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Let V be a subspace of R", let ./ be a set of n X n real matrices such that Az € V
whenever A € &/, 2 € V and let 7: & — [0,00). The paper introduces conditions
upon which there exists a vector norm || || on V such that

(1) sup [l A=| <1(A) forall A e &.
cev 2]l
r#0

Moreover, a constructive definition of norms satisfying (1) is presented.

The results are applied to spectrum localization of stochastic matrices in the sec-
ond part of the paper. The maximum modulus of subdominant eigenvalues is an
important characteristic of stochastic matrices. Determination of upper bounds for
this value is one of the main objectives of the theory of coefficients of ergodicity,
which investigates those of the form

T
P Pz
(2) sup = ”, sup “—-l—”,
IR | | I £
r#0 r#0

where P is a given stochastic matrix, || || is a vector norm, n is the stationary
distribution of Pand 1 = (1, 1, ..., 1)T, see [2, 4, 6, 7,9, 10]. Another upper bound
is studied for example in [11].

In this paper, upper bounds of the maximum modulus of subdominant eigenvalues
are approached in a more general setting. Namely, a broad subclass % of the class
of all functions 7 satislying the inequality (1) for V= {z € R" | 271 = 0} and for at
least one vector norm || || is taken into consideration. The advantage of this approach
1s that an upper bound of the maximum modulus of subdominant eigenvalues can be
chosen in such a way that both the verification of 7 € % and the formula for 7(P)
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itself are simple in contrast to the calculation of (2) for most of the vector norins
|| |]. Moreover, Theorem 2.4 shows that, in the case of an irreducible aperiodic
stochastic matrix P, any 7 € 6 can be taken to produce an arbitrary tight estimate
for the second largest modulus of eigenvalues of the matrix P. Examples of suitable
functions 7 € € are presented as well.

NOTATION

M,, — the set of all n x n real matrices identified with the vector space an;
(,) — the scalar product on M,, defined by

(A, B) = izab A, B eM,;

r=1s=1
(( )) — the norm on M,, defined by
(A) = (A A2 AeMmy;

S, — the set of all n x n stochastic matrices;

¥, — the set of all n x n real matrices such that their column sums are equal to 1;
o(a) — the spectrum of a (square) matrix A;

o(A) — the spectral radius of a (square) matrix A;

Lin(M) — the linar span of a set M C R";

I, — the n x n identity matrix;

0=(0,0,...,0)T e R;

1=(1,1,...,H)T eR™.

1. UPPER BOUNDS FOR NORMS OF MATRIX OPERATORS

Let V be a vector subspace of R™ and let dimV > 1. Troughout this section, «/
is a set of n x n real matrices such that

(D if A, B€ & and a« € R then «A+ (1 — «)B € &,

(I if A, B € &/ then AB € «/;

(If1)  Lin(&/'V) =V,

(1V)  there exists at least onc matrix A € ¢/ satisfying AV = {0}.

Let us give some examples. Let V.= R™. Then the set of all n xn real upper (lower)
triangular matrices and the set of all n x n real matrices with a fixed eigenvector meet
the demands of (I), ..., (IV). The important set of matrices satisfying the conditions
(I), ..., (IV) is studied in Section 2.
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This section is devoted to the study of funcions 7: & — [0, 00) satisfying the
conditions
) 7 is a convex funcion on .¢/;
(B) 7(AB) < 17(A)r(B) for all A, B € «/;
(y) there exists at least one matrix Z € « such that 7(Z) = 0;
) if Z €« and 7(Z) = 0 then ZV = {0};

() ifA Zeo and 7(Z) = 0 then 7(0A + (1 — a)Z) = ar(A) holds for any
a > 0.

Note that a set of functions 7: & — [0,00) satislying these conditions is non-
cmpty. Indeed, let || || be a vector norm on V and let

Az
m (A) = sup U—J—”
i H
rev .
L #0

for every A € /. It is easily seen that the conditions («), ..., (¢) hold for the
function 7y | (the condition () holds by virtue of (IV)).

