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MAJORANTS OF MATRIX NORMS 

AND SPECTRUM LOCALIZATION 

PETR VESELY, P raha 

(Received April 30, 1992) 

Let V be a subspace of R n , let .c/ be a set of n x n real matrices such that Ax G V 

whenever A G sS, x G V and let r : x/ -+ [0,oo). The paper introduces conditions 

upon which there exists a vector norm || || on V such that 

(1) s l i p M ^ < c r ( A ) foralMe.fi/. 
.rev IMI 
x^O 

Moreover, a constructive definition of norms satisfying (1) is presented. 

The results are applied to spectrum localization of stochastic matrices in the sec­

ond part of the paper. The maximum modulus of subdominant eigenvalues is an 

important characteristic of stochastic matrices. Determination of upper bounds for 

this value is one of the main objectives of the theory of coefficients of ergodicity, 

which investigates those of the form 

X 
p\\ _ n^'i (2) sup n ,i » SUP 

where P is a given stochastic matrix, || || is a vector norm, 7i is the s tationary 

distribution of P and 1 = (1 , 1, . . ., 1) T , see [2, 4, 6, 7, 9, 10]. Another upper bound 

is studied for example in [11]. 

In this paper, upper bounds of the maximum modulus of subdominant eigenvalues 

are approached in a more general setting. Namely, a broad subclass *t? of the class 

of all functions r satisfying the inequality (1) for V = {x G Rn | xTl = 0} and for at 

least one vector norm || || is taken into consideration. The advantage of this approach 

is that an upper bound of the maximum modulus of subdominant eigenvalues can be 

chosen in such a way that both the verification of T G *£ and the formula for T(P) 
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itself are simple in contrast to the calculation of (2) for most of the vector norms 

|| ||. Moreover, Theorem 2.4 shows that , in the case of an irreducible aperiodic 

stochastic matr ix P , any r G (€ can be taken to produce an arbitrary tight est imate 

for the second largest modulus of eigenvalues of the matrix P. Examples of suitable 

functions r G *& are presented as well. 

NOTATION 

M n — the set of all 7? x n real matrices identified with the vector space Rn ; 

(,) — the scalar product on Mn defined by 

n n 

(A , 73) = V ^ „ „ / , „ , A,BeMn; 
7 — 1 5 = 1 

(( )) — the norm on M n defined by 

((A)) = (A,A)l/\ / l e M „ ; 

S^n — the set of all n x n stochastic matrices; 

E n — the set of all n x n real matrices such that their column sums are equal to 1; 

a(a) — the spectrum of a (square) matrix A\ 

g(A) — the spectral radius of a (square) matrix A; 

Lin(AL) — the linar span of a set M C Rn ; 

In — the 7i x 7i identity matrix; 

0 = ( 0 , 0 , . . . , 0 ) T <ERn; 
1 = ( l , l J . . . , l ) T 6 R n . 

1. UPPER BOUNDS FOR NORMS OF MATRIX OPERATORS 

Let V be a vector subspace of Rn and let dirnV ^ 1. Troughout this section, s/ 

is a set of n x n real matrices such that 

(I) if A, B G s/ and a G R then otA + (l - cv)B G s/\ 

(II) if A, B es/ then AB G .c/; 
(III) Lin(.c/V) = V; 

(IV) tliere exists at least one matrix A G s/ satisfying AV = {0}. 

Let us give some examples. Let V = Rn . Then the set of all n x n real upper (lower) 

triangular matrices and the set of all n x 71 real matrices with a fixed eigenvector meet 

the demands of (I), . . ., (IV). The important set of matrices satisfying the conditions 

(I), . . ., (IV) is studied in Section 2. 
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Tliis section is devoted to the study of funcions r : s/ —+ [0,oo) satisfying the 

conditions 

( a ) T is a convex funcion on ,c/; 

(/*) T(AB) <C T(A)T(B) for all A, £ G .c/; 

(7) there exists at least one matrix Z G s/ such that T(Z) = 0; 

(6) if Z G cc/ and T(z?) = 0 then Z\l = {0}; 

(f) if A, Z G x / and T(Z) = 0 then T(aA + (1 - a)Z) = ar(A) holds for any 

cv > 0. 

Note that a set of functions T: s/ —>• [0,oo) satisfying these conditions is non­

empty. Indeed, let || || be a vector norm on V and let 

<A^ WAxW 
T\\ \\(A) = s u P ^ r m -

for every A G s/. It is easily seen that the conditions (cv), . . ., (e) hold for the 

function T|| || (the condition (7) holds by virtue of (IV)). 

