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COMPATIBLE MAPPINGS OF TYPE (B) AND COMMON 

FIXED POINT THEOREMS OF GREGU5 TYPE 

H . K . PATHAK,* Bhilai Nagar, and M . S . KHAN, Al-Khod 

(Received February 25, 1994) 

I . INTRODUCTION 

G. Jungck [4] introduced more generalized commuting mappings, called compat­
ible mappings, which are more general than those of weakly commuting mappings 
[12]. Several authors proved common fixed point theorems using this concept ([5]-[6] 
and [8]-[10]). In general, commuting mappings are weakly commuting and weakly 
commuting mappings are compatible, but the converses are not necessarily true. 

Recently, G. Jungck, P. P. Murthy and Y. J. Cho [7] defined the concept of compat­
ible mappings of type (A) which is equivalent to the concept of compatible mappings 
under some conditions and proved a common fixed point theorem for compatible 
mappings of type (A) in a metric space. 

Further, P .P. Murthy, Y. J. Cho and B. Fisher [10] proved some fixed point the­
orems of Gregus type (see [l]-[3]) for compatible mappings of type (A) in Banach 
spaces. 

In this paper we introduce the concept of compatible mappings of type (B) and 
compare these mappings with compatible mappings and compatible mappings of type 
(A) in normed spaces. In the sequel, we derive some relations between these map­
pings. Also, we prove a common fixed point theorem of Gregus type for compatible 
mappings of type (B) in Banach spaces. 

* Research part ial ly suppor ted by U . G . C , New Delhi, India. 1991 AMS Subject Classifica­
tion Code: 54H25. Key words and phrases: Compat ib le mappings , compat ible mappings 
of t ype (A), compat ible mapp ings of type (B) and common fixed points. 
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II. COMPATIBLE MAPPINGS OF TYPE (B) 

In this section we introduce the concept of compatible mappings of type (B) and 
show that under some conditions these mappings are equivalent to compatible map­
pings and compatible mappings of type (A) in a normed space. Throughout this 
paper, X denotes a normed space (X, || • ||) with the norm || • ||. 

We state two definitions ([11]), which are motivated by [4] and [7]. 

Definition 2.1. Let S and T be mappings from a normed space X into itself. 
The mappings S and T are said to be compatible if 

lim || STrvn — -FSa;n|| = 0 
71—>00 

whenever {xn} is a sequence in X such that lim Sxn = lim Txn = t for some 
7i—>oo n — > o o 

tex. 
Definition 2.2. Let S and T be mappings from a normed space X into itself. 

The mappings 5 and T are said to be compatible of type (A) if 

lim \\TSxn - SSxn\\ = 0 and lim \\STxn - TTxn\\ = 0 
n — • o o n—too 

whenever {xn} is a sequence in X such that lim Sxn = lim Txn = t for some 
n — > o o n — > o o 

tex. 
Further, we introduce 

Definition 2.3. Let S and T be mappings from a normed space X into itself. 
The mappings 5 and T are said to be compatible of type (B) if 

lim ||SF:rn - TTxn\\ < U lim \\STxn - St\\ + lim \\St - SSxn\\] 
n — > o o 7 i - > o o n — > o o 

and 

lim \\TSxn-SSxn\\<:h[ lim \\TSxn - Tt\\ + lim \\Tt-TTxn\\] 
n-+oo 7 1 — • O O 71—>oo 

whenever {xn} is a sequence in X such that lim Sxn — lim Txn = t for some 
n — » o o 7i—)-oo 

tex. 
The following Propositions 2.1-2.3 show that Definition 2.1 and 2.2 are equivalent 

under some conditions [11]: 

Proposition 2 .1 . Let S and T be continuous mappings of a normed space X into 
itself. If S and T are compatible, then they are compatible of type (A). 
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Proposition 2.2. Let S and T be compatible mappings of type (A) from a 

normed space X into itself. If one of S and T is continuous, then S and T are 

compatible. 