Definition. Let 7 = {v) ... v®)} be a finite subset of V satisfying
Lin(«/7) =V, let 7 be a nonnegative function on « and let x € V. Define

the quantity
2%k

2]} = inf{ZciT(Qi) | (c,Q) € f1/(£)},
i=1

where J#5 (z) is the set of all pairs (¢, Q) € [0, 20)** x /! such that

k

Z(Q‘Qi — CrpiQuyi)) = 2.

i=1

Remark. The condition (I11) implies that there always exists a finite set ¥ C V
such that Lin(&/ 7)) = V (for example, any base of V has this property). The reader
can verify that, for any such set ¥ and for any x € V, the set 5 (z) is non-empty.
Thus the quantity [2]7, is well-defined.

Theorem 1.1. Let 7 be a nonnegative function on «/ satisfying the conditions
(o) and (B3), let ¥ = {vM) ... 0¥} be a finite subset of V such that Lin(</ ¥) = V.
If [£]7. > 0 for each x € V — {0}, then [ ]}, is a norm on V and

[Az]]

sup < 1(A)
rev [‘7:]“1/
T #0

for all A € «/.
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Proof. Itisobvious that []} isa nonnegative function on «/ and that [2]}, = 0
if and only if » = 0 according to the assumptions.

Let 2 € V and let A > 0. The relation (¢,Q) € #%(z) holds if and only if
(Ac, Q) € Hy (Az). It implies [Ax]], = A[z]},. The relation

((Cl,. s Chy Chgly - - .,Cgk),(Ql, .. -;Qk|Qk+l,- . .,ng)) € 1’1(.L)

holds if and only if

((ckgts--veamyer, oo k) (Qrgrs -, Qo Quy .., Q) € Ky (—x)

holds. Thus [z]], = [—z]}. We conclude that [Az]}, = |A|[2]}, for each ) € R.

Let z, y € V. If & = 0 then the triangular inequality [2]%. + [y = [¢ + y]}- is
true. Let z # 0 and consider any € > 0. We find from the definition of [ ]}, that
there exist (¢, Q) € Xy (z), (d, R) € Hy (y) satisfying

2k

2%
ZciT(Qi) <[]y + %E’ Zd"T(Ri) Sy +
=1

l{-‘
5¢-

i=1

Since [2]}, > 0 the set # = {i € {1,...,2k} | c; + d; > 0} is non-empty. We have

2k 2k

(2% + W5 2 ) er(Qi) + Z dit(Ri) — ¢
i=1 i=1

=Y (r(Qi) + dit(R)) — €

i€ g
Cy (li
= : ; _— i [i — £
Z(C' + dl)(ci + ([iT(Q') + c; + (l,-T( ¢ ))
1€ 7
¢ d;
. . ; R;) —
> Y (et d)r (S Qi R
1€ 7
2k
— (’,jT(.S'i)—&
i=1
where
C; +(li ifie /,
€ = .
0 ifie{l,....2k} - 7,
and - d:
1 (3 . .
i R, lfle )
Si = {"i+41iQ'+Ci+<li 4
Q ifie{l,....2k}— 7.
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The reader can find that (e, S) € #y(z + y) so that [z]}, + [y]} = [z + y]} — ¢ for
any € > 0. Thus, the triangular inequality is valid. We have proved that [ ]}, is a
norm on V.

Let A €  and consider any z € V. It is easy to see that if (¢, Q) € H#%(z) then
(c, AQ) € Hy (Ax), where

AQ = (AQ11 ey AQ?IC)'

Hence ok
(Afy <inf {3 eir(AQi) [ (,Q) € Hr(2)} < T(A)ely
=1
by (/3). This completes the proof. O

Thecorem 1.2. Let 7 be a nonnegative function on &/ satisfying the conditions
(o) and (3), let || || be a norm on V. Then:
(1) If
3) 2l < (max|jol[)[x]}
vE Y

for any x € V and for any finite subset ¥ C V satisfying Lin(&/ 7)) =V, then

Az

sup M < 7(A)
cev el
r#0

for all A € /.

(i) Ir

(4) sup A7 < 7(A)
rev el
r#0

for all A € «/, then

[1% isanormon V,

lell < (max fo[[)[=]%
vEY

and

[Ar]D.

