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CONTEXTS AND SUBLATTICES OF CONCEPT LATTICES

FRANTISEK MACHALA, Olomouc

(Received December 31, 1992)

Any context _# can be uniquely assigned a complete concept lattice L ¢ (see
e.g. [3]). In this paper we describe substructures in _# such that their concept lattices
are all complete sublattices in L y. As a consequence a characterization of contexts
with distributive or modular concept lattices is obtained. Another characterization
for distributive lattices is given in [1].

Definition 1. A contexzt is a triple _# = (G, M,I) where G and M are sets and
ICGxM.For BCM,B#0,weput B ={g€G|gImVYme B}and ¢* =G.
For ACG, A#0,weput A'={meM|gImVge A} and 0" = M. Let further
AN = (AN, B = (BY)T.

Remark 1. From Definition 1 we have: B; C By = B; - Bf for By, B, C M,
and A; C Ay = A} C Al for Ay, 4, CG.

ACG, A=A%&3BCM, B'=A4,

ﬂB}:(UBi)l, B;CM VYiel.
i€l i€l

Theorem 1. If ¢ = (G,M,I) is a context and Q = {A C G | A = A™}, then
(@, C) is a partially ordered set with unit element G. If we put A\ A; = () 4,
iel i€l
4
( N Af) =\ A;for A; € QVie I, then L 4 = (Q,A,V) is a complete lattice.
iel iel
Remark 2. The lattice from Theorem 1 is called the concept lattice of 7.
Suppose A; € Q Vi € I and let B; C M, Bil =A;Viel Then A A; = () Bil =

i€l €l
(U Bi)*, Vai=(n BfT)l.

i€l i€l i€l
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Let # = (G, M,I) be a context. For any subset B C M we put B = {C C M |

{
C* = B'} and Dg = |J C. Then DY = ( U c) = () C* = B* holds and
_ CeB CeB CeB
hence Dp € B.

Definition 2. Let ¢ = (G,M,I) be a context. A non-empty set .# C 2M js
admissible in _# if for any non-empty subset 8 C .#

(1) there exists X € .# such that |J B € X,
BER

(2) there exists Y € .# such that () BT €Y.
Be#
Remark 3. Examples of admissible sets in a context _¢:
a) A =2M,
b) .# = {B}, where BC M.
c) If # is an admissible set in _#,then #/ = |J B, D4 ={Dp|B € .#} are
BeA

also admissible sets in ¢, and .#, D_4 C .

Theorem 2. Let ¢ = (G, M,I) be a context.

1. If # is an admissible subset in ¢, then Ly = {B* | B € .#} is a complete
sublattice of L 4.

2. Let L, be a complete sublattice of the lattice L 4. Let us consider a subset
A C 2M such that BY € Ly VB € .# and for any © € L, there exists X € .# such
that X+ = z. Then .# is an admissible subset in ¢ .

Proof. 1. Evidently Ly C L 4. Let & C L1, & # (). Then there exists a (non-
empty) subset B C 4 such that & = {BY | B € #}. Weget \e/ = A\ BY =
Be%#

1 —
( U B) . By (1), there is X € . such that |J B € X, i.e. A« € Ly. Further,
Be®x Be#

{ - —
V& = ( N B“) and by (2) there is Y € .« with () B*' € Y, which means

Be® Be®
Vd €L,.
1
2. Consider & C #, B # 0. We have A B*( U B) € L;. Hence there
Be# Be%#
4 —
exists X € .« such that X+ = ( U B) and thus |J B € X. Simultaneously
BER BER
{
we have \/ BY = ( N B”) € L,. Similarly as in the previous case there exists
Be® Be® 7/
Y € . such that ) B e Y. O
Be#

Remark 4. If # is an admissible set in a context _#, L; the sublattice in
L g corresponding to .#; by 1 of Theorem 2, and .#; the admissible set in # by 2
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of Theorem 2, then .#, = .# (see Remark 3c)). If L, is a complete sublattice in
L g, # the admissible set in _# corresponding to L, by 2 of Theorem 2 and L, the
lattice corresponding to .# by 1 of Theorem 2, then L; = L.

Definition 3. Let # = (G,M,I) be a context, G;, M, subsets of G, M and
I, CGy x My. If I; C I, then the context _#; = (G, M1, 1;) is embedded in #. If
I =IN(Gy x M), then _#; is a subcontezt of the context Z.

Definition 4. Let ¢ = (G, M,I) be a context and .# C 2M an admissible set

in £. PutMi= | B,Gi= | Btandletforge G;,me My: g, m &
Be# BEA
3B € #, m € B, g € BY. The context _# 4 = (G1,My,1,) is A -embedded in #.

Remark 5. In Definition 4 we have M; C M, G; CGand gl m = g I m.
Hence the context _Z 4 is embedded in _# by Definition 3.

Remark 6. Let # 4 = (G1,Mi,1) be a context .#-embedded in a context

F# = (G,M,I). By (2), there exists X € .# such that (| B*' € X. Moreover,
Be.#
XeM,G, = X+ holds.