From Propositions 2.1 and 2.2 we have: 

Proposition 2.3. Let S and T be continuous mappings from a normed space 
X into itself. Then S and T are compatible if and only if they are compatible of 

type (A). 

By suitable examples, P .P. Murthy, Y. J. Cho and B. Fisher [11] have shown that 
Proposition 2.3 is not true if S and T are not continuous. 

The following propositions show that Definitions 2.1, 2.2 and 2.3 are equivalent 

under some conditions. 

Proposition 2.4. Every pair of compatible mappings of type (A) is compatible 

of type (B). 

P r o o f . Suppose that S and T are compatible mappings of type (A), then we 
have 

0 = .lim \\STxn - TTxn\\ ^ \ [ lim \\STxn - St\\ + lim \\St - SSxn\\] 
n — » o o n—>-oo n—too 

and 

0 = lim \\TSxn-SSxn\\ ^ M lim \\TSxn - Tt\\ + lim \\Tt-TTxn\\] 
n — > o o ? i — ^ o o 7 i—»oo 

as derived. D 

Proposition 2.5. Let S and T be continuous mappings of a normed space X into 

itself. If S and T are compatible of type (B), then they are compatible of type (A) 

P r o o f . Let {xn} be a sequence in X such that lim Sxn = lim Txn = t for 
? i—»oo n — • o o 

some t E X. Since S and T are continuous, we have 

lim \\STxn-TTxn\\<:h2[ lim \\STxn-St\\+ lim \\St - SSxn\\] 
71—>oo -* L 71— too n—too J 

= | |S l -S l | | = 0 

and 

lim l i r S z n - S S s n K [ | lim \\TSxn-Tt\\+ lim \\Tt-TTxn\\] 
n—>-oo L -" 71—»oo 71—>-oo J 

= \\Tt-Tt\\=0. 

Therefore, S and T are compatible mappings of type (A). This completes the proof. 

D 
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Proposition 2.6. Let S and T be continuous mappings of a normed space X into 

itself. If 5 and T are compatible of type (B), then they are compatible. 

P r o o f . Let {xn} be a sequence in A" such that lim Sxn = lim Txn = t for 
n—>oo n—>oo 

some t € X. Since 5 and T are continuous, we have 

lim SSxn = St = lim 5T.тn 
n—>oo n—>oo 

and 

lim TSxn = Tt = lim TTxv 
n—Юo n—>oo 

By triangle inequality, we have 

| |5T:rn - T 5 x n | | ^ | | 5Tx n - TTx n | | + \\TTxn - TSxn\\. 

Letting n —> oo and taking into account that 5 and T are compatible of type (B), 

we have 

lim | | 5Tx n - T 5 т n | | šC lim \\STxn - TTxn\\ + lim ||TT:rn - T5:rn | 
n—>oo n—>oo n—>oo 

^ \ \ lim \\STxn-St\\+ lim \\St - SSxn\ 
n—>oo n—>oo 

+ lim \\TTxn-TSxn\\] 
n—>oo 

<0. 

Therefore, 5 and T are compatible. This completes the proof. • 

Proposition 2.7. Let S and T be continuous mappings from a normed space X 

into itself If S and T are compatible, then they are compatible of type (B). 

By unifying Proposition 2.4-2.7, we have 

Proposition 2.8. Let 5 and T be continuous mappings from a normed space X 

into itself Then 

( 1 ) 5 and T are compatible if and only if they are compatible of type (B); 

(2) 5 and T are compatible of type (A) if and only if they are compatible of 

type (B). 

The following examples show that Proposition 2.8 is not true if 5 and T are not 

continuous. 
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Example 2.1. Let X = it, the set of all real numbers, with the Euclidean norm 

|| • ||. Define 5 and T: X -> X as follows: 

f \ if x 7- 0, f -ir if x 7- 0, 
S(x)= f ^ ' and T ( x ) = f * ' 

[ 1 if x = 0, ^2 if x = 0. 