D e f i n i t i o n . Let Y = {v^l\. . ., i/fc)} he a finite subset of V satisfying 

L'u\(s/Y) =- V, let T be a nonnegative function on s/ and let x G V. Define 

the quantity 
2Jb 

]ţ, = inf { Y^CІTІQІ) | (f,o) Є ЛV(-")}, 

where JTy (j*) is the set of all pairs (c, Q) G [0,oo)2 i" x ,c/2A: such that 

k 

Y,(ciQi-Ck+iQk+i)v(i)=x. 
1 = 1 

R e 111 a r k . The condition (III) implies that there always exists a finite set Y C V 

such that L\n(,c/Y) = V (for example, any base of V has this property). The reader 

can verify that , for any such set Y and for any x G V, the set J^V(:r) is non-empty. 

Thus the quantity [x]T

r is well-defined. 

T h e o r e m 1.1. Let r be a nonnegative function on s/ satisfying the conditions 

(o) and (/*), let Y = {iM\ . . ., v(^} be a finite subset ofV such that \A\\(s/Y) = V. 

If [x]T

r > 0 for each x G V — {0}, then [ ]r is a norm on V and 

sup 1 ^ 2 1 <: T(A) 

x^O 

for all A G s/. 
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P r o o f . It is obvious that [ ]r is a nonnegative function on <c/ and that [x]r = 0 

if and only if x = 0 according to the assumptions. 

Let x E V and let A > 0. The relation (c ,Q) E Xv\x) holds if and only if 

(\c,Q) E Xv(\x). It implies [\x]T
r = \[x]T

r. The relation 

( ( c i , . . . , ck} c A : +i , . . . , c2jb). (Q\i • • •, Qk,Qk+\,..., Q2O) e -*V(*) 

holds if and only if 

((Cjfc + l , . . . , C2jfc, Cl , • • • , Cfc). (Qk + 1 , • • • , Q2A- <2l , • • • , Qk)) € J&1'(-X) 

holds. Thus [x]T
r = [ -2 ' ]^ . We conclude that [\x]T

r = |A|[j;]^ for each A E R. 

Let x, y E V. If x = 0 then the triangular inequality [x]r + [y]r ^ [x + y]T
r is 

true. Let x ^ 0 and consider any £ > 0. We find from the definition of [ ]T
r (hat 

there exist (c ,Q) E J^y/(x), (J, It) E «^V(y) satisfying 

2 A; 2fc 

1 = 1 t '=l 

Since [xYy > 0 the set f = {i E {V . . ., 2k} | a + d{ > 0} is non-empty. We have 

'Ik 2 k 

[*Yr + Mr £ X > ^ ) + Y,diT(Ri) - e 
i = i * = i 

= X ] (Qr(Q?) + d,T(B,0)-^ 

= 5 > + " • > & < * > + Í Т Î * < Я ' > ) -

£ ^ (a + rft.) r (-Ј-Q,- + -4тЯ») ~ ř 

.^-t V c,- + di CІ + di / 
î ' e j 

2A-

X/.lҶU)-*. 

Єi = 

Ci+dг ІГІЄ / \ 

0 i f i є { l , . . . , 2 k } - ^ f , 

and 
Ci di 

•Qi + — - r R i Hies, S\ = < CІ + di CІ + di 

І Q i i f / Є { V . . . , 2 k } - ^ -
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The reader can find that (e, S) E J^v(x -f- y) so that [JE]V -F [t/]V ^ [# + ?/]V - £ for 
any e > 0. Thus, the triangular inequality is valid. We have proved that [ ]T

y is a 
norm on V. 

Let A E s/ and consider any x E V. It is easy to see that if (c,Q) E JtfV(x) then 
(c,AQ) E JTV(-4:r), where 

AQ = (AQu...,AQ2k). 

Hence 

[Ax-]^ <C inf { ^cMAQi) | (c,Q) € Jfr(x)} <: T(A)[X]T, 

i = \ 

by (/J)- This completes the proof. D 

Theo rem 1.2. Let r be a no/megafive function on s/ satisfying the conditions 
(a) and (/J), let \\ \\ be a norm on V. Then: 

co if 

(3) IMI ^ (n,ax||t,||)WV 

for a//y x G V am/ tor aDy fin/re subset Y C V satisfying L'u\(s/Y) — V, ///en 

sup M f ^ ,(A) 
r^V 'I H 

for all A E */. 
(ii) If 

(4) suP 1 M < T(A) 
.rя-0 

/br a// A £ &/, then 

[ Yf is a norm on V, 

llarlKOiiaxIMDW^ 
v£Г 

«Ф т # < ^ ) 
x Є v l ^ J r гЄ 
x?ÍO 

/or any Cmite subset 'Y C V satisfying Lin(.c/V) = V and for all x E V, A E s/. 
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P r o o f . (i) Let A G .c/ and let x e V - {0}. Consider any finite set V = 
{v (1),..., v(k)} C V satisfying Un(s/Y) = V and put 

^ = IWI(max| |^) | | r i . 
1 ^ i <C k 

Since Y 7- {0} (because Lin(,c/ Y) = V and dirnV ^ 1) and x ^ 0 we liave ?/ G 
(0,oo). Put y/' = {uj(1),...,uM,),u;^- + 1)}, where ujd) = r)v^\ . . ., H^) = (?r([,), 
u/fc + i) - ^ jt is obvious that Lin^c/y/') = V. Further, let ci = 0, . . ., cfc = 0, 
Cfc+i = 1, Cfc+2 = 0, . . ., c2(fc + i) = 0 and let Q{ = A, . . ., Q2(fc + i) = ^- We have 