< 7(4)

for any finite subset 7 C V satisfying Lin(«#V) =V and for allz € V, A € «/.
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Proof. (i) Let A € « and let £ € V- {0}. Consider any finite set ¥ =
{o, .., v} C V satisfying Lin(o/7) = V and put

) = ||z (i)y—=1
U= I max [l

Since 7 # {0} (because Lin(«/¥) = V and dimV > 1) and £ # 0 we have 0 €
(0,00). Put # = {wM, ... w® w*+D} where w(V) = 9oV | k) = Pptk),
w* Y = 2. It is obvious that Lin(«/#%”) = V. Further, let ¢; = 0, ..., ¢ = 0,
k1 = Lk =0, .., cogegry =0 and let Qy = A, ..., Qopy1) = 1. We have

k41
D (€iQi = cerrpiQupri)w® = Qeyrw* ) = Ax,
i=1
so that ((c1, ..., cagks1)), (@1, - -, Qak+1))) € Hw(Az). Thus
2k+1)
[A:(:];,, < Z eiT(Qi) = 7(Qr41) = 7(A).
i=1

We summarize

Iz ” ” H(max[lwﬂ)[ Ar)y = B ”HJH[/\J],, < 7(A)

(the first inequality holds by (3)).

(ii) Let 7 = {oW) . oM} C V| Lin(«/7) = V. It is obvious that the set
J={ie{l,... .k} | v #£0} is non-empty. For any z € V, (¢, Q) € A5 (x) we
have

k
llzll = | D _(ciQi = Ck+iQk+i)vm“
i=1
Z (ciQi — ck+,-Qk+i)v(i)”
i€ 7
o Qi M)
< (maxlol) (g o+ 3 ety
< (ma)\]lu( ) (Z ¢; sup Moeicll [|Qi=]| n Z o "p M)
icg €V l1=l =]
:#0 %0
(by () < (1,v,;1‘.\;]|,,(i)ll)( doar(@)+ Y CL‘+iT(Qk+i)>
i€ ¥ i€ r =
2k
< (l‘z‘lf"(“‘k||“U)”)<ZCiT(Qi)>.
0 i=1
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Hence

ll2ll < (maxlloll) (]

for all x € V. This inequality implies [z]}, > 0 for all 2 € V — {0}. To complete the
proof of (ii), it is sufficient to apply Theorem 1.1. a

Remark. The condition (IV) is not essential for the validity of Theorems 1.1
and 1.2 as can be observed froin their proofs.

The following characterization of the inverse matrix can be set as an example of
the use of Theorem 1.2.

Corollary. Let || || be a norm on R", let || ||; be the l;-norm on R", let U be a
real regular n x n matrix and let u"), ... u'™ be columns of U. Then

< 2, (1) 71
el < (o I 0"

for each x € R™.

Proof. PutV=R" 7= {u) . M} « = {al,; « € R}andlet r(al,) =
|| for each o € R. It is casy to see that the conditions (I), ..., (IV) as well as (@)
and (B) are valid. The set 7 is a base of R™, because the matrix / is regular. It
follows that Lin(A7Y) =R" = V.

Let z € R". Put a = (ay, ..., an)T = U~'a and denote af = 1(|a;| + a;) and

a; = %(!a,[ - (l,'). Since

2n
2]} = inf{z am(Qi) | (e, Q) € xy(x)}
i=1
2n
= inf{Zcil(vil | ¢ € [0,00)*", o € R*" and
i=1
Cit; — Cpgitnyi = a; foralli=1,..., n}
n
> inf{z leiai — cpyitngil | € € [0,00)?", a € R*™ and
i=1
Cit; — Cnyitnyi =a; foralli=1,.. .,n}
n n
= Y lal= U zlh =Y af +af
i=1 i=1
and
((af,...,aj,a,‘,...,a;),(l,,,..., In)) € Xy (z)
we have [z]7, = [|U~'z||;. Theorem 1.2(ii) completes the proof. O
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Lemma 1.1. The set &/ is closed.

Proof. Considerany A € /. The condition (I) impliesthat {B—A; B € </} is
a vector subspace of M,,. Since M,, is a finite-dirnensional vector space, the subspace
{B—A; B€ .} is closed. Thus & is a closed set as well. O

Lemma 1.2. Let 7 be a nonnegative function on </ satisfying the conditions (4)
(o8] v, A
and (g). Let {ag}§Z, be a sequence of nonnegative real numbers and let {4,}52, be
a convergent sequence of matrices of «¢ such that

lim a,7(Ay) =0,
g—oo
r(lim A,) =0,
g—oo

7(Ay) >0 foreach ¢ €N.

