. Since S and T agree on [3, 6], we have only to consider ¢t = 3. So we can
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suppose that z, — 3 and that z, < 3 for all n. Then Tz, =6 — z,, = 3 from the
right and Sxz,, = z,, — 3 from the left. Thus, since z,, < 3 and 6 — z,, > 3, for all n,

|STxs — TSyl = ||6 = (6 — z,)|| — 3.
Further, we have

le |STz, — TTx,| = ||6 — 6] = 0,

. . 3
3 Jim [STz, — S3| + lim [|S3 ~ SSzall] = 3[I6 = 6l + 16 — zall = 5

and
li_)m |TSzn — SSzn|| = ||(6 — z0) — za]| = O,
. . 3
L[ Jim ISz = T3 + lim T3 =TTz, = {16~ ) ~ 6l + 6 ~ 61] -
as £, — 3. Therefore, S and T are both compatible mappings of type (A) and

compatible mappings of type (B) but they are not compatible.

Example 2.3. Let X = [0,00) with the Euclidean norm. Define S and T":
X - X by

1+2z ifz€[0,1), 1-z ifze[0,1),
S(z) = and T(z)=
1 if z € [1, 00), 2 if z € [1,00).

Then S and T are not continuous at t = 1. Now, we assert that S and T are neither
compatible of type (A) nor compatible of type (B), but they are compatible. To
verify this, we consider that {z,} C [0,00) converges to zero, as we know from the
definition of S and T', and that Sz,,, Tz, -t = 1. Then Sz, =1+2x, — 1 from the
right and Tz, =1 — 2, — 1 from the left. Thus, sincel +z, >land1-1z, <1
for all n,

|1STx, — TSz, = (2 —2,) = 2|| = 0.

Further, we have
]i_r)n |1STzy — TTxa|| = 1(2 = z0) — 2| = 2#0,
. . 1
%[nlgr;o STz, — S1|| + nlgl;o (151 = SSanll = L[II2—2n) = 1| + 11 = 1|]] = 3
and

lim ||TSz, — SSz,||=]2-1]|=1#0,

n—o0

%[nlggo ITSzn = T1| + lim |71~ TTa,|| = HiI2=2l+ 112 = zafl] = 1

as £, — 0. Therefore S and T are compatible but they are neither compatible
mappings of type (A) nor compatible of type (B).
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Example 2.4. Let X = [0,2] with the Euclidean norm ||.|]. Define S and T:
X = X by

Ly ifzelo,d), Lz ifzelol),
S(x)=4¢2 if z = 3, and T(z)=<1 ifz=1,
1 if z € (3,2], 0 if z € (3,2].
Then S and T are not continuous at ¢ = . Now we assert that S and T are

2
compatible of type (B) but they are neither compatible nor compatible of type (A).

For, suppose that {z,} C [0,2] and that Sz,,Tz, =t = % By definition of S and
T,t e {1}. So we can suppose z,, — 0. Then Sz, = § +z, — 3 from the right and

Tx, = § — Tn — § from the left. Also,

ST — TSzy|| = ||[(1 —x,) — 0] = 1 #0.
Further, we have
lim ||STx, — TTxz,|| = lim ||[(1 —2,) —z.]| =1,
n—oo n—oo

5[ lim [1ST@n — S5l + lim [IS5 — SSzall]

=3[ Jim (1~ 2a) = 2]+ lim 2~ 1)) =1
and

lim ||TSz, — SSz,||= lim ||0-1]| =1,
n—oo . n—o0
5[ Jim ITSen = T4 + lim |74 — TTz]
= %[nlgrgo 0= 1)l + lim {1~ zall] = 1.
Therefore, S and T are neither compatible nor compatible of type (A) but they are
compatible of type (B).
We need the following properties of * compatible mappings of type (B) for our
main theorems:
Proposition 2.9. Let S and T be compatible mappings of type (B) from a normed

space X into itself. If St = T't for some t € X, then STt =SSt =TTt =T St.