* + i 

$ > . Q . ~ ck+i+iQk+i+l)w
(l> = Qfc+ l iv (^ l ) = Aj», 

t = i 

so that ((ci, . . . , c2(fc+i)),(Qi, . . . , Qo(k + \))) e^w(Ax). Thus 

2(* + l ) 

[AxYr< J2 ^(Q>) = r(Qk + k) = r(A). 
i = \ 

We suinmarize 

llMl ^ ^ ( m a x | | H | ) [ A * & \x\\[Ax]T
v, < r (A ) 

.1*11 ll*ll » ^ ' "" F I . 

(the first inequality holds by (3)). 
(ii) Let Y = {irO),...,?;*^} C V, Lin(.c/r) = V. It is obvious that the set 

/ = { i E { l , . . . ,k} | v{i) 7- 0} is non-empty. For any x G V, (c,Q) G JrV(j') we 
have 

£(сгд,-г,+!д<-+1)"
(!'1 

£ > . < ? . - c t + . Q * + , > l i 

i e ^ 

š ( ľ . . / Ц " " » N ) ( i : ^ + E - + 

WQt+iV a)\ 

WQi ţ ( max\\v^\\) { £ Ci sup ^ + £ c,+l S l ф 

||v(»|| 

IIQ*+.-~~l 

*"€,/ г ^ O ІЄ / -ev 

(by (4)) <C ( m a x | | ( /
! ' | | ) ( ] T ^ W ' j + E ^+tr(Qk+i)\ 

< (ma*J |„W| | ) ( Y > r ( Q , ) 
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Hence 

ИI^(max|H|)[x]^ 
vÇ.r 

for all x G V. This inequality implies [x]T
r > 0 for all x G V - {0}. To complete the 

proof of (ii), it is sufficient to apply Theorem 1.1. • 

R e m a r k . The condition (IV) is not essential for the validity of Theorems 1.1 
and 1.2 as can be observed from their proofs. 

The following characterization of the inverse matrix can be set as an example of 
the use of Theorem 1.2. 

Corol lary. Let \\ \\ be a norm on Rn, let \\ | | i be the l\-norm on R n , let U be a 

real regular n x n matrix and let u^l\ ..., u ( n ) he columns ofU. Then 

| | x | | ^ ( m « | | u f > | | ) | K / - 1 x | | , 
1 ^ i ^ n 

for each x G Rn. 

P r o o f . Put V = R n , r = { « ( 1 ) , . . . , t / ( n ) } , . c / = {aln\ a G R} and let r(aln) = 
|CY| for each a G R. It is easy to see that the conditions (I), . . ., (IV) as well as ( a ) 
and (/J) are valid. The set V is a base of R n , because the matr ix U is regular. It 
follows that L'm(AV) = R n = V. 

Let x G R n . Put a = (a i , . . . , a n ) T = U~lx and denote af = ^(\(ii\ + (ii) and 
rt.~ = 2(l a*l ~ rt«')- S i n c e 

2n 

[x]T,= inf { 5 > r ( Q , . ) I (cQ)e^(x)} 
1 = 1 

2n 

= i n f { Y . c« ia»i i c e - ° > ° ° ) 2 n ' a e R2n and 

2 = 1 

Cicti - cn+ian+i = en for all i = 1,. . ., n J 

n 

^ i n f { S lClCVt ~ c n + t t t n + i | | c G [0, c o ) 2 n , a G R 2 ; l and 
i '=i 

CiCti - cn+ian+i = a{ for all i = I,. . . , n J 

= E N = | | f / - , a r | | 1 = ^ a + + ar ť=i ť=i 

аnd 

( (a f , . . . , < ! + , a- , . . . , a n ) , ( / n , . . . , / n ) ) G «#V(z) 

we have [x]^/ = 111/""j x111. Theorem 1.2(H) completes the proof. • 
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L e m m a 1.1. The set s/ is closed. 

P r o o f . Consider any A G s/. The condition (I) implies that {B — A ; B G s/} is 

a vector subspace of M„. Since M n is a finite-dimensional vector space, the subspace 

{B — A ; B G &/} is closed. Thus s/ is a closed set as well. • 

L e m m a 1.2. Let r />e a nonnegative function on s/ satisfying the conditions (f>) 

and (e). Let {aq}^Lx he a sequence of nonnegative real numhers and let { A ^ } ^ { he 

a convergent sequence of matrices of s/ such that 

liin aqT(Aq) = 0, 
q~* oo 

r( lim A„) = 0, 
q—*oo 

T(AQ) > 0 for each q G N. 