Then 5 and T are not continuous at t = 0. Consider a sequence {rrn} in X defined 

by xn = n, n = 1,2,... . Then for n -» oo we have 

Sxn = — -> £ = 0, Tx n = — -> t = 0 
П 4 

and 

lim | | 5Tx n - TSxn|| = lim | |n 8 - n 8 | | = 0. 
n—>oo n—>oo 

- xxxxx „ ^ 8 - ^ 8 H - I 
n—>oo 

However, the following limits do not exist: 

lim | | 5Tx n - T T x n | | = lim | |n 8 - n 4 | | = oo, 
n—>oo n—>oo 

i [ lim \\STxn-S0\\+ lim | | 5 0 - 5 5 i n | | ] 
2 n—>oo n—>oo 

= | [ lim | | n 8 - l | | + lim ||1 - n 1 6 | | ] = oo 
z n—>oo n—>oo 

and 

lim \\TSxn-SSxn\\ = lim | |n 8 - n 1 6 | | = oo, 

\[ lim \\TSxn-T0\\+ lim ||T0 - 2Ta:n | | ] 
2 n—>oo n—>oo 

= I [ lim | |n 8 - 2|| + lim ||2 - n 4 | | ] = oo. 
z L n—>oo n—>oo 

Therefore S and T are compatible but they are neither compatible of type (A) nor 

compatible of type (B). 

Example 2.2. Let X = [0,6] with the Euclidean norm || • ||. Define S and T: 
X - > K by 

fa; if z e [0,3), f 6 - x i fxG[0,3), 
S(x) = 1 L and T{x) =1 L 

[ 6 if rr€ [3,6], [6 i fa ,e[3,6] . 

Then S and T are not continuous at t = 3. Now, we assert that 5 and T are not 

compatible but they are compatible of type (A) and hence compatible of type (B). 

To see this, suppose that {xn} C [0,6] and that Sxn, Tn -> £. By definition of 5 and 

T, £ G [3,6]. Since S and T agree on [3,6], we have only to consider t = 3. So we can 

689 



suppose that xn -+ 3 and that xn < 3 for all n. Then Txn = 6 — xn —> 3 from the 

right and 5x n = :rn —•» 3 from the left. Thus, since xn < 3 and 6 - xn > 3, for all n, 

||5Trrn - TSxn\\ = ||6 - (6 - xn) | | -> 3. 

Further, we have 

lim | |5Txn - TTxn | | = ||6 - 6|| -> 0, 
n—>oo 

| [ lim | |STxn - 53| | + lim ||53 - SSxn\\] = \ [||6 - 6|| + ||6 - xn | | -»• | 
-" Ln—>oo n—>oo J -1 2 

and 

lim ||T5x*n - SSxn\\ = ||(6 - zn) - -cn|| ->• 0, 
n—>oo 

| [ lim | |T5xn - T3|| + lim ||T3 - TTxn\\] = \ [||(6 - xn) - 6|| + ||6 - 6||] -> £ 

as x n —)- 3. Therefore, 5 and T are both compatible mappings of type (A) and 
compatible mappings of type (B) but they are not compatible. 

Example 2.3. Let X = [0,oo) with the Euclidean norm. Define S and T: 

K-*Kby 

f l + x i fxG[0 , l ) , f l - x if a: G [0,1), 
S{x) = 1 and T{x) = 1 

[1 i fa ,e[ l ,oo) , [ 2 i fxG[ l ,oo) . 

Then S and T are not continuous at t = 1. Now, we assert that S and T are neither 

compatible of type (A) nor compatible of type (B), but they are compatible. To 

verify this, we consider that {xn} C [0, oo) converges to zero, as we know from the 

definition of S and T, and that Sxn,Txn -> t = 1. Then Sxn = 1 + x n —> 1 from the 

right and Txn = 1 — xn —•> 1 from the left. Thus, since 1 + xn > 1 and 1 — xn < 1 

for all n, 

| |5Txn - TSxn\\ = ||(2 - xn) - 2U -> 0. 