Then there exist a sequence {b,}7, of nonnegative real numbers, a convergent se-

r=1
quence {B;}22, of matrices of &/ and an increasing sequence {q,}°2, of positive
integers such that

hm b,7(B,) =0,
( lim B,) >0,
r—oo
7(B,) >0 for eachr €N,

b Brx = ay, Ag,x  foreachr €N, 2 € V.

Proof. Denote A= lhm Ay, £ ={Z € «/ | 7(Z) = 0}. By assumption,

g—co

A € Z. First suppose that 2 = {A}. Put

_
<<f\ - Aq))

(1(Ag) > 0 and 7(A) = 0, thus A, # A, hence «, € (0,0)),

oy =

1
C(] - (Yq’
Co=agA+ (1 —ag)A

for each ¢ € N. We have ((A — (7y)) = | foreach ¢ € Nand 'y € & for each ¢ € N by

[a V]
r=1

condition (I). Hence, by Lemnma 1.1, there exists a convergent subsequence {(',
such that lim ¢, € «. Denote B = lim (', and b, = ¢;,, B, = (7, for cach

r—0o0 r—oo
r € N. The sequence {B,}22, is convergent and {b,}72, is a sequence of nonnegative
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real nubers. Since ((A — B,)) = 1 for each » € N, we have ((A — B)) = 1. Hence
B ¢ {A} = Z, so that 7(B) > 0. The condition (&) implies 7(B;) = ay,,7(A,,) and

(5) bo7(B,) = ag,7(A,,)

for each » € N, hence 7(B,) > 0 for each » € N and lim b,7(B;) = 0. The condition
r—00

(6) implies b, Brz = a4, Aq, & for each » € N, 2 € V. This completes the proof of the

case 2 = {A}.

Now, let & # {A}. Put 2* ={Z - A; Z € Z}. Then Z* is a vector subspace
of M, by condition (g). Since 1 < dim 2™ < dimM, = n?, there exists a finite
orthonormal base {Y{*,..., Y, "} of 2. Put

Uy=A+Y (A —AY)YY,
t=1

1
Wy = ——————
! ((Uq - Aq))
-4
cq = nq’

Cy=agAy + (1 —ag)lU,

for cach ¢ € N. Since 2™ is a vector space, we have Uy — A € 2" ie. U, € & for
each ¢ € N. It implies A; # U, for each ¢ € N, because 7(A4) > 0 for each ¢ € N.
Thus the numbers o, are well-defined.

For each q € N, we have

((A—=Cy)) = ({ayUy — agAg + A = Uy))
oy ((Ag — Uy)) + {{(A = Uy))
1+ ((A-U,))

IN

and ql_iwo ({A = Ug)) = 0 by the definition of the matrices Uy and A. Thus, {C,}52, is

a bounded sequence. It follows that there exists a convergent subsequence {C,, }2

r=1-
The condition (I) implies that C'; € &/ for each ¢ € N. Thus, lim C; € « by
r—00
Lemma 1.1. Put B = lim C, and b, = ¢q,, B, = C,, for each » € N. The sequence
r—o00
{Br}2, is convergent and {b,}2, is a sequence of nonnegative real numbers. Since
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for each r € N

Up — A=) (A, = A Y)Y
t=1

v

v

=g, ) (Ag, = A Y)Y+ (1= ag,) D (Ag = ALY
t=1 t=1

=g, ) (A = ATV (L= 0y )Y Uy, — ALY Y
t=1 t=1

=S (B, — A Y)Y,

t=1

/4, — A is an orthogonal projection of B, — A to Z* (see for example [5]). It follows
that

Il

Z“el;'«yr ) Z.llelg‘. {(Br—A=2Z"))

(B — A= (U, — AN = 1.

il

Hence,
L (B-2) =1,

thus B ¢ 2, i.e. 7(B) > 0. The condition (¢) implies 7(B,) = ay 7(A,, ) and
(5) ber(B,) = ay, 7(4,,)

for each » € N, hence 7(B,) > 0 for each » € N and lim b,7(B,) = 0. The condition
r—oo

(6) implies b, B,z = a4, Ay, x for each » € N, z € V. This completes the proof of the

case & # {A}. a

Now, we are able to formulate

Theorem 1.3. Let 7 be a nonnegative function on « satisfying the conditions
(), ..., (¢) and let ¥ be a finite subset of V such that Lin(«/¥") = V. Then [ ]} is
a norm on V and

T
sup [ 2 L 1(A)
reV [ ¥
r#0

for all A € .