Then there exist a sequence {6 r}?i i of nonnegative real numhers, a convergent se­

quence {£Jr}£Lj of matrices of s/ and an increasing sequence {qr}
(^Ll of positive 

integers such that 

lim brT(Br) = 0 , 
r—»oo 

r ( lim # r ) > 0, 
r—>oo 

T(Br) > 0 for each r G N, 

brBrx = a ^ A ^ x for eac/j r G N , x G V. 

P r o o f . Denote A = lim A^, f = {Z G ^ | r ( Z ) = 0}. By assumpti on, 
q—->oo 

A G .ST. First suppose that j2T = {A}. Put 

1 
V <M - -4,)) 

(r(Aq) > 0 and r(yl) = 0, thus Aq =J- A, hence o^ G (0,oo)), 

c - ^ 
t*q 

Cq = a ^ A g -f (1 - o^)/! 

for each q G N. We have ((A - C^)) = 1 for each q G N and 6^ G cC/ for each q G N by 

condition (I). Hence, by Lemma 1.1, there exists a convergent subsequence {Cqr}r=.[ 

such tha t lim CQr G .<•/. Denote # = lim CVr and br = cqr, Br = ( ^ for each 
r —• o o r —• o o 

?- G N. The sequence {Br}r^=l is convergent and { b . . } ^ is a sequence of nonnegative 

148 



real numbers . Since ((A - Br)) = 1 for each v G N, we have ((A — B)) = \. Hence 

B £ {A} = 2f, so tha t r(B) > 0. The condition (e) implies r(Br) = c*qrr(Aqr) and 

(5) brr(Br) = aqrr(Aqr) 

for each r G N, hence r(Br) > 0 for each r G N and lim brr(Br) = 0. The condition 
r — oo 

(6) implies brBrx = aqrAqrx for each r G N , x G V. This completes the proof of the 

case 2f={A). 
Now, let iT 7- {A}. Put 2f* = {Z - A; Z G 3T}. Then iT* is a vector subspace 

of M ; i by condition (e). Since I ^ dimj^f* ^ cIimMn = n2, there exists a finite 

orthonormal base {)'{,..., Y*} of iT*. Put 

i/.-л + ^ ^ - Ą ľ ; ) } - ; , 
ť = l 

cч — 
(1L 

<*y 
Cq = aqAq + (1 - a g ) ( / 9 

for each q G N. Since i^* is a vector space, we have Uq — A G J2T*, i.e. U7 G ^ for 

each a G N. It implies /t^ ^- [/̂  for each 7 G N, because r(Aq) > 0 for each q G N. 

Thus the numbers aq are well-defined. 

For each q G N, we have 

(M - Q)> = « « A - «,>»- + ^ -*!,» 
<C <vv ((A, - I/,)) + {{/l - (/,)) 

= 1 + ({A - U9)) 

and lim ((A — Uq)) = 0 by the definition of the matrices Uq and A. Thus, { C ^ } ^ is 

a bounded sequence. It follows that there exists a convergent subsequence {Cqr}r

xLl. 

The condition (I) implies that Cq G s/ for each q G N. Thus, lim C» G &f by 
r—-co 

Lemma l . L Put B = lim C^ r and 6 r = c - , Br = CQr for each r G N. The sequence 
r—+00 

{ B r } ^ ! is convergent and {b- . }^ is a sequence of nonnegative real numbers. Since 
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for each TEN 

V 

uq,-A = Y.^r-A,Y;)Y; 
t-\ 

= «qr E <A<r - A>>7> Y; + (i - aqr)£ (A,r - A, >7) v; 
t = l < = 1 

= ««, E ^ - ^ y<*>y<* + o - <*<r) E (<v - -4, >r > >r 
t = l f = l 

i/ 

= V^(f l r -A ,y ; )y ; , 
f = l 

U9r - A is an orthogonal projection of Br -A to J"* (see for example [5]). It follows 

that 

inf ((Br - Z)) = inf ((Br - A - Z*)) 
z^2 " z*e&* " 

= ((Br-A-(Uqr-A)))=\. 

Hence, 

inf ((B-Z)) = 1, 
ze^f 

thus B £ 3f, i.e. r(B) > 0. The condition (e) implies T(Hr) = c*qrr(Aqr) and 

(5) brr(Br) = aqrr(Aqr) 

for each r G N, hence r(Br) > 0 for each r G N and lim brr(Br) = 0. The condition 
r—>oo 

(6) implies brBrx = a7 r / l< / rx for each r G N, x G V. This completes the proof of the 

case 3T £ {A}. • 

Now, we are able to formulate 

T h e o r e m 1.3. Let r be a nonnegative function on x/ satisfying the conditions 

(ct), . . . , (e) and let Y be a finite subset of\/ such that Lh\(x/y) = V. Then [ ]T
r is 

a norm on V and 
[A*Vr 

sup 7 ^ ^ T{A) 

xcx \rW 
x£X 
xŕQ 

ťoг aìì A Є sdf. 