Further, we have 

lim \\STxn - TTxn | | = ||(2 - xn) - xn\\ ^ 2 ^ 0 , 
n—>-oo 

\[ lim | |5Txn - S l | | + lim ||51 - SSxn\\ = \[\\(2 - xn) - 1|| + ||1 - 1||] -> i 
-̂  L n—>oo n-+oo -1 Z 

and 

lim \\TSxn - SSxn\\ = ||2 — 1|| = 1 == 0, 
71—>OQ 

i [Jim | |T5xn - Tl | | + Jirn^ ||T1 - 7T .rn | | = \ [||2 - 2|| + ||2 - xn | |] -* 1 
" П—>CO 71—УOO 

as x n —.> 0. Therefore 5 and T are compatible but they are neither compatible 

mappings of type (A) nor compatible of type (B). 
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Example 2.4. Let X = [0,2] with the Euclidean norm ||. ||. Define S and T: 

X->X by 

S(x) = < 

r\+x i fxG[0, | ) , 

2 if x = | , and T(x) = < 

, 1 i f x € ( i , 2 ] , 

' \ - x i f r rє[0, \ ) , 

1 ifa; = i , 

,0 i f . t € ( § , 2 ] . 

Then S and T are not continuous at t = | . Now we assert that S and T are 

compatible of type (B) but they are neither compatible nor compatible of type (A). 

For, suppose that {xn} C [0,2] and that Sxn,Txn —•> t = | . By definition of S and 

T, t G {|}. So we can suppose xn —> 0. Then Sx n = | -f xn —> \ from the right and 

Txn = ^ — xn —» | from the left. Also, 

||STa,n - TSxn | | = ||(1 - xn) - 0|| -> 1 # 0. 

Further, we have 

lim ||5T:rn - TT:rn|| = lim ||(1 - xn) - xn\\ = 1, 
n—•oo n—>oo 

§[ lim | | 5 T x n - 5 ± | | + lim \\S\ - SSxn\\] 
•- Ln—5>oo n—>oo -1 J 

= | [ lim | | ( i - . r „ ) - 2 | | + lim | | 2 - 1 | | ] = 1 
n—S»oo n—í>oo 

and 

lim | | T S a , n - S S x n | | = lim | | 0 - 1 | | = 1, 
n—)>oo n—>oo 

\[ lim | | T 5 . r n - T i | | + lim | |T | - TT.rn||] 
-1 L n—»oo -* n—>-oo -" J 

= i [ lim | | 0 - 1 | | + lim | | l - x „ | | ] = 1 . 
* n—»oo ?i—5»oo 

Therefore, S and T are neither compatible nor compatible of type (A) but they are 
compatible of type (B). 

We need the following properties of * compatible mappings of type (B) for our 
main theorems: 

Proposi t ion 2.9. Let S and T be compatible mappings of type (B) from a normed 

space X into itself If St = Tt for some t G X, then STt = SSt = TTt = TSt. 

P r o o f . Suppose that {xn} is a sequence in X defined by xn — t, n = 1,2,... 
for some t G X and St = Tt = z, say Then we have Sxn,Txn —J> St as n —•> oo. 

691 



Since S and T are compatible of type (B), we have 

\\STt - TTt\\ = lim ||5Tx„ - TTx„|| 
n—>oo 

^ i [ lim ||5Ta;n - 55<|| + lim ||SSt - SSxn\\] 
7i—>oo n—>oo 

= ||S^-Sz|| = 0. 

Hence we have STt = TTt. Therefore, we have STt = SSt = TTt = TSt since 

St = Tt. This completes the proof. . D 

From Proposition 2.6 and Proposition 2.2 of G. Jungck [5] we immediately have 

Proposition 2.10. Let 5 and T be compatible mappings of type (B) from a 
normed space X into itself. Suppose that lim Sxn = lim Txn = t for some t E X. 

n—>oo n—>oo 

Then 

(1) lim TTxn = St if S is continuous at t. 
n—>oo 

(2) lim SSxn = Tt ifT is continuous at t. 
n—>oo 

(3) STt = TSt and St = Tt if S and T are continuous at t. 

