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Czechoslovak Mathemat ica l Journal, 45 (120) 1995, P r a h a 

ON OPERATORS INDUCED BY WEAKLY 2-SINGULAR KERNELS 

M . A . FUGAROLAS, Santiago de Composte la 

^Received January 6, 1992) 

In this note we give an estimate for the Weyl numbers of weakly 2-singular integral 
operators acting on Loo(0,1). The result obtained here are related to those in [2], 
[3], [6, (3.a)] and [7]. 

In the following, all definitions concerning operators are adopted from [9] and [10]. 
Let C(E,F) denote the set of all (bounded linear) operators from the Banach 

space E into the Banach space F, which is a Banach space with the norm 

||T|| = | | T : £ ; ^ T | | : = s u p { | | T a ; | | : | H K l } . 

For 1 ^ 5 ^ r < oo, an operator T G C(E,F) is called absolutely (r, s)-summing, 
T G Ilr,s(E, F), if there exists a constant c ^ 0 such that 

i/r r / n \ ^fs 

~ :\\a\\^l,aeE' miTx.-ir <Csup HTKxi) 
M = l ' { M = l 

for every finite family of elements x\, . . . , xn G E. Then 7rrjS(T) : = inf c defined an 
ideal norm on Ilr,s(E,F). 

Tlie n-th Weyl number of T G C(E, F) is defined by 

xn(T) := sup{on(TS): S G C(l2,E), \\S\\ ^ 1}, 

where an are the approximation numbers. Then [9, (2.7.3)] 

nl'qxn(T) ^ 7r9|2(T) for all T G UQ)2(E,F). 

Let 2 ^ q < oo. A Banach space E is said to be of (Rademacher) cotype q if there 
exists a constant k ^ 0 such that 

n v \/q ľ n 

£lЫN O j X>(Í) 
г = l ' n ѓ = l 

át 
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for all finite families of elements x\,...,xn G E, where T; denotes the i-th 
Rademacher function. We put Kq(E) := inf k. 

Let (X, u) be a measure space. For any measurable scalar-valued function / de­
fined on X, the non-increasing rearrangement /* is given by f*(t) := inf{c > 0: 
Xf(c) ^ t} for t ^ 0, where Xf(c) := u.{x G X: \f(x)\ > c}. The Lorentz func­
tion space L2)1(X,//) consists of all (equivalence classes of) measurable scalar-valued 
functions / such that 

Ц2,l := jгl'2f*(t)àt 

is finite. In this way we obtain a linear space which is complete with respect to the 
quasi-norm | | . | |2 , i . Since there exist equivalent norms, L2>1(X, u) even becomes a 
Banach space. For further information we refer to [1], [5], [8], [11] and [13]. We 
denote by Loo(X, a) the set of all (equivalence classes of) measurable scalar-valued 
functions / which are essentially bounded on X, being a Banach space with the norm 

| | / | |oo:=ess-sup{ | / (a ; ) | :a ;G .X}. 

In the following we only consider the case when (X, u) is the unit interval equipped 
with the Lebesgue measure, and the corresponding functions spaces are denoted by 
L2,i(0,1) and Loo(0,1), but we can obtain an analogous result for suitable subsets 
of IR^. Finally, for a compact Hausdorff space K, C(K) denotes the Banach space 
of all continuous scalar-valued functions on K with the usual supremum norm. 

Theorem. Let K be defined on the unit square [0,1] x [0,1] a weakly 2-singular 

kernel of the form 

K(x,y)= L{x'f ifx^y, 
\x — y\ i 

where K is measurable and I G L2,i(0,1) with l(y) := sup \L(x,y)\. Then for every 
xG[0,l] 

q > 2 the operator TK: Loo(0,1) -> Loo(0,1) defined by 

l 

TKf(x)= j K(x,y)f(y)Ay 
0 

is absolutely (q, 2)-summing and there is a constant cq > 0 such that 

nl^xn (TK : Loo(0,1) -> Loo(0,1)) ^ 7r,)2 (TK : L^O, 1) -> Loo(0,1)) 

^2(v/2)c(7||l||2)1Iv(7(L2,1(0,l)) 

for n = 1, 2. — 

202 



P r o o f . For every q > 2 the Lorentz space L2,i(0,1) is of cotype q (see [4]), 
therefore the identity map of L2,i(0,1), denoted by I2,i, is absolutely (q, l)-summing 
and 7Tg?i(I2,i) ^ I^(L2,i(0,1)). Then the multiplication operator M/: Loo(0,1) —> 
L2,i(0,l), / - > / • / , satisfies M/ £ Il^^LooCO, l),L2,i(0,1)) and since Loo(0,1) 
can be identified with some Banach space C(K), from [12, (§21)] we obtain M/ £ 
n7,2(Loo(0, l) ,L2 , i(0,1)), and there is a constant cq > 0 such that 

7r,,2(Mt: Loo(0,1) -> L 2 , i (0 ,1)) ^ cq7rqA (M/ : Loo(0,1) -> L 2 | i (0 ,1 ) ) 

^c, Iv" g (L 2 , 1 (0 , l ) ) | |M / :L o o (0 , l ) -^L 2 , 1 (0 , l ) | | 

^2cq\\l\\2,lKq(L2,l(0,l)). 

For x e (0,1) let gx(y) := \x - y\~1/2. Then 

supt1/2
9:(t) = Supy[Xgx(y)]l/2 ^ V2. 

t>0 y>0 

Put 

\ 0 if .(„) = 0. 

For / £ L2,i(0,1), using that 

1 oo 

f 9x(y)\f(y)\dy ^ f g*x(t)f*(t)dt 
0 0 

we obtain \\Tj^: L2>i(0,1) -•> Loo(0,1)|| ^ y/2. Factorizing TK as 

Loo(0,l) A L 2 , I ( 0 , 1 ) ^ > L O O ( 0 , 1 ) 

we finally have 

nl'ixn(TK: LoofO.l) -> Eoo(0,l)) ^ 7r,,2(TK: Loo(0,l) ->• Loo(O.l)) 

SC2(v!2)c,| |/ | |2,1/^(L2,1(0,l)) 

for n = 1, 2, • 
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