P r o o f . By Theorem 1.1, it is sufficient to show that [x]r > 0 for each x £ 

V — {0}. Let us suppose that there exists i G V - ( O ) such that [x]^ = 0. Hence, 
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there exists a sequence (c ( < 7 \ Q ( < ? )) G Jr"V(.r), q G N, such that 

limf;r|' )r(Q|' )) = 0. 
г ' = l 

(.Consider a matr ix Z G .t/ such that T(Z) = 0 (such a matrix does exist by condition 

(7))- rut 

U ifQ^ = Z, 
> ) 

for each r/ G N, / G {1, . . . , 2k } . We have 

(6) (J ( " ' 0 ) , Riq'0)) G JtV(-r) for each a G N 

by condition (6). Further, we have 

2A: 2k 

. : = 1 г = l 

2Är 

Y 2 4 ^ V ( ^ ' ° ) ) = E C | , V ( ^ ) ) for each , € 
?:=i 

by condition (E), hence 

(7) l imy f /^
0 )r( /4 ' '0 )) = 0. 

q — oo -—-' * * 
i ' = l 

Since 1MM Uli(
i
q'()) - Z\\ = 0, the equality 

(8) lim RJ»,0) = Z 
^ — O O 

is valid for each / G {1, . . ., 2k} . 

Let {(J ( < / '1 ) , / t ( < / '1 ))}°<l1 be an arbitrary subsequence of { ( r f ^ ° ) , / 2 ^ ° ) ) } ~ 1 such 

that either 

T(/?(
1

</,1)) = 0 for all qeN 

or 

T(R\q'l)) > 0 for all 7 G N 
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(recall that / ^ 0 ) = (fl ( , '0 ) , . . . , /?( , '0)) € .c/2*, ,7 £ N). Now, construct step by set 

sequences {(fl(,'2), R ( , ' 2 ) ) } ~ , , . . . , {(rt*'-2t>, ft(,'2i))}~ , in the following way: if se­

quences { ( d ( , ' 1 ) , R ( , ' , ) ) } ~ 1 , •-., { ( f l ( , ' , ) , « ( , ' ' ) ) } ~ 1 have already been constructed 

(1 ^ i <: 2k - 1), then let {(d^'i+i\ ft(,'<+1))}~. be an arbitrary subsequence of 

{((/U.Oj /?(?,.'))}~ ) s u c n t h a t e i t n e r 

r(/ï (^.j+1)) = 0 forallr/ЄN 

r(/"4;; + 1 )) > 0 fora l l r/єN. 

Thus, the sequence {(rf ( ,- 2 t ),/? ( , ' 2 t ))}~ , is a subsequence of {(rf<*-°>, /if*-0>)}°l, 
and, for all 1 ̂  ?'^ 2k, we have either 

r ( f t ( , ' 2 f c ) ) = 0 f o r a l l r / G N 

r ( i ? f , , 2 t ) ) > 0 for all </ G N. 

Put 

(9) ^ = {/ € { I , . . . , 2Jk> I r(/4 , '2* )) > 0 for all q G N}. 

Suppose that Jf — 0. The condition (<S) implies that 

^•"'/^'-^f'l^f^^^Mx' 

for all q e N. This contradicts the relation (6), because {(r/(^2*\ ft('/-2*>)}°1. is 

subsequence of {(J(<?'°\ ft(*'0))}~ r Thus, J ± 0. 

Put 

{(^•°),.S^-°))}~1 = {(c/^2fr>,ft (''2fc))}~r 

Let {(e^>l),5(<7'1))}<>l1 be a subsequence of the seqeuence {(r(«-°>1 ,S
,(*-0)) }°l l de­

fined in the following way: 
Put 

{ ( ^ d ) ^ ^ ^ ) ) } - ^ ^ ^ ) , ^ ^ ) } - ^ 

if 1 ^ J . On the other hand, if 1 E J, Lemma 1.2 applied for aq — c^' and 

Aq - S\q,Q) generates the sc(|iicnces {/v}?=i, {-"Mr^i «»<! {ffr}%\ ( t l i e assuiuplions 
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of Lemma 1.2 are valid by (7), (8) and (9)); put 

e ^ ' 0 ) if i - - 1 , 

ifj = l, 
?(ir,o) . f j . # l i 

i f i = l , 

e(f-i) = {e'f 
3 \br 

( S'̂  
3 \Br 

for all j = 1, . . . , 2* and all r € N. Thus, if T (5 (
1 ' , 0 ) ) = 0 for all , e N , then 

{ ( e U . . ) ) ^ ' 0 ) } ~ i _ { ( e U , o ) < ? ( ? , o ) ) } ~ i . 

if T(,S' | ' ' '0 )) > 0 for all </ _ N, then the entries e^ ' 0 ) and s\Vr'0) are redefined by 

Atrfi) _ , r.(«r,0) _ „ 
e l — y r i «->i — /:>r 

and { (e^ ' 1 ) , ^ ' ' ) ) }™ is the subsequence of the just modified {(e^-0), .S'( , '°))}~ . 
determined by the sequence of indices {</r}S_i- Now construct step by step sequences 
{(e '*.2) , .^ '2 ' )}™,, . . . , { ( e * * 2 * ) . . ^ ' 2 ' ) ) } " , in the analogous way: 

Suppose that {(e("''), 5 , («'1 ' )}~ . , . . . , {(e<«'i),S(«','>)}~ . have already been con­
structed (1^15$ 2k - 1). If i + 1 $ J then put 

{ ( e ( ^ + 1 ) , .S - ( ^ + 1 ) )}~ 1 = { ( e ( ' . ' ) , 5 ( ^ » ) } ~ 1 . 

