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A HAKE-TYPE PROPERTY FOR THE ^-INTEGRAL 

AND ITS RELATION TO OTHER INTEGRATION PROCESSES 

W . B . JURKAT, D . J . F . NONNENMACHER, Ulm 

(Received August 9, 1993) 

INTRODUCTION 

Specializing our abstract concept of non-absolutely convergent integrals (cf. [Ju-
No 1]), we introduced in [Ju-No 2] the relatively simple v\ -integral over n-dimensional 
compact intervals. This integral not only shows all the usual properties but also yields 
a very general divergence theorem including points of unboundedness of the involved 
vector function. In [Ju-No 3] this result is used as a basic part for a geometrically 
improved version of the divergence theorem. 

The studies in this paper are devoted to a further development of the v\ -theory 
In Section 1 we extend the notion of v\ -integrability to point functions / defined 
on a bounded measurable set A C (Rn, and we then establish a Hake-type theorem 
involving both a point function / and an interval function F (the associated indefinite 
integral). In particular, it is shown how the integrability on A can be deduced 
from the integrability on any interval contained in the interior of A. Of course 
here the main difficulties arise at the boundary of A, and we found a characteristic 
null condition for F to be the relevant property. Indeed we do not require this 
condition along the topological but only along a 'reduced' boundary of A which will 
be important for further applications. 

In [Ju-No 2] the t^-integral was shown to extend the Mi-integral (cf. [JKS]), and 
in Section 2 we prove that it also extends the variational integral as defined in [Pf]. 
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0. PRELIMINARIES 

(R and [R+ denote the set of all real and all positive real numbers respectively, n 
is a fixed positive integer, and we work in Un with the usual inner product and the 
associated norm. For x = (x{) G IRn and r > 0 we set B(x,r) = {y = (y{) e Un : 
\xi - yi\ < r, 1 ^ i ^ n}. 

Given a set E C Rn we denote by E°, clF, dE and d(E) the interior, closure, 
boundary and the diameter of E, respectively 

The 7i-dimensional outer Lebesgue measure in LRn is denoted by | • |n , and terms like 
measurable and almost everywhere (a.e.) always refer to this measure if the contrary 
is not stated explicitly. By | • |n_i we denote the (n — l)-dimensional outer Hausdorff 
measure in Un which coincides on Un~l (C Un) with the (n — l)-dimensional outer 
Lebesgue measure (| • |o being the counting measure). A set E C [Rn is said to be 
On_i-finite if it can be expressed as a countable union of sets with finite (n — 1)-
dimensional outer Hausdorff measure. 

Let E C [Rn be measurable, x _ Un. Then we call x a density or a dispersion 
point of E if, respectively, 

. J _ ? n g ( s , r ) | w l£?n_?(.,r)ln hminl J -—- — = 1 or hmsup J 7—— = 0 . 
r->o (2r)n

 r_>o (2r)n 

We denote the set of all density points of E by inte E, and cle E denotes the 
complement of the set of all dispersion points of E. By [Saks] the sets E, inte F, 
cle E differ at most by sets of | • |n-measure zero, and we obviously have the inclusions 
E° C inte _ C c l e E C c\E. We set deE = cle E - inte E, clr E = clcle E, drE = 

clr E-E°, and we see that deE C drE C dE. 

An interval in [Rn is always assumed to be compact and non-degenerate, and a 
family of intervals in [Rn is said to be non-overlapping if they have pair wise disjoint 

interiors. A cube is an interval with all sides having equal length, and the support 
of a function / : [Rn -» IR is the closure of the set of points where / is different from 
zero. 

1. A HAKE-TYPE PROPERTY FOR THE Z/i-INTEGRAL 

We begin this section by recalling the basic definitions concerning v\-integration, 
cf. [Ju-No 1,2]. 

An interval function F (on !Rn) associates with every interval I (C (Rn) a real 
number F(I). The interval function F is said to be additive if for every interval I 
and any decomposition {h} of I (i.e. a finite sequence of non-overlapping intervals 
Ik whose union is I) the equality F(I) = Y^^(h) holds true. 
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We call an interval function F differentiable at x £ Rn ii F is derivable in the 
ordinary sense at x (according to [Saks]), and in that case F'(x) denotes the ordinary 
derivative of F at x. 

Let F be additive and suppose I to be an interval such that F(J) = 0 for each 
interval J C Un —I0 (we say that F has compact support). Then a standard argument 

yields that the real number F(I) is independent of I and in what follows this unique 
number will be denoted by F([Rn). 

Remark 1.1. By B we denote the system of all compact subsets I of (Rn which 
n 

are of the form I = X [a;,b;] where a2-,bt- G IR, and with the understanding that 

I = 0 if ai > bi for one i. Whenever an interval function F is given, we can extend 

F to the whole of B by setting F(I) = 0 if I is not an interval. If F is an additive 

interval function then its extension is additive in the sense of [Ju-No 1, Sec 3]. 