Proof. By Theorem 1.1, it is suflicient to show that [x]], > 0 for each x €
V — {0}. Let us suppose that there exists ¢ € V — {0} such that [z]7, = 0. Hence,
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there exists a sequence (¢(9), QD) € ¥y (x), q €N, such that

2%
() (9)
lim E ;' (@) = 0.
9 :\)i:l ' (‘)l )

Consider a matrix Z € & such that 7(Z) = 0 (such a matrix does exist by condition

(7)) Put

-1

«—Q?m ifQEq) * Z,

(q)
1 irQY =z,
(9)
(l(-‘qyo) — Ci
t “iq)

Rg‘lvo) — ni?)Qfﬂ + (l _ (YE‘I))Z
for each ¢ € N, i € {1,...,2k}. We have

(6) (d'90, 140 e Hy(2) for cach g eN

by condition (é). Further, we have

2k

ST dT (R =

i=1 7

cg")r(QE‘”) for each ¢ €N

: IS
=

1

by condition (g), hence

2%
(7) lim Z(liq‘o)r([i’;q’o)) =0.
g—00 4
=1

Since limn <[\’.§~q’0) — Z>> = 0, the equality

g—00

(8) Jim RO = 7
is valid for each 7 € {1,...,2k}.

Let {(d("'”, R“"”)}:o:l be an arbitrary subsequence of {((1("'0), R(‘l’o))};}il such
that either

(R =0 forallqeN

or
(R >0 forallgeN
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(recall that R(4:0) = (R(,q’o), cy Rgi‘o)) cw* qe N). Now, construct step by set
sequences {(d9?), R("'Z))}:o=1 y oo {(d@2)] RG, 2"))}{\; in the following way: if se-
quences {(d(®1), R(‘l'l))}:il, oo {(d@D] R '))} , have already been constructed
(1 <1< 2k—1), then let {(d9H+D)] R("““))}‘I:] be an arbitrary subsequence of
{(dloD), R("'i))};o:l such that either

r(REIFD) =0 forall ge N

or
r(R4FY) >0 forall g €N

Thus, the sequence {(d("'%), I?,("'?k))}(’m_l is a subsequence of {(d(®:9)] I?v("*o))}ml
. . - q=
and, for all 1 <7 < 2k, we have either

T(R.Sq’?k)) =0 forallqgeN

or
(RO Y >0 forall g €N,
Put
® S =€l 2k} [ r(R) > 0 for all g €N

Suppose that # = 0. The condition (8) implies that

Db

T (0.2k) 5,(q,2k (0,2k) 1,(9,2k)\ (i
SO R AR = 0 #
i=1

for all ¢ € N. This contradicts the relation (6), because {(d'9:*%)] R(‘"z“)}:;l s a
subsequence of {(d??), RU: 0))} . Thus, 7 #0.
Put
{((,(q,o)’g(q.()))}q: {(/W"A) R "U)}q -

Let {(e(""),.S'("'”)};U_l be a subsequence of the seqcuence {(r(‘l'“),.S'("'m)};l de-

fined in the following way:

Put
1) g 1)y ® 0
{(e(" ) sl ))}q:] {( (¢,0) 5(40))}(’ 1
if 1 ¢ / On the other hand, if 1 € _#, Lemma 1.2 applied for a, = r"lq‘”] and
Ay = .S'( ) generates the sequences {b, 152, {8,152, and {¢,}22, (the assmuptions
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of Lemma 1.2 are valid by (7), (8) and (9)); put

.0 e .
S e_(iq ) ifj#1,
J b, ifj=1,
gon _ [T L
J B, ifj=1,

forall j =1, ..., 2k and all » € N. Thus, if T(.S'i‘”m) = 0 for all ¢ € N, then

{(eo)), S(q'l))}q=1 = { (9, S(.,,o))}qzl ;

if r(.S'Eq'O)) > 0 for all ¢ € N, then the entries e(,q"o) and SE""O) are redefined by
e(lth) = by, quhO) =B,

and {(e("'l), .S'(""))};\j:l is the subsequence of the just modified {(e("'o),S("'O))}:;l
determined by the sequence of indices {q,}°2,. Now construct step by step sequences
{(el9:?), .’)'("‘2))}:;1, " {(e(q’zk),S'(""“'k))};il in the analogous way:

. - (o) : o i )

Suppose that {(e(""),b("'”)}q:], - {(«‘3(""’,S(""))}q:l have already been con-
structed (1 <1< 2k—1). If i+ 1¢ _# then put

{(e(q,i+l)’'5'(q.i+l))}:"=l - {(e("'i),.S'("'i))};”:l.