On the other hand, if / + 1 £ t5/\ Lemma 1.2 applied for aq = e\q'[ and Aq = .S'J+i 
generates the sequences {br}^LX) {Br}^L{ and {<lr}£_:i (the assumptions of Lemma 
1.2 are valid by (7), (8) and (9)); put 

c w + D = / c i f r , ° i f ; * ' + i . 
3 \hr i f i = i + l , 

^ v + 1) = { ^ ' ° i f j ^ f + l , 

" ' \ S r ifj = « + l , 

for all j = 1, . .., 2k and all r _ N . 

Let { ( e ( * \ S ^ ) } ~ . = {(e(i>2k\S(i>2k))}™=l. By the construction of the sequence 

{ ( ^ \ S U ) ) } ~ - (see Lemma 1.2) we have 

(10) lim e\q)T(SJq)) = 0 for all i <E fy 
(/—*ou 

(11) T( lim S[q)) > 0 for all ie / , 

</ — o o 

(12) r ( S ( , ) ) = 0 for all ? € N , / 6 { 1 , . . . , 2*} - / , 

(13) (e«), _<«)) € JrV(*) for each 7 e N. 
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Put Si = lim S\q) for each i e / . Let 7 = i minT (5 , ) . It is clear from (11) that 
?-><x> - iej 

7 > 0. The conditions (I) and (cv) imply that T is a continuous function on .c/. The 

continuity of r and (11) imply the existence of a c/0 £ N such that 

(14) T(S{
i
g))>7>0 f o r a l l O r / o , , ' g J . 

The relations (10) and (14) imply 

(15) lim c\q) = 0 for all i e J . 
q—*oo 

The condition (8) and the relation (12) imply 

(16) £ e^.SfV"' - 53 e^sJ'V'"*) = 0 
i' = l i' = Jfc + l 

«"*./ i t f , / 

for all q e N. Finally, (15) and (16) imply 

2fc 

g—+00 
Hra 5 3 ( ^ 5 ^ - e í ì S Í U ) ^ - -

t = l 

= Д™ ( £ ^'•ЬÍ,)"(І) - £ eíł>5Íł>«<ť-*Л 
«=1 

•Є./ 
i = k+\ 
ІЄJř 

A- 2k 

53o-S>^- 5 3 o-.s><i-
ѓ = l i = Å- + l 

• 6 / 

which contradicts (13). Thus, [x]^ > 0. D 

T h e o r e m 1.4. Let || || />e a norm on V, let T|| |j />e a function on tc/ defined as 

and iefc X7 be a /mire subset of V such fhaf, Lin(.c/7 /) = V. Then [ ]J! " is a norm 

on V, 

IÎ IKOrLaxllvinM;"11 
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for all x G V and 

[Ax® " „ ... 
,c€V F J r 
r?fO 

for a / M G.c/ . 

P r o o f . Since the conditions (a), . . ., (e) hold for the function T]| y ((7) holds 

according to (IV)), it is sufficient to apply Theorem 1.2 and Theorem 1.3. • 

2 . NONNEGATIVE FUNCTIONS ON STOCHASTIC MATRICES 

Troughout this section we assume n >̂ 2. Define the vector space V by V = {x G 

Rn I lTx = 0} and put sJ = E n . We observe that the condtions (I), . . . , (IV) are 

satisfied: the validity of (I) and (II) is obvious; (III) is true since In G E n ; (IV) holds 

because R\ = {0} for each R G E n such tha t all columns of R are identical. 

L e m m a 2 . 1 . Let r be a nonnegative function on E n satisfying the conditions 

( a ) , . . . , (e) and let S G E n . Then r(S) = 0 if and only if all columns of S are 

identical. 

P r o o f . Let &n be the set of all matrices of E n which have identical columns 

(i.e. 1? G &n iff R G E n and there exists a vector a G Rn such that R = alT). It is 

easy to see tha t R2 = R for each R G &n. Hence 

(17) T(R) G { 0 } U [ 1 , O O ) for each R e &n 

by condition (/?). 

Consider a matr ix Z G E n such that T(Z) = 0 (the existence of such a matr ix is 

guarenteed by condition (7)) . The form of the vector space V (V = {x G Rn | 1Tx = 

0}) and condition (6) imply that Z G &n. Further, the function r is continuous 

(by condition (a)) and &tn is a convex set. We summarize that T(R) = 0 for each 

Re&n by (17). 