A control condition C associates with any positive numbers K and A a class 
C(K, A) of finite sequences {I^} with h G B. Furthermore, with C we associate a 
system S(C) of subsets of IRn, and the control conditions C{*2 (0 < a < n), C n we 
use in the concept of v\ -integration are explicitly defined in [Ju-No 2, Sec 1]. We set 
V = {Cf: 0 < a < n - l , z = 1,2}, f = { C n } u { C f : n - 1 < a < n,i = 1, 2}. 

Given E C [Rn and 6: E —•> (R+, a finite sequence of pairs {(xk,h)} is called 
(E, 6)-fine if the h are non-overlapping intervals, Xk G E D h and d(h) < 6(xk)-

Let F be an interval function, C G T U t and ECU71. Then F satisfies the null 
condition corresponding to C on E, in short F satisfies Af(C,E), if the following is 
true: Ve > 0, K > 0 3 A > 0, 6: E -> K+ such that £ \F(h)\ ^ e holds for any 
(E,6)-fine sequence {(xk,h)} with {h} G C(K, A). 

Remark 1.2. Let E C Un and let F be an additive interval function which is 
differentiable at each point x G E. Then F satisfies N(C*,E) with C* = Cn~l. 

Indeed, if e > 0 and K > 0 are given then set A = 1 and let x G E. By the 
differentiability of F at x there exist positive numbers K(x) and 6(x) such that 

|F(I) | ^ K(x)d(I)n holds for any interval I containing x and having diameter less 
than 6(x) (cf., e.g., [Ku-Jar, Cor. 1]). We obviously may assume 6(x) ^ e/KK(x) 

for x G E, and thus we conclude for any (E, £)-fine sequence {(xk,h)} with {h} G 
C*(K,A) (i.e.Zd(h)71-1 ^K): 

]T \F(h)\ ^ Y, KixkWxkWhV-1 ^ e 

as desired. 

A division of a set M C Un consists of a set E' and a sequence of pairs (Ei, Cz)lG^ 
such that M is the disjoint union of all the sets E{ and E', \M - E'\n = 0, d G T u f 
and Ei eS(d). 
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Let / : Rn —> R be a function with compact support. Then / is said to be vx-
integrable if there exists an additive interval function F with F' = f a.e. and a divi­
sion E', (Ei,Ci)ie^ of Rn such that F is differentiable on E' and satisfies Af(Ci,Ei) 
for i G N as well as J\f(C*,Ei) if Ci G f. In this case F is uniquely determined, 
has compact support, and we write uJf = F(Rn), cf. Remark 1.1, 1.2 and [Ju-No 1, 
Sec. 5]. 

Suppose A to be a bounded measurable subset of [Rn and / : A —> R. Then we 
define the function JA: Rn —> R by JA(X) = f(x) if x G A and zero elsewhere. We 
say that / is vi-integrable on A if f& is ^-integrable, and in this case we write 

lAf=lfA. 
Remark 1.3. For the properties of the v\-integral we refer the reader to [Ju-

No 1, Sec. 5] and [Ju-No 2]. In particular, the v\-integral extends the Lebesgue in­
tegral, and therefore the definition of t/i-integrability also applies to functions which 
are defined only a.e. Furthermore, if / is z^-integrable and if F denotes the corre­
sponding interval function then / is /Vi-integrable on any interval I and F(I) = uJj f. 

R e m a r k 1.4. Let / be an interval in Rn, x G 7°, C G T U f, E C (Rn. Then it 
is clear what we mean by an (additive) interval function on / , which is differentiable 
at x or which satisfies M(C, E) (just require all intervals occuring in the definitions 
given above to lie in I). By [Ju-No 1, Remark 5.1 (hi)] we see that a function / : 
I —> [R is iVT-integrable on I iff there exists an additive interval function F on I with 
F' = / a.e. on I and a division E', (Ei,Ci)ie^ of / with E' C 1° and such that 
F is differentiable on E' and satisfies Af(Ci,Ei) for i G N as well as Af(C*,E>i) if 
Ci G T. Furthermore, in that case F is uniquely determined and F(J) = VJ3 f for 
each subinterval J of / , cf. also [Ju-No 2, Sec. 1]. 

Suppose G to be an open subset of Rn, f: G —> R and let F be an interval function 
on Rn. Then F and / are said to be v\-associated in Gif / is .vx-integrable on any 
interval I contained in G and F(I) = "Jl f > 

Let M be an arbitrary subset of (Rn and F an interval function on LRn. We say 
that F satisfies a condition (N) on M if there exists a division E', (Ei,Ci)i^u of 
M such that F is diffeientiable on E' and satisfies Af(Ci,Ei) for i G N as well as 
N(C*,Ei)i{det. 