P r o o f . (1) Suppose that 5 is continuous at t. Since lim Sxn = lim Txn = t 
n—>oo n—>oo 

for some t £ X, we have SSxn, STxn —> St as n -> oo. Since S and T are compatible 

of type (B), we have 

lim \\St-TTxn\\= lim | |5Txn - TTxn | | 
n—>oo n—>oo 

^ if lim \\STxn-St\\+ lim ||S* - SSxn | |] 
z L n—>oo n—»oo 

= | | S t - S t | | = 0. 

Therefore, lim TTxn = St. This completes the proof. 
n—>oo 

(2) The proof of lim SSxn = Tt follows by similar arguments as in (1). 
n—>oo 

(3) Suppose that S and T are continuous at t. Since Txn —> t as n —> oo and S is 
continuous at t, by Proposition 2.10 (1), TT;rn -> St as n -> oo. On the other hand, 
T is also continuous at l, TTxn —> Tl. Thus, we have St — Tt by the uniqueness of 
the limit and so by Proposition 2.9, STt — TSt. This completes the proof. D 
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I I I . A COMMON FIXED POINT THEOREM OF GREGUS TYPE 

Let i t + be the set of non-negative real numbers and F the family of mappings <p 
from H+ into R+ such that each (p is upper semicontinuous, nondecreasing in each 
coordinate variable, and ip(t) < t for any t > 0. 

Let A, B, S and T be mappings from a normed space X into itself such that 

(3.1) A(X) C T(X) and B(X) C S(X), 

(3.2) \\Ax - £y | | p ^ <p(a\\Sx - Ty||p + (1 - a) max{\\Sx - Ar| |p , \\Ty - By||p, 

US* - Ax\\HTy - By\\L^\\Ty - Ax\\HSx - By\\i, 
l[\\Ty-Ax\\v + WSx-By\\v]}) 

for all x, y in X, where 0 < a < l , p ^ l and ip G F. 

Then, by (3.1), since A(X) C F(Ar), for an arbitrary point x0 G X there exists a 

point xi E X such that Ar0 = Tx\. Since -B(K) C S(X), for this point xi we can 

choose a point x2 G X such that Bxi = Sx2, and so on. Inductively, we can define 

a sequence {yn} in X such that 

(3.3) y2n = Tx 2 n + i = Ax2n and y 2 n + i = Sx2n+2 = -9x2n+i 

for every n = 0 ,1 ,2 , . . . . 

For our main theorems, we need the following lemmas: 

Lemma 3.1. ([13]). For any t > 0, <p(t) < t if and only if lim <pn(t) = 0 where 
n—>oo 

(Dn denotes the n-times repeated composition of (p with itself. 

Lemma 3.2. Let A, B, S and T be mappings from a normed space X into itself 
satisfying the conditions (3.1) and (3.2). Then lim \\yn — y n + i | | = 0, where {yn} is 

n—>oo 

the sequence in X defined by (3.3). 

P r o o f . By (3.2) and (3.3) we have 

||y2n - y2n+l| |P = \\Ax2n ~ Bx2n+l\\V 

^ (D(a||y2n_i - y2n | |p + (1 - a) max{||y2n_i - y2n | |p, 

\\y2n ~ y2n+l | | P , ||2/2n-l ~ 2/2n||* ||H2n - y 2 n + l | | ^ , 

| | y 2 n - y 2 n | | 2 | | y 2 n - l — 2/2n+l || *" 