Finally, if 5 G E n - ^ n , then T(S) > 0 by condition (6). This completes the proof. 

D 

According to Lemma 2 A we can replace the conditions (rt), . . . , (e) by the following 

ones: 

(51) r is a convex function on E n ; 

(52) T(SXS2) <C r(Si)r{S2) for all Si,S2 G E n ; 

(53) for each matr ix S G E n the equality T(S) = 0 holds if and only if the matr ix 

S has identical columns; 
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(S4) if H, S G E n and if the matrix 1? has identical columns then T(ctS+(\-n)R) = 

CIT(S) holds for any a > 0. 

L e m m a 2 .2 . The equality HnV = {x G Rn | 1TJT = 0} holds for each finite set 

r C {x£Rn | l T . r = 0, x^O). 

P r o o f . It suffices to prove that 

E n { v } = { x € R n | l T x - = 0} 

for all v G {x e Rn | lTx = 0, x± 0 } . Let 

v, x e Rn, l T v = 0, lTar = 0, v ^ 0 . 

Since v ^ 0, there exists an index k such that v* ^ 0. For all i, j G { 1 , . . ., 71} put 

1 
i f . / ? * * , 

71 

It is easy to see tha t S = (sij)n.•_{ G E n and Sv = x. D 

T h e o r e m 2 . 1 . Let r be a nonnegative function on E n satisfying the conditions 

(SI) , . . . , (S4) and let Y be a finite subset of {x G Rn | lTx = 0, x ^ 0}. Then [ }T
r 

is a norm on the space {x G Rn | l T x = 0} and 

l T r = 0 

for each n x n stochastic matrix P. 

P r o o f . If suffices to apply Theorem 1.3 and Lemmas 2.1 and 2.2. D 

T h e o r e m 2 .2 . Let T be a nonnegative function on S n satisfying the conditions 

(SI) , . . ., (S4) such that T(F>T) ^ 1 for each n x 71 stochastic matrix P. Then 

1 n 

r(pT) > o max Yl \p{k - 1}Jk\ 

for each n x 71 stochastic matrix P. Moreover, for any finite set 'V C {x G Rn | 

lTx = 0, 2; 9-. 0} there exists a > 0 sucii tiiat 

n 

i"=i 
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for each x G R n , lTx = 0 . 

P r o o f . This theorem follows from Theorem 2A and from [2, Theorem 3] (or 

from [3]). • 

T h e o r e m 2 .3 . Let r be a nonnegative function on E n satisfying the conditions 

(SI) , . . . , (S4) and let P be an n x 71 irreducible stochastic matrix. Then 

m a x { | A | ; A e < 7 ( P ) - { l } } ^ r ( P T ) . 

P r o o f . This theorem follows from Theorem 2.1 and from [4, Theorem 3.1]. 

• 

L e m m a 2 .3 . Let T\, T2 be nonnegative functions on ST1 satisfying the conditions 

(SI) , . . ., (S4). Then there exists c> 0 such that T\(S) ^ CT2(S) for all S G E„ . 

P r o o f . Let this p ropos i t ion be not true, i.e., for each q G N let there exist a 

matr ix Sq G S n such that 

Ti(Sv) > qniS,). 

Lemma 2.1 implies that , for each q G N, T\(Sq) = 0 if and only if T2(Sq) = 0. Hence 

T2(Sq) > 0 for each q G N. 

Consider any matr ix R G S n such that R has identical columns. Let {A^J^ij be 

a sequence of positive real numbers such that 

lim XqSq + (i - \q)R= R. 
q—>oo 

For all c/ G N put aq = 1, Aq = A .̂S'̂  + (1 — \q)R. By Lemma 1.2, there exist a 

sequence { 6 , . } ^ of positive real numbers (it is easy to see from the proof of Lemma 

1.2 that if aq > 0 for all r/ G N then 6r > 0 for all r G N), a convergent sequence 

{ H r } ^ ! of matrices of S f l and an increasing sequence {qr}r^zl of positive integers 

such that 

lim brTi(Br) = 0, 
r—+oo 

(18) n(\\m Br) > 0 , 
r — o o 

Ti(Br) > 0 for each r G N, 

brBrx = Aqrx for each ?* G N, x G V, 

where i = 1,2 (it is easy to see from the proof of Lemma 1.2 that the sequences 

{ 6 r } ^ - ! , {H r}£ii and { a , . } ^ ! can coincide for both T\ and r 2 ) . Moreover, the 

equality (5) implies tha t 

(19) brn(Br) = aqrTi(Aqr) f o r a l l r G N , i € { l , 2 } . 
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The condition (S4) implies 

(20) n(Aqr)- XqrTi(Sqr) f o r a l l rGN, i G { l , 2 } . 