On the other hand, if i+ 1 € _#, Lemma 1.2 applied for a, = ei-f"_’i) and A, = ‘ﬂfi;)
generates the sequences {b,}°%2,, {Br}52, and {q-}22, (the assumptions of Lemma

1.2 are valid by (7), (8) and (9)); put

J br

+(gr,7)
S = {‘Sf

(gr,i)
L) {"f

B,

forall j=1,..., 2k and all » € N.

i) #i+1,
ifj=i+1,
ifj#i+1,
ifj=i+1,

Let {(e(, .S"‘lJ)}:":l = {(e(9:2k), ,S'(‘l"lk))}qmzl. By the construction of the sequence

{(C("),.S'("))}:i1 (sec Lemma 1.2) we have
(10)
(1)

(12)
(13)

‘r(.S',-(q)) =0 forallq€eN,
(e, 5Dy e #y(2x) foreach q €N.

. Yol .
ql-llg) egq ‘r(bi")) =0 forallie 7,

s ole) :
T(qllflc}o S;7)>0 forallie 7,

ie{l,....2k} - 7,



Put S; = lim .S'gq) foreachi€ f. Lety=1 m}\ 7(S5;). It is clear from (11) that
Zie g

g—oo
¥ > 0. The conditions (I) and («) imply that 7 is a continnons function on /. The
continuity of 7 and (11) imply the existence of a q¢9 € N such that
(14) (59> 4 >0 forallg g i€ 7.

The relations (10) and (14) imply

(15) lim e =0 forallie g
g—oo ’

The condition (&) and the relation (12) imply

k 2k

(16) Z eE“S‘fq)v(” _ Z qu)'s-l(q)”(i—k) -0
i=1 i=hk+1
i¢s i¢ &

for all ¢ € N. Finally, (15) and (16) imply

2%
. (9) o(q) (@) o(9) . (i) _
ql_l}go E l(ei Si = Sy )V D=
1=

2k 2k
. (9) o(9), (i (9) o(q), (i—k
i (3 00 - 5 s
i=1 i=k+1
i€ g i€ F

2k
050 — 3 050078 =0 £ 2,

-

i=1 i=k+1
i€f i€ g
which contradicts (13). Thus, [¢]} > 0. O
Theorem 1.4. Let || || he a norm on V, let 7 be a function on & defined as
A
1 (A) = sup I r” Ae o,

cev Il
r#0

and let 7 be a finite subset of V such that Lin(«/7) = V. Then [ |} " is a norm
onV,

.
llll < (maxlelD[z]* "
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for all x € V and '
[Az])})
e <
720

for all A € .

Proof. Since the conditions (a), ..., (¢) hold for the function 7 ((y) holds
according to (1V)), it is suflicient to apply Theoremn 1.2 and Theorem 1.3. a

2. NONNEGATIVE FUNCTIONS ON STOCHASTIC MATRICES

Troughout this section we assume n > 2. Define the vector space Vby V= {z €
R" | 17z = 0} and put «# = £,. We observe that the condtions (I), ..., (IV) are
satisfied: the validity of (I) and (I1) is obvious; (III) is true since I, € £,; (IV) holds
because RV = {0} for each R € X, such that all columns of R are identical.

Lemma 2.1. Let 7 be a nonnegative function on ¥, satisfying the conditions
(o), ..., (¢) and let S € E,. Then 7(5) = 0 if and only if all columns of S are
identical.

Proof. Let %, be the set of all matrices of ¥,, which have identical columns
(i.e. R € #, iffl R € £, and there exists a vector a € R™ such that R = «17). It is
easy to see that R® = R for each R € #,. lHence

(17) 7(R) € {0} U[l,00) for each R € %,

by condition (8).

Consider a matrix Z € ¥, such that 7(Z) = 0 (the existence of such a matrix is
guarenteed by condition (7)). The forin of the vector space V(V = {z € R* | 1Tz =
0}) and condition (8) imply that Z € #,. Further, the function 7 is continuous
(by condition («)) and %, is a convex set. We summarize that 7(R) = 0 for each
R € %, by (17).