+ \[\\V2n ~ l)2n\\V + Hsfeu-l " y2n+l | |P]}). 
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If Il2l2n - J/2n+i|| > Il?l2n-i - 2/2n|| in the above inequality, then 

||y2n - 2/2n+l||P ^ <p(a||y2n ~ 2/2n+l ||P + (1 ~ <0 max{||u2n ~ 2/2n+l||P, 

||2/2n - *J2n+l ||P, \\V2n ~ 2l2n+l ||P, 0, \ [\\y2n - </2n+l ||P 

+ ||y2n-y2n+l||P]}) 

< \\y2n -2/2n+l | |P , 

which is a contradiction. Thus 

||S/2n - y2n+l||P ^ ^ ( l l ^ n - l ~ y2n||P)-

Similarly, we have 

||2/2n+l ~ y2n+2||P ^ <p(lhJ2n ~ ^2n+l ID-

It follows that 

\\yn - yn+i||p ^ ^(| |yn-i - yn||p) < ^ ^n(lhJo - yi| |p). 

It follows from Lemma 3 A that 

lim | |H n -H n + i | | = 0. 
n—too 

This completes the proof. • 

Lemma 3.3. Let A, B, S and T be mappings from a normed space X into itself 

satisfying the conditions (3.1) and (3.2). Then the sequence {yn} defined by (3.3) is 

a Cauchy sequence in X. 

P r o o f . By virtue of Lemma 3.2 it is sufficient to show that a subsequence {y-in} 
of {yn} is not a Cauchy sequence in X. Then there is an e > 0 such that for each 
even integer 2fc, there exi^t even integers 2m(k) and 2?i(fc) with 2m(k) > 2n(k) ^ 2fc 
such that 

(3-4) h2m(k) ~y2n(k)\\ > S. 

For each even integer 2fc, let 2m(k) be the least even integer exceeding 2n(fc) satis­
fying (3.4), that is, 

(3-5) \\y2n(k) ~ 2/2m(/0-2.| ^ E and l.2/2n(A.) ~ V2m(k) II > £• 
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Then for each even integer 2 k we have 

£ < I|y2n(fc) ~y2m(fc)|| 

^ I|y2n(fc) - y2m(fc)-2|| + ||y2m(fc)-2 ~ y2n(fc)-l|| + ||y2m(fc)-l ~ 2/2m(fc) li­

l t follows from Lemma 3.2 and (3.5) tha t 

(3-6) ||y2n(fc) - y2m(fc)|| ~> £ as k -> 00. 

By the triangle inequality, we have 

|l|y2n(fc) -y2m(fc)-l | | ~ ||y2n(fc) ~ y2m(fc) II | ^ ||y2m(fc)-l ~ y2m(fc) || 

and 

|||y2n(fc) + l - y2m(fc)-lll ~ ||y2n(fc) ~ y2m(fc) II | 

^ ||y2m(fc)-l ~ y2m(fc)|| + ||y2n(fc) ~ y2n(fc) + l| |-

From Lemma 3.2 and (3.6), as k —> oo, 

(3-7) ||y2n(fc) - y2m(fc)-l II ~> £ a n { ^ ||y2n(fc) + l ~ ?/2m(fc)-l || ~> €. 

Therefore, by (3.2) and (3.3), we have 

||y2n(fc) - y2m(fc)|| ^ ||y2n(fc) ~ y2n(fc) + l || + ll^2m(fc) ~ #2m(fc) || 

^ ||y2n(fc) -y2n(fc) + l| | + [<p(a||y2m(fc)-l ~ y2n(fc) ||P 

+ (1 -a ) lTiax{ | |H2m(fc) - l ~ y2m(fc)||P, ||y2n(fc) ~ y2n(fc) + l l|P, 

I|y27n(fc)-1 - y27n(fc)||2 ||y2n(fc) - y2n(fc) + l | | 2 , 

I|y2n(fc) -y-2m(k)\\2I|y27n(fc)-i - y27 i ( f c )+ i | | 2 , 

|l|y2n(fc) -y2m(fc ) | | P + ||y2m(fc)-l ~ y2n(fc) + l | |P] }) T' • 

Since <p E F, by Lemma 3.2, (3.6) and (3.7) we have 

e ^ y(aep + (1 - a) max{0,0, ep})] * < e 

as k —•> oo in (3.8), which is a contradiction. Therefore, {H2n} is a Cauchy sequence 

in A". This completes the proof. • 
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Now, we are ready to present our main theorem. 