Proof. Suppose that {z,} is a sequence in X defined by z, =t, n =1,2,...
for some t € X and St = Tt = z, say. Then we have Sz,,Tz, — St as n — oo.
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Since S and T are compatible of type (B), we have

ISTt = TTt|| = lim ||ST, — TTz,|

L[ lim [|STz, — SSt|l + lim [|SSt - SSza][]

1Sz — Sz|| = 0.

N

Hence we have STt = TTt. Therefore, we have STt = SSt = TTt = TSt since
St = Tt. This completes the proof. .0

From Proposition 2.6 and Proposition 2.2 of G. Jungck [5] we immediately have

Proposition 2.10. Let S and T be compatible mappings of type (B) from a
normed space X into itself. Suppose that lim Sz, = lim Tz, =t for somet € X.

n—oco n—o0
Then
(1) lim TTx, = St if S is continuous at t.
n—oo
(2) lim SSz, =Tt if T is continuous at t.
n—oo
(3) STt =TSt and St =Tt if S and T are continuous at t.

Proof. (1) Suppose that S is continuous at ¢. Since lim Sz, = 1i_£n Tz, =t
n oo

n— oo
for some t € X, we have SSz,,, STz, = St asn — co. Since S and T are compatible
of type (B), we have

lim ||St—TTz,| = lim ||STx, — TTx,|

n—oo n—oo

[y . i -

3 [1111_1’1;o |ISTz, — St|| + 7}}_{20 ISt — SSx,||]
]St — St|| = 0.

N

Therefore, lim TTzx, = St. This completes the proof.
n—o00
(2) The proof of lim SSz, = Tt follows by similar arguments as in (1).
n—o0

(3) Suppose that S and T are continuous at ¢t. Since Tx, — t asn — oo and S is
continuous at ¢, by Proposition 2.10 (1), TTz, — St as n — co. On the other hand,
T is also continuous at t, TTx,, — Tt. Thus, we have St = T't by the uniqueness of
the limit and so by Proposition 2.9, STt = T'St. This completes the proof. a
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III. A COMMON FIXED POINT THEOREM OF GREGUS TYPE

Let RT be the set of non-negative real numbers and F the family of mappings ¢
from R* into R* such that each ¢ is upper semicontinuous, nondecreasing in each
coordinate variable, and ¢(t) < t for any ¢t > 0.

Let A, B, S and T be mappings from a normed space X into itself such that

(3.1) A(X)cCcT(X) and B(X)cC S(X),

(3:2) ll4z — Byl < ¢(allSz — Ty||” + (1 — a) max{||Sz — Az||”, |Ty - By|l”,
ISz — Az||¥||Ty — Byl|%. | Ty — Az ?||Sz ~ By||%,
31Ty = Az||” + ISz ~ By|*]})

forall z, yin X, where0<a<1l,p>landyp € F.

Then, by (3.1), since A(X) C T(X), for an arbitrary point 2o € X there exists a
point z; € X such that Azg = T'z;. Since B(X) C S(X), for this point z; we can
choose a point 5 € X such that Bx; = Sz, and so on. Inductively, we can define
a sequence {y,} in X such that

(33) Yon = T$2n+1 = Ax2n and: Yont1 = Sz2n+2 = Bw2n+1

for every n =0,1,2,....
For our main theorems, we need the following lemmas:

Lemma 3.1. ([13]). For any t > 0, ¢(t) < t if and only if li_)m ¢™(t) = 0 where
n oo
@™ denotes the n-times repeated composition of ¢ with itself.

Lemma 3.2. Let A, B, S and T be mappings from & normed space X into itself
satisfying the conditions (3.1) and (3.2). Then lim ||y, —yn+1l| = 0, where {y,} is
n— 00
the sequence in X defined by (3.3).

