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RIEMANNIAN REGULAR <x-MANIFOLDS 

A. A. ERM0L1TSKI, Minsk 

(Received March 24, 1992) 

Symmetric spaces and their generalizations play an important role in modern 

differential geometry and its applications, [4], [5]. In this paper we introduce and 

study the so-called Riemannian regular cr-manifolds which generalize on the one 

hand the spaces with reuections [6] and on the other hand the Riemannian regular 

s-manifolds [4]. We want to point out that the term "subsymmetry" was first used in 

[8]. The main point of the present paper is to show that any Riemannian regular a-

manifold is a fibre bundle over the base space Ar = G/H, with a standard fibre A and 

a structure group G, which is associated with the principal fibre bundle G(GjH, H). 

The manifold N is a regular B-inanifold. When M is compact then N is a Riemannian 

regular s-uiaiiifold. 

All manifolds and mappings are supposed to belong to the class C°°, &(M) 

denotes the algebra of vector fields on M. TM denotes the tangent bundle, 1 the 

identity operator . 

1. RIEMANNIAN LOCALLY REGULAR CT-MANIFOLDS 

D e f i n i t i o n 1.1. We shall call a connected Riemannian manifold (M,g) with 

a family of local isometries {sx : x £ A/} a Riemannian locally regular cr-manifold 

(R.l.r. cr-in.), if 

1) sx(x.) = x, 2) the tensor fields 5 : Sx = ( s ) x * r is smooth and invariant under 

any subsymmetry sx, 3) there exists a connection V on M invariant under any sx, 

such that V.S' = V</ = 0. 

As ST — ($x*r), it is evident that 

(1.1) g(SX,SY) = g(X,Y), X,Y e &(M). 

If a tensor field S is 0-deformable, then the existence of a connection V ( V 5 = 

Vg = 0) follows from (1.1), [1]. Let the closure G = CL({sx}) of the group generated 
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by the set {sx : x G M} in the full isometry group I(M) be a transitive Lie group of 

transformations. 

Then M is a Riemannian homogeneous space with the canonical connection V. S 

is G-invariant (S is invariant under every sx) and it follows that V S = Vg = 0, [3]. 

D e f i n i t i o n 1.2. We shall call a connected Riemannian manifold (M,g) with a 

family of local isometries {sx : x E M} a Riemannian locally regular cr-manifold of 

order k (R.l.r. <r-rn.o.k), if 

1) sx(x) = x, 

2) the tensor field S determined by the formula Sx — (sx*x) is smooth, invariant 

under any sx and satisfies the condition Sk = I. 

Let M be a R.l.r. a-m. (R.l.r. cr-in.o.k) and suppose all the symmetries are deter­

mined globally. Then we shall call M a Riemannian regular (7-manifold (R.r. a-m. 

and R.r. (T-iii.o.k, respectively). 

The following theorem shows that any R.l.r. cr-m.o.k is a R.l.r. a-m. 

T h e o r e m 1.1. Let M be R.l.r. a-m.o.k, Sk — 1, let V be a Riemannian connec­

tion of g. Then the connection 

(1.2) VXY = VXY - lj2Vx(SJ)Sk~JY 

1 k~l 

= -J2SJVxSk-JY} N,y G X(M), 

is determined on M, V S = Vg = 0, and V is invariant under every sx 

P r o o f . V is obviously a connection. We have 

fc-i 

k vA-(5)Y = l Y2(SІУxSk~j+iү - si+1vxs
k->ү) 

= UvxS
k+lY - SkVxSY) = 0, 

1 * - 1 

sr(VA-Y Z) + g(Y, VXZ) = - J2[9(S3VxS
k-> Y, Z) + g(Y, S'VxS

k->Z)] 
" j = 0 

k-l 
1 

J = 0 
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= I I>(VA-S*-;'Y', Sk~'Z) + g(Sk~'Y, VxS
k-'Z)] 

t - i 

= Ã £ *if(St~i У- 5*_i.") = Xg(Y, Z), 



that is Vg = 0. As V and 5 are invariant under every sx, it follows from (1.2) that 

V is also invariant under every sx. • 

The condition V 5 = 0 on R.l.r. a-m. M implies that 5 has on M a constant Jordan 

normal form. An almost product structure can be defined on M : T(M) = Tl(M) 0 

T 2 (A/ ) , where T 1 is a distribution corresponding to the eigenvalue V T 2 = T 1 1 . 