We summarize that 

,. n(Br) brTX(Br) aqrT](Aqr) 
l i m /p \ = l i m i—TUT = l i m —rr̂ : 

r->oo r 2 (H r )
 r-*<» OrT2(Br) r->eo a^ro^J 

,- rl(^r) ^ r QrT2(Sqr) 
- l i m /c \ ^ l i m / 0 \ = l i m <lr = CO 

r-*oo r2(.b(/r) r^oo T2(.Sgr) r-*oo 

by (19) and (20). This contradicts (18), because the functions T\ and r2 are contin­
uous by (SI). • 

Theorem 2.4. Let r be a nonnegative function on Hn satisfying the conditions 
(SI), . . ., (S4) and /e£ P he an 7i x 7* irreducible aperiodic stochastic matrix. Put 
Q- PT. Then 

max{|A|; A € <r(P) - {1}} = lim [r(o*)] 
£-—OO 

fcлllA 

fcчllД = >nf[г(g»)] 

P r o o f . Put £(P) = max{|A|; A E <r(P) - {1}}. Since P is an irreducible 
aperiodic stochastic matrix, we have 

<-(P*)={A*;Aeo-(P)}, 

thus £(Pk) = [Z(P)]k. Hence «J(P) ^ [r{Qk)]X,k for all Jb € N by Theorem 2.3. 

Let || || be a norm on R" and put 

*»"(S,-^w- Ses-
x-fO 

where V = {x G Rn | lr-*r ---0}. By Lemma 2.3, there exists a number c > 0 such 
that T(S) ^ cr|| |j(5) for all 5 G £-». It is proved in [4, Theorem 3.3] that 

Í(P)= lim h | | (Q t ) ] , / ' = in f hiiíQ*)]1 

fc—*-oo fct>M 

Since lim c1/* = 1, the proof is complete. 
k-+oo 
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R e m a r k . Theorem 2.3 and Theorem 2.4 were proved in [4] for functions 

Лl | | (I J ) = S U P 
\\XTP\\ 

, P e -K, 
rЄV 
xpЬO 

where || | | is a norm on R n and V _ {x G Rn | 1Tx _ 0}. 

E x a m p l e s . Put 

1/2 / n n , i n

 x o\ 1/2 

Ms) = (E£(«i-iE'.0) > **=». 
V t'=l j _ l A—l ' 

nn(5') = (n - 1) max |«,-_,• - sin\, S G _ n , 

l ^ t ^ n - 1 

n— 1 ri— 1 

t45) = ̂ ^ h - * , | , Ses„. 
t = l j = l 

These function meet the demands of the conditions (SI) , . . . , (S4). The function rp 

is called the Frobenius coefficient of ergodicity and is studied in [4] and [8]. 

The verification of (S1), (S3) and (S4) is easy. It is proved in [8] that (S2) holds 

true for Tp. We prove (S2) in the case of Tm and TS. Let 

H)\n -íj°-h» .s,
1 = (*;-;x-=i€Sn. s'2 = w;x- = 1 €E n . 

Since 

n - 1 

V s ( 1 ) S ( 2 ) - V 5
( 1 ) 5 ( 2 ) 

2L, ik Skj 2_^bik bkn 
k = \ 

S ( 1 ) ( S ( 2 ) _ S ( 2 ) > ) + > P . S ( 1 ) ( S ( 2 ) - S
( 2 ) ) sin \Snj Snn ) + 2_. Sik \Skj Skn ) 

k=\ 

k=\ k=\ 

"ŮW - ÚWff - >%) 
i f c - 1 

fc=-i 
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we h a v e 

Tm(SiSo) — (n - 1) m a x 
l .^«<ri . - l 
1 0 ' t $ » l - l 

V s ( 1 ) 5 ( 2 ) - V s ( 1 ) S ( 2 ) 
_ l _ * t J b òkj Z-J ik Skn 

0)o(2) V^ . ,(0J2) 
л — 

k=l k=ì 

n - 1 

< ( n - l ) max ^ | S ^ - ^ l l - ^ - ^ l 
1 ^ ť t^ n — 1 , -

<(n-\f max | ^ ~ * ! > ! > ~ 4^1 
l t ^ ť ^ n - 1 

l ^ f c ^ n - 1 

/ /- i \ 2 i (1) ( l ) i i (2) 
$ (n - 1) max | 6 y - 4/1 max \s\f 

l ^ ť ^ n - l l ^ j ^ n - 1 
l ^ f c ^ n - 1 l ^ A : ^ n - l 

= Tm(Si)Tm(S2) 

. (-) i 

aпd 

ť = i j = i fc = i ib = i 

^ _ : _ : , _ : I - Í Í ) - - ( , ) " - ( 2 ) - - ( Í ) 

ť = i j = i i t _ i 
i i - l n - l / n — 1 

Sin \\skf Sln\ 

-±±(\^--€\±\4l]-^\) 
j=i k=i v i = i ' 

n—\n / n - l n - 1 

j = l fc=l V g=\ i = l 

= r s(5,)r . (52) . 
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