Proof. By (3.2) and (3.3) we have

ly2n = Y2n41ll” = [[Az2n — Bans ||
< ¢(allyzn—1 = y2nll” + (1 — a) max{|lyzn—1 = y2all",
ly2n — Y2ns1 P lw2n—1 = Y2nll? ly2n — Y2n41ll %,
ly2n = y2nll % ly2n—1 = y2nsall®

+ 3 [lv2n = v2ull” + lg2n—1 = y2ns1lIP]}).
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If lyan — Y2n+1ll > lly2n—1 — y2x|| in the above inequality, then

ly2n = y2nt1lIP < @ (allyzn = y2ntall” + (1 — @) max{|lyzn — y2n41ll”.
ly2n = yans1ll?, 1v2n — Y2nt1 17,0, 3 [I1y2n — Yont1 ||
+ [ly2n — v2n4111”]})
< lly2n = y2n41ll?,

which is a contradiction. Thus
ly2n = y2nt+1ll” < w(lly2n-1 = y2ull?).
Similarly, we have
ly2n+1 = Yant2ll” < (lly2n — y2nta 7).
It follows that
lyn = Yns1ll” < @(llyn—1 — ¥all”) <. < @™ (llyo — w1 I7).
It follows from Lemma 3.1 that
nll_{lgo lyn — Y41l = 0.
This completes the proof. O

Lemma 3.3. Let A, B, S and T be mappings from a normed space X into itself
satisfying the conditions (3.1) and (3.2). Then the sequence {y,} defined by (3.3) is
a Cauchy sequence in X.

Proof. By virtue of Lemma 3.2 it is sufficient to show that a subsequence {y2n}
of {y»} is not a Cauchy sequence in X. Then there is an € > 0 such that for each
even integer 2k, there exist even integers 2m(k) and 2n(k) with 2m(k) > 2n(k) > 2k
such that

(3.4) 1Y2m (k) = Yanr)ll > €.

For each even integer 2k, let 2m(k) be the least even integer exceeding 2n(k) satis-
fying (3.4), that is,

(3.5) lY2n(k) = Yom)—2ll <€ and  ||yanx) = Y2mmll > €.
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Then for each even integer 2k we have

€ < [Y2n(k) = Y2m@ll
< yznk) = Yomk)—2ll + 1v2mk)—2 = Yonk)-1ll + 1¥2m@x)—1 — Y2m@)ll-

It follows from Lemma 3.2 and (3.5) that
(3.6) lY2n(k) = Yom)ll = € as k — oo.

By the triangle inequality, we have

y2n(ky = Y2mk)=1 1l = 1Y2n(k) — y2m(k)”| < Y2mk)-1 = Yami |l

and

|”y2n(k)+1 - yzm(k)—xu - ”y2n(k) - y2m(k)”|
< NY2mr) =1 = Y2mm) | + N¥2n(k) = Y2n(r)+11l-

From Lemma 3.2 and (3.6), as k = oo,

(3.7) ”y2n(k) - y2m(k)—1” —+ & and ”y‘ln(k)+1 - yzm(k)—l“ - E.

Therefore, by (3.2) and (3.3), we have

NY2n(k) = Y2m) | < 1W2nk) = Y2n)+1ll + 1AZ2m k) = Bamll
<

|
IY2n(k) = Yaney+1ll + [@(allyampy -1 = Y2 I”

+ (1 = @) max{||yamr)—1 = Y2m(®) 1> [ Y2n(k) = Yan() 1117
Y2 (k)1 = Y2y | [1Y2n () — Van(ry 41112,

Y2ty = Y2 12 V2 () =1 = Yony+1ll 2

1
r,

2nky = Yam II” + V2m) -1 = Yanr)+11I7]})
Since ¢ € F, by Lemma 3.2, (3.6) and (3.7) we have

1
€ [Lp(as” + (1 — a) max{0,0,e’})]" <e

N

as k = oo in (3.8), which is a contradiction. Therefore, {y2,} is a Cauchy sequence
in X. This completes the proof. 0O

695



Now, we are ready to present our main theorem.