In the case when T 1 = {0}, M is a Riemannian locally regular s-manifold [4]. 

Further on we assume T 1 ^ {0}. 

T h e o r e m 1.2. Let M be a R.l.r. a-m. Then the distribution T l is integrable and 

its maximal integral manifolds are totally geodesic submanifolds with respect to V. 

P r o o f . From the fact that connections V, V are invariant it follows that the 

tensor field h — V — V is also invariant under every sx. Since h is invariant and 

sx = ( J W ) , it follows that h(SX, SY) = Sh(Xy V), A , Y G 3t'(M). Let A , Y G T 1 , 

then 5 b ( A , Y) = b(5A, SY) = h(X, Y) and h(A, Y) = VXY - V * y G T 1 . 

Since V 5 = 0, T 1 is invariant under V and we get 

VXY G T\ VXY = Vxy -f li(A,y) G T1, [A, y] = VXY - VyA G T1, 

T 1 is autoparallel under V and it follows that its maximal integral surnbrnanifolds 

are totally geodesic. • 

The distribution T1 defines the foliation A = {Ax: x G A/} . The fibres of A will 

be called the mirrors. 

The canonical connection is unique for any Riemannian locally regular s-manifold 

[4]. For R.l.r. cr-m. we have 

P r o p o s i t i o n 1.3. Let V, V' be canonical connections from Definition 1.1 and 

X G T 2 . Then VA- = V ^ on M. 

P r o o f . 5 has no fixed vectors except the null vector in T 2 , hence (/ — 5) is an 

isomorphism on T 2 and (/ - S)X / 0, A G T 2 , A £ 0. Let A G T 2 , Y G &{M), 

let V, V ' be canonical connections from Definition 1.1, E = V— V . Then 

EXY = E{!.S)xlSYl = EXxSYx - ESXlSYx - SEXlYi - SEXlYx = 0 

and V x = V'A- (A = (/ - 5)A'i , Y = SYX, SEXlYx = EXlSYx because V ( 5 ) = 

V ' ( 5 ) = 0, SEXlY\ = EsxxSYi because E is invariant under every sx). D 
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2 . RlEMANNIAN REGULAR (T-MANIFOLD AND MANIFOLD OF MIRRORS 

In this section we assume that M is a R.r.<7-m. 

L e m m a 2.1 [2]. Let g and V' be isometrieson (M,g), g(x) = ^(x), g*(x) = V'*(-*0 

for some x G M. Then g = t/; on M. 

L e m m a 2 .2 . AH the subsymmetries sx are affine transformations with respect 

to V. 

Proof obviously follows from Definition I T . 

P r o p o s i t i o n 2 .3 . Let M be a R.r.cr-m. and sx a subsymmetry on M. Then we 

have sx\ = id | and if x\ G Ax, then sx = sXl on M. 

P r o o f . Since sx and S commute, T{ and A are invariant under sx and it follows 

that sx(Ax) = Ax. For the restriction sx\ we have sx(x) = x, sxmx = / . According 

to L e m m a 2 . 1 , sx — id on Ax. Let x\ G A.r, then sXl I = id and sXl(x) = sx(x) = x. 

Consider v G TX(M) and a curve Tt connecting x and x\. Denote the parallel 

transport with respect to the connection V by ft. According to Lemma 2.2, all 

subsymmetries commute with the parallel transport; the parallel