Finally, if S € £,, — %, then 7(.S) > 0 by condition (6). This completes the proof.

O

According to Lemma 2.1 we can replace the conditions (), .. ., (¢) by the following
ones:

(S1) 7 is a convex function on X,;

(S2) 7(5152) < 7(S1)7(S2) for all S}, S» € &

(S3) for each matrix S € &, the equality 7(S) = 0 holds if and only if the matrix
S has identical columnns;
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(S4)if R, S € £, and if the matrix R has identical colunins then r(aS+(1—n)R) =
aT(S) holds for any a > 0.

Lemma 2.2. The equality £,% = {z € R* | 1Tz = 0} holds for each finite sct
Y Cc{zeR" |17z =0, = #0}.

Proof. It suffices to prove that
L. {v}={zeR* |17z =0}
forallve {zeR" |1T2 =0, z # 0}. Let
v,zeR*, 1Tv=0 1Tz=0, v #0.

Since v # 0, there exists an index k such that vx # 0. For all i, j € {1,...,n} put

1
= if j # k,
n

Si; =

i 1 T; .
e if j ==k
n Vi

It is easy to see that .S = (si;)';=) € E, and Sv = z. a

Theorem 2.1. Let T be a nonnegative function on X,, satisfying the conditions
(S1), ..., (S4) and let ¥ be a finite subset of {x € R" |17z =0, 2 # 0}. Then []},
is a norm on the space {z € R* | 1Tz = 0} and

[)7‘ . 'r/ .
sup QT]’ < T(P7)
zeR™-{0} [‘L]x
1Tzr=0
for each n x n stochastic matrix P.
Proof. |If suffices to apply Theorem 1.3 and Lemmas 2.1 and 2.2. a

Theorem 2.2. Let 7 be a nonnegative function on X, satisfying the conditions
(S1), ..., (S4) such that 7(PT) < 1 for each n x n stochastic matrix I’. Then

1
7(PT) > = max le,k = il
Igign
l<]gn

(V]

/

for each n x n stochastic matrix P. Moreover, for any finite set ¥ C {z € R" |
1Tz =0, = # 0} there exists a > 0 such that

n

)y = S alzil

i=1
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for each z e R*, 1Tz = 0.

Proof. This theorem follows from Theorem 2.1 and from [2, Theorem 3] (or
from [3)). 0O

Theorem 2.3. Let T be a nonnegative function on £, satisfying the conditions
(S1), ..., (S4) and let P be an n x n irreducible stochastic matrix. Then

max {[A|; X € o(P) = {1}} < 7(PT).

Proof. This theorem follows from Theorem 2.1 and from [4, Theorem 3.1].
a

Lemma 2.3. Let 1, 7 he nonnegative functions on X,, satisfying the conditions
(S1), ..., (S4). Then there exists ¢ > 0 such that 7(5) < c¢r2(S) for all S € £,,.

Proof. Let this propostition be not true, i.e., for each ¢ € N let there exist a
matrix S, € ¥, such that

CARTLACH)

Lemma 2.1 implies that, for each ¢ € N, 7(S,) = 0 if and only if 7(S;) = 0. Hence
72(Sy) > 0 for each ¢ € N.

Consider any matrix R € £, such that R has identical columns. Let {A,}72, be
a sequence of positive real numbers such that

qlB]oi;) AgSe+ (1= AR =R.

For all ¢ € N put ay = 1, Ag = A5, + (1 = A))R. By Lemma 1.2, there exist a
sequence {b,}52, of positive real numbers (it is easy to see from the proof of Lenina
1.2 that if ay > 0 for all ¢ € N then b, > 0 for all » € N), a convergent sequence
{Br}22, of matrices of ¥, and an increasing sequence {q,}2, of positive integers
such that

lim b,7;(B;) =0,

T— 00
(18) 7i( lim B;) >0,

r—oo
7i(By) > 0 for each r € N,
b,B,x = A, x for each » €N, 2 €V,

where i = 1,2 (it is easy to see from the proof of Lemma 1.2 that the sequences

{b-322,, {B-}2, and {q.}72, can coincide for both 71 and 73). Moreover, the
equality (5) implies that

(19) b,7i(B;) = a4, Ti(A,,) forallreN, i€ {1,2}.
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The condition (S4) implies
(20) Ti(Aq,) = Ag, i(Sy,) forallreN, i€ {l,2}.