Theorem 3.4. Let A, B, 5 and T be mappings from a Banach space (X,d) into 

itself satisfying the conditions (3.1) and (3.2). Suppose that one of A, B, S and T 

is continuous, and the pairs A, S and B, T are compatible of type (B). 

Then A, B, S and T have a unique common fixed point z in X. 

P r o o f . Let {yn} be the sequence in X defined by (3.3). By Lemma 3.3, {yn} is 
a Cauchy sequence in X and hence it converges to some point z in X. Consequently, 
subsequences {Ax2n}, {Bx2n+i}, {Sx2n} and {Tx2n+\} of {yn} also converge to z. 

Now, suppose that A is continuous. Since A and 5 are compatible of type (B), it 
follows from Proposition 2.10 that 

ASxn and SSx2n -+ Az as n —> oo. 

By (3.2) we have 

||A5o;2n - £:r2 n + 1 | |p ^ (D(a||55x2n - Ta;2n+1 | |p 

+ (1 - a) max{||55;r2n - ASx2n\\
p, ||Ta;2n+1 - £:r2 n + 1 | |p , 

| |55x2 n - ASx2n|| 2 \\Tx2n+l - Bx2n+l\\%, 

||Ta;2n+1 -ASx 2 n | |2 | |55:x 2 n - -9z2 n + 1 | |2 , 

\[\\Tx2n+l - ASx2n\\p + \\SSx2n - £:r2n+1 | |p]}) . 

By letting n -+ oo, we have 

\\Az-z\\p^lp(a\\Az-z\\p 

+ (\-a) max{0,0,0, \\z - Az\\p, \ ]\\z - Az\\p + \\Az - z\\p]} 

<\\Az-z\\p, 

which is a contradiction. Thus we have Az = z. Since A(X) C T(^0, there exists a 
point u € X such that z = Az = Tu. Again by (3.2), we have 

\\ASx2n - Bu\\p < <p(a\\SSx2n - Tu\\p 

+ (1 - a) max{\\SSx2n - ASx2n\\
p, \\Tu - Bu\\p, 

\\SSx2n-ASx2n\\*-\\Tu-Bu\\*, 

WTU- ASXinW* -WSSx2n- BuW* 

| [\\Tu - ASx2n\\
p + \\SSx2n - Bu\\p]}). 
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By letting n —J- oo, <p G F we obtain 

||- - 5« | | p ^ (>(1 - o) max{0, ||z - 5u | | p ,0 ,0 , | | | z - Su||p}) 

<\\z-Bu\\p, 

which implies that z = Bu. Since JB and T are compatible of type (B) and Tu = 

Bu = z, by Proposition 2.9, TBu = BTu and hence Tz = TBu = BTu = Bz. 

Moreover, by (3.2) we have 

\\Ax2n - Bz\\p ^ v(a\\Sx2n - Tz\\p + (1 - a) max{\\Sx2n - Ax2n\\
p, 

\\Tz - Bz\\p, \\Sx2n - Ar2 n | |5 • \\Tz - Bz\\Li, 

\\Tz-Ax2n\\*-\\Sx2n-Bz\\Li, 

i [ | | T z - A x 2 n | | " + | |S . t 2 n -Bz | | ' ' ]} ) . 