Theorem 3.4. Let A, B, S and T be mappings from a Banach space (X, d) into
itself satisfying the conditions (3.1) and (3.2). Suppose that one of A, B, S and T
is continuous, and the pairs A, S and B, T are compatible of type (B).

Then A, B, S and T have a unique common fixed point z in X.

Proof. Let {y,} be the sequence in X defined by (3.3). By Lemma 3.3, {y,} is
a Cauchy sequence in X and hence it converges to some point z in X. Consequently,
subsequences {Az2,}, {BZ2n+1}, {ST2.} and {Tzan+1} of {y.} also converge to z.

Now, suppose that A is continuous. Since A and S are compatible of type (B), it
follows from Proposition 2.10 that

ASz, and SSz9, > Az asn — oo.
By (3.2) we have

|ASz2n — Brant1 |’ < ¢(allSSz2n — Tzan41|P
+ (1 - a) max{||SSz2n — AST2a”, [TZ2n41 — BT2n41ll?,
[1SS22n — AS22n|1 | T220+1 — Brans1ll?,
I T22n+1 — ASz2nl|21|SST2n — Baons1ll?,

T z2n41 — ASz2n|P + [|SSz2n — Bx2n+1||”]}).
By letting n — 0o, we have

1Az — z||” < p(al|Az — ||
+ (1 - a)max{0,0,0, ||z — Az|”, 3 [llz — Az||” + [|Az — z||"]}
<|lAz = =|7,

which is a contradiction. Thus we have Az = z. Since A(X) C T(X), there exists a
point u € X such that z = Az = Tu. Again by (3.2), we have

|ASz2, — Bul||? < w(a||SSzan — Tul|?
+ (1 — a)max{||SSz2, — ASz2,||?, || Tu — Bul|?,
1SS22n — ASw2n||% - |[Tu — Bul|%,
ITu — ASzo,||% - [|SS22n — Bul|®
LITu — ASzan P + ||SST20 — Bul|?]}).
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By letting n — o0, ¢ € F' we obtain

llz = Bu|l” < (¢(1 — a) max{0, ||z — Bul|?,0,0, }||z — Bul||?})
< ||z — Bul|?,

which implies that z = Bu. Since B and T are compatible of type (B) and Tu =
Bu = z, by Proposition 2.9, TBu = BT'w and hence Tz = TBu = BTu = Bz.
Moreover, by (3.2) we have

1422 — B2|lP < @(allSz2n = T=|I” + (1 - a) max{||Szzn — Azzn?,
Tz = Bz||, || Szan — Azsnl|® - | Tz — Bz||%,
|72 — Azzn|¥ - [|Sz2n — B2,
s 1Tz = Azan||P + || Szon — Bz|[P]}).

By letting n — oo, we obtain

llz = Bz||P < ¢(allz = Bz||” + (1 — a) max{0,0,0, ||z — Bz||?,||z — Bz||"})
< “Z - Bz”p»

which means that z = Bz. Since B(X) C S(X), there exists a point v € X such
that z = Bz = Sv. By using (3.2) we have

|Av — 2||” = ||Av — Bz||?
< p(al|Sv = Tz||” + (1 — a) max{||Sv — Av||?, ||Tz — Bz||?,
ISv — Avl|% - |7z ~ Bz||%,||Tz — Av||¥||Sv — B|%,
31Tz — Av|l? +||Sv ~ Bz||”]})
= ¢((1 — a) max{||z — Av||?,0,0,0, 3||z — Av||’})
< ||z = Av]?,

so that Av = z. Since A and S are compatible of type (B) and Av = Sv = z,
SAv = ASv and hence Sz = SAv = ASv = Az. Therefore, z is a common fixed
point of A, B, S and T. Similarly, we can also complete the proof when B, S and T
are continuous.

It follows easily from (3.2) that z is a unique common fixed point of A, B, S and
T'. This completes the proof. a

Remark. Theorem 3.4 generalizes the result of P.P. Murthy, Y.J. Cho and
B. Fisher [11] with the generalized Gregu3 type [3] mappings.
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