Theorem 1. Suppose A to be a bounded measurable subset ofRn,f: A —> U and 
let F be an interval function on Rn. Then f is vi-integrable on A and F(I) = UJ} f^ 
for each interval I in Rn iff the following conditions are satisfied: 

(i) F is additive and F(I) = 0 for each interval I C Rn - clr A, 

(ii) F and f are v\-associated in A°, 
(iii) F satisfies a condition (N) on dTA and F' = /A a.e. on drA. 
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In any case F' exists a.e. on A, F' is vi-integrable on A and 

F(Un) = I F'= / / . 
J A J A 

P r o o f . Assume first / to be z/i-integrable on A and F(I) = uJj fA for each 
interval I. By definition there is an additive interval function G with G' = fA 

a.e. and a corresponding division. Consequently, by Remark 1.3 we see that F = G, 
and F and / are v\-associated in A°. Let I C Un — clr A be an interval and observe 
that fA=0 a.e. on I. Thus, again by Remark 1.3, "JJJA = 0- To see that F 
satisfies a condition (IV) on drA one only has to intersect the division corresponding 
to G with <9rA (note that E e S(C) implies E G S(C) for a n y _ C _ , C G T u f) . 
Furthermore, since F' = / a.e. on A the .vx-integrability of F' on A follows and 

JA*" = JAf=JfA = F(fr). 
Conversely, suppose the conditions (i)-(iii) to be satisfied. We express A° as an at 

most countable union of non-overlapping cubes I2- (i ^ 1). By (ii) and Remark 1.4 / 
is /Vi-integrable on U and F satisfies a condition (IV) on If (intersect the division of 
Ii according to Remark 1.4 with the interior of Ii). Note that in particular F' = f 
a.e. on If, hence a.e. on A°, and since F' = 0 on Un — clr A by (i) we have F' = fA 

a.e. Since any Iz- is contained in the interior of A we can slightly enlarge U to a 
cube Ji still lying in the interior of A and containing Iz in its interior. The same 
argument as before yields that F satisfies a condition (IV) on dli and consequently 

i-\ 
on dU — |J dlj, i ^ 1. Now, taking into account the set IRn — clr A and all divisions 

i= i 

according to the conditions (IV) satisfied by F on drA, If and dh— IJ dlj (i ^ 1), we 
3 = 1 

see that F satisfies a condition (IV) on Un, and thus by definition fA is ui-integrable. 
Again by Remark 1.3 we have F(I) = uJj fA for any interval I in Un. • 

2. RELATIONS TO OTHER INTEGRALS 

In this section we assume I to be a fixed interval in Un and / to be a fixed real-
valued function defined on I. We will prove that if / is variationally integrable on I 
in the sense of [Pf] then / is /vx-integrable on I and both integrals coincide. 

A bounded measurable set A C (Rn is called a BV set if |<9eA|n_i is finite (see [Pf], 
[Fed]), and for any BV set A we define its regularity by r(A) = |.A|n/_(.A)|c?ei4|n_i 
if d(A)\deA\n-i > 0 and by r(A) = 0 else. We denote by BVi the system of all BV 
sets contained in I, and a function F: BVj —•> (R is called continuous if for every 
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e > 0 there is a 5 > 0 such that \F(B)\ < e for each B G BVj with \B\n < 6 and 

|deH |n_i < 1/e. 

A function F: BVj —•> LR is said to be superadditive if ^F(Bk) ^ F(I?) for any 

B £ BVj and any finite sequence of disjoint L?V sets L^ whose union is B. F is 

called additive if F and — F are both superadditive. 

Let F: BVj —•> IR, e > 0 and a crn_i-finite set T be given. Then an e-majorant 

of the pair (/, F) in I modT is a non-negative superadditive function M: BVj —> (R 

satisfying the following conditions: M(I) < e, and for each x € I - T there exists 

a S > 0 such that \F(B) - /(x) |J5|n | ^ M(B) for any B G BV} with x G clH, 

d(£?) < 6, r(B) > e. 

We call / v-integrable on I if there is* a continuous additive function F: BVj —» IR 

and a crn_i-finite set T such that for any e > 0 there is an £-majorant of (/, F) in 

I modT. In this case F is uniquely determined, and we write VJ1 f = F(l), cf. [Pf, 

Def.5.1, Cor. 5.5]. 

Proposition 1. Suppose f to be v-integrable on I. Then f is vi-integrable on I 

and X / = 7, /. 

P r o o f . We assume / to be U-integrable, and we denote by F the corresponding 

continuous additive function F on BVj and by T a corresponding <rn_i-finite set. 