Theorem 3. If ¢ 4 = (G1, My, 1)) is a context .#-embedded in a context ¢ =
(G,M,I), then the lattice L ¢, is a complete sublattice of the lattice L 4 and
L/_‘,:{BilBE.///}.

Proof. The symbol | from Definition 1 will be written in _# 4 on the left and
in _# on the right (as usual). Hence for any sets C C M1:+C = {g € G, | g L
cVceCland L g, = {*C|C C M,}. By Remark 5, *C C G, NC*. Let BC A,

#B#0,andput D= |J B.Ifge D', then g I dVd € D. Moreover, for any d € D
Be%#

there is B € &, i.e. B € .#, such that d € B and since g I d, we have g € B'.
Consequently, g I; d and g € ¥D. Hence D¥ C +D and therefore D¥ =+D.
Consider any set C C M; and let g € *C. Then g I; m Vm € C. For any m € C

there exists B,, € .# such that m € B,,, and g € B},. If we put D = |J B, then
meC
C C D. Because D C M;, we get, by Remark 1, ¥+D C *C and hence D' C ‘C.

{
Moreover, g € (| B}, = ( U Bm) = D' and ‘C C D*. That means +C = D*.
meC meC
Since . is an admissible set in _#, by (1) there exists a set X € . such that

D= |J Bn€X,s0D¥=X*%and‘C = X*.
meC

By Theorem 2, Ly = {B' | B € .#} is a complete sublattice in L 4. By the
preceding, Ly = L g. The lattice operations in L; and L ¢, are the same, and
hence the lattices L; and L ¢, coincide. O
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Theorem 4. Let # = (G,M,I) be a context and L; a complete sublattice of
the lattice L g. Let us consider a set .4 C 2M such that BY € L, VB € .# and
for any element x € L; there exists B € .# such that B¥ = z. If F.« is a context
#-embedded in _#, then the lattices Ly and L 4, coincide.

Proof. By Theorem 2, .# is an admissible set in _#. If we consider a context
F .« #-embedded in _#, then, by Theorem 3, L 5, = {BY|Be #}=1L,. (]

Remark 7. The equality L/ll = L/ﬂz may hold for different sets .#,, .#,
in # (see Remark 4 and e.g. [2]).

Theorem 5. Let £ 4 = (G1,My,I,) be a context .#-embedded in a context
# = (G,M,I). The following conditions are equivalent (the mapping | is denoted
in the context _# on the right and in the context Z 4 on the left):

1. #.« is a subcontext in 7.

2. For g € Gy, m € M; we have g I m = g I} m.

3. For any m € M, we have *{m} = {m}* N G;.

4. For any sets B C M; we have*B = BYNGj.

Proof of this theorem is easy. 0O
By using well-known theorems of the lattice theory we get
Theorem 6. Consider a context #. The concept lattice L 4 is distributive

(modular) if and only if there is no context .#-embedded in # with the concept
lattice isomorphic to the lattices in Figs. 1, 2 (Fig. 2).

Fig. 1 Fig. 2

Examples. 1. Consider the context ,# = (G,M,I) in Fig. 3, where G
and M are sets of points and the relation I is denoted by segments connecting
the corresponding points. Then .# = {{mg},{mg,mg},{mg,mﬁ},{mg,mg,ms},
{m2,m3, mg}, {mg,’ﬂlg,m5,mg}} is an admissible set in _#. Fig. 4 shows the .#-
embedded context _# 4 while in Fig. 5 we see the lattice L 4, (_#_¢ is a subcontext
in #). By Theorem 6 the lattice L 4 is not modular. Fig. 6 shows the lattice L ¢
and the sublattice L 4, (marked).
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* M . M1
SR TED LR A G G,
Fig. 3 Fig. 4
{92,93,94}
{92,93}
{94}
{g3}
]
Fig. 5 Fig. 6

2. Let us consider the context # = (G, M, I), where M is the set of planes of the
extended three-dimensional Euclidean space E3, G is the set of points of this space
and I the usual incidence relation. Hence for m € M, {m}* is the set of points of the
plane m. In Fig. 7 a sublattice L; of the lattice L ¢ is shown. The unit element is

1

Fig. 7

the set of all points of F3,i.e. 1 = G = @%. The elements a, b are the sets of points of
some planes my, my, i.e. a = {m;}¥, b= {my}*. An element c is a set of all points of
the line r which is a meet of planes m;, ma, i.e. ¢ = {m;,my}*. The elements p, q, ...
are one-point sets of ¢ (points of the line r) We have {p} = {m;,ms, m}*, where m
is a plane such that p € {m}¥, r ¢ {m}*. Evidently {m;,ma,m,n}* = 0 where m,
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n are the planes defined by the preceding two different points. By Theorem 2 the
set 4/ ={B C M |B*e€ L} is admissible in ¢ and determines the .#-embedded
context £ 4 = (G, My,11) in #. Then the relation I, satisfies

g e {ml}l =91 my,
g € {ma}t = g I my,
geE {ml,mz}l/\ge {m}l, meM, =gl m.

For other points ¢ € G and planes m € M the relation I; is not defined. By
Theorem 4 we obtain L 4, = L;. The context 4 is embedded in #, but it is
not a subcontext in ¢ with a concept lattice L;.
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