By letting n -> oo, we obtain 

\\z - Bz\\v ^ (p(a\\z - Bz\\p + (1 - a) max{0,0,0, \\z - Bz\\p, \\z - Bz\\p}) 

<\\z-Bz\\p, 

which means that z = Bz. Since B(X) C S(X), there exists a point v € X such 

that z = Bz = Sv. By using (3.2) we have 

||Au - z||" = ||A« - Bz||p 

< <p(a\\Sv - Tz\\p + (1 - o) max{||Su - Av\\p, \\Tz - Bz\\p, 

\\Sv - Av\\S • \\Tz - Bz\\5, ||Tz - Av\\%\\Sv - Bz||*, 

i [ | | T 2 - ^ | | P + H5 V -Bz | | p ]}) 

= V ( ( l - o) max{||z - ^ | | p , 0,0,0, \\\z - Av\\p}) 

<\\z-Av\\p, 

so that Av = z. Since A and S are compatible of type (B) and Av = Sv = z, 
SAv = ASv and hence Sz = SAv = ASv = Az. Therefore, z is a common fixed 
point of A, B, S and T. Similarly, we can also complete the proof when B, S and T 
are continuous. 

It follows easily from (3.2) that z is a unique common fixed point of A, B, S and 
T. This completes the proof. • 

Remark . Theorem 3.4 generalizes the result of P.P. Murthy, Y.J. Cho and 
B. Fisher [11] with the generalized Gregus type [3] mappings. 

697 



References 

[1] M.L. Diviccaro, B. Fisher and S. Sessa: A common fixed point theorem of Greguš type . 
P u b . Mat . 34 (1987), 83-89. 

[2] B. Fisher and S. Sessa: On a fìxed points theorem of Greguš. In te rna t . J. Math . and 
Math . Sci. 9 (1986), 23-28. 

[3] M. GreguŠ, Jr.: A fixed point theorem in Banach spaces. Boll. Un. Mat . I tal . (5) 17-A 
(1980), 193-198. 

[4] G. Jungck: Compat ib le mappings and common fixed points . In te rna t . J. Math . and 
Ma th . Sci. 9 (1986), 771-779. 

[5] G. Jungck: Compat ib le mappings and common fìxed points (2). In te rna t . J. Ma th and 

Math . Sci. 11 (1988), 285-288. 
[6] G. Jungck: Common fixed points of commuting and compatible maps on compacta . 

Proc . Amer. Math . Soc. 103 (1988), 977-983. 
[7] G. Jungck, P.P. Murthy and Y.J. Cho: Compat ible mappings of t ype (A) and common 

fixеd points . M a t h . Japonica 38 (1993), 381-390. 
[8] S.M. Kang, Y.J. Cho and G. Jungck: C o m m o n fixеd points of compatib lе mappings . 

I n t е r n a t . J . M a t h . a n d M a t h . Sci. 13 (1990), 61-66. 
[9] S.M. Kang and Y.P. Kim: C o m m o n fixеd point thеorеms. M a t h . J a p o n i c a 37 (1992), 

1031-1039. 
[10] H. Kaneko and S. Sessa: Fixеd point thеorems for compatiblе multi-valuеd a n d sin-

glе-valuеd mappings . I n t е r n a t . J. M a t h . and Math. Sci. 12 (1989), 257-262. 
[11] PP. Murthy, Y.J. Cho and B. Fisher: Compat ib lе mappings of typе (A) a n d c o m m o n 

fixеd point thеorеms of Grеguš, to appеar. 
[12] S. Sessa: O n a wеak commutat iv i ty condition of mappings in fixеd point considеrations. 

P u b l . Inst . M a t h . 32 (46) (1982), 149-153. 
[13] S.P. Singh and B.A. Meade: On common fixеd point thеoгеms. Bull. Austral . M a t h . 

Soc. 16 (1977), 49-53. 

Authors' addresses: H. K. P a t h a k : D е p a r t m е n t of Mathеmat ics , Kalyan Mahavi-

dyalaya, Bhilai Nagar (M.P.) 490006, India; M. S. K h a n : Su ltan Qaboos Univеrsity, D е p a r t -

m е n t of M a t h е m a t i c s and Comput ing, Collеgе of Sciеncе, P.O. Box 36, Al-Khod, Muscat , 

S u l t a n a t е of O m a n . 

698 


		webmaster@dml.cz
	2020-07-03T10:32:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