We summarize that

TI(BW) — l)n' b Tl(B) lm a‘erl(‘4(Ir)
r—o00 Tg(B,-) r—oo b.7o(B; ) r—co a,, To(Ag,)
= lim l(bq') > lim gﬂ?—(—si-)- = lm ¢, =

r—00 T”( qr ) r—oo 7'2(‘Sqr) r—eo

by (19) and (20). This contradicts (18), because the functions r; and r are contin-
uous by (S1). O

Theorem 2.4. Let 7 be a nonnegative function on ¥, satisfying the conditions
(S1), ..., (S4) and let P be an n x n irreducible aperiodic stochastic matrix. Put

Q = PT. Then

max {|A; X € o(P) — {1}} 1/k

lim [T(Qk)]
mf [T(Q )]I/L

Proof. Put é(P) = max{|A|; A € o(P) - {1}}. Since P is an irreducible

aperiodic stochastic matrix, we have
ky _ k. ]
o(P*) = {M; A ea(P)},

thus ¢(P*) = [{(P)]k. Hence £(P) < [T(Q")]l/k for all £ € N by Theorem 2.3.
Let || || be a norm on R™ and put

M (S) = sup ”” ”” Sex,,

reV
T#0

where V = {& € R"® [ 172 = 0}. By Lemma 2.3, there exists a number ¢ > 0 such
that 7(5) < emy (S) for all S’ € T, It is proved in [4, Theorem 3.3] that

§(P) = Jim [n (@] = jnf [m y(@)"".

Since klim ¢l/¥ = 1, the proof is complete. O
— 00
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Remark. Theorem 2.3 and Theorem 2.4 were proved in [4] for functions

Tp
7 1(P) = sup H:z: ”, Pe.%,,
reV ’
T#0
where || || is a norm on R” and V = {z € R" | 1Tz = 0}.

Examples. Put

r(S) = (ii(s,j——zm)) , SeE,,

i=] j=1

™m(S)=(n—1) max |[s;j —sin|, S €Iy,

1<ign—1
1<j<n—-1
n—1n-1
S) = E E |Sij — Sml‘ SexL,.
i=1 j=1
These function meet the demands of the conditions (S1), ..., (S4). The function ¢

is called the Frobenius coefficient of ergodicity and is studied in [4] and [8].

The verification of (S1), (S3) and (S4) is easy. It is proved in [8] that (S2) holds
true for 7p. We prove (S2) in the case of 1, and 75. Let

o (1) oo (J(2)
AS1 _.(S” ):L]—l E"‘"‘ ,_52__(9!] :]]—1 E"“"

Since

(1) (2) (1) (2)
Sik Skj — Zszk Skn

1 2 1 2 2
e - o+ 3 - o2
(1) &= @ ( )
1 (2 (2 1) 2) 2
= st S (s — s2) +Z V(s — s())
k=1
n—1
1 1 2 (2
= E(Sgk) En))( ¥ ' -))
k=1
n—1 (
1 1 2 2
<Dl = sl sty — sl
k=1



we have

n
. 1) (2 1) (2
Tm(5152) = (n - 1) max EL)SL) sfk)si”)
1<ign~1 =1 k=1
Ijgn—1 F= =
n—1

(1) (1) (")
n—1) max s —
<=1y max §7 10 - ol - o)

1<j<n-1

2 (1) _ (1)
<(n—-1)? max |[s;’ — s;, l|s3 Skj —
1ign—-1
Igjsn-1
1<kgn -1

(")I

<(n=1)7 max ] ml max [sﬁj) "/u)l
1<ign-1
1<kLn~-1

= Tm(Sl )Tm(SZ)

<n-1

1<)
1<k<n—1
and

n—-1n-1

T(S15) = >N

i=1 j=1

n

(1) (2) (1) (2)
Z Sik Skj — Sik Skn
k=1

n—ln-1ln-1

(1 _ (1 2
gZZZIS m“sg.;)_slnl
i=1 j=1 k=1
n—Iln-1 n—1
2) (2) (l 1
=% (- T - o)
j=1k=1 i=1
n—-1 n n—ln-1
2 1 1
D3N (-ENID DpwITHERH)
j=1k=1 g=11i=1
= 75(51)75(52).
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