Note that F(B) = 0 for any B G BVj with |H |n = 0, hence F is an additive interval 

function on I (in the sense of Section 1). 

First we show that F satisfies N(C™~1,1): let e > 0, K > 0 be given, set A = 1, 

e' = \ min(e, l/2nK) and determine for e' a 5' > 0 in virtue of the continuity of F. 

We set S(-) = 5'/2K on I, and we assume {(xk,h)} to be an (I,5)-fine sequence 

with h C I and {h} G C p ^ C A) (i.e. ^(h)71'1 ^ I0- Then \\JIk\n <: 

£<K*fc)d(/fc)n-1 <*'and 

MӘ/fc <. V|ð/fc|n_! <_ 2nÄ- < 1/У, 
n —1 — 

thus 

]T|F(I,)|=F( |J h)-F( |J I/^2,'^. 
^F(/ A : )^0 ' V(/ A . )<0 ' 

Let E ~ I with |F | n = 0 and _: > 0 be given. Then we can determine 6: E —» [R+ 

such that 5_ |/(.T/c)||I/c|n ^ £ holds for any (E, 6)-fine sequence {(xk, h)} with h f__ I-

Indeed, write F = (J £7 w i t h s i = {̂  G F: j - 1 ̂  | / („ ) | < j}, let £ > 0 be given 

and determine open sets Gj D Ej with |Gj |n ^ ^ / J2 J . For x G Ej we choose a 
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S(x) > 0 such that B(x,S(x)) C Gj, which defines the function S. Consequently, for 

any (E, S)-fine sequence {(xk,h)} with h ~ I we get 

£i/>*)iiI*u^E E iiI*in<E^iG^i^£-
jGN IA.-GEJ jGN 

To prove that / is i/i-integrable on I with l/fI f = F(I) (= ^ / ) , we verify the 
constructive definition of our ^i-integral, see [Ju-No 2. Thm. 3.1]. Express lC\(T\JdI) 
as a disjoint countable union of sets E{ with |.E{|n_i < oo (i ' N), and note that 
E' = I - (TUdI) , (£;, C!1"1)^^ is a division of I with E' ~ 1°. Now let, according 
to [Ju-No 2, Thm. 3.1], e > 0, Iv" > 0, Iv"; > 0 (i G N) be given, set A; = 1, 
e' = | min(£, 1/nK) and choose an e'-majorant M of (f,F) in I modT which, by 
definition, yields a function S: E' —v (R+. Since |I — 27% = 0 we can also determine 
a S: I - E' -» R+ such that ]T |/(^fc)||Ifc|n ^ £/5 for any (I - I£',(5)-fine sequence 
{( i j t ,4)} with h ~ I- Obviously we may assume S(-) ^ e/5K(l -I- |/(*)|) o n ^ a n d 
since F satisfies /V(C n _ 1 , E{) resp. Al^C™"1, E') we can determine for e/5 2l and I\^ 
resp. for e/5 and K a corresponding function Si: E{ —> (R+ resp. (5': F" -> (R+, and 
we also may assume S(-) ^ Si(-) on F"; resp. <5(-) ^ S'(-) on F". Thus a function S 
is defined on I, and we denote by {(xk,h)} U { ( ^ I X ) } a n (I,or)-fine sequence with 
I = |J Ifc U IJ I£ fulfilling the conditions 

(i) if xk G E' then d(h)n ^ K\h\n\ {h' xk G E{} G Cr_1(^) (*' € N) 
(ii) {I(.} G C n - 1 ( IO and x'fc G £ ' for all k. 

Observing that r(Ik) ^ l/2nK > e' for Xk G £ ' we conclude: 

Щ)-(YtfЫ\ik\n + Yđf(.xЖ\n 

^ ~Z \F(ii)-f(xk)\pk\n\ + YJ E iF(I*)i 
xkeE' i£N xkeE{ 

+ ~]\F(Ik)\+ ~Z \f(xk)\\h\n + ~l\f(^M^)d(I'k)n'1 

xL€l-E' 

< E ^ n + E ^ + I + I + ^ E * ) - 1 

xkeE' ie^ 

< M(I) + | e O , 

which completes the proof. • 

R e m a r k 2.1 . In [Jar-Ku] a further n-dimensional non-absolutely convergent 

integral is introduced, the so called PU-integral. Assume the support of a function 
o: Un -» U to be contained in I, and suppose g to be PU-integrable. Then according 
to [Jar-Ku, Thm. 6.1], [JKS] g is AIi-integrable on I, consequently by [Ju-No 2, 
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Prop. 4.1] g is ^-integrable on I and all integrals coincide. For a comparison of 

related integration processes see [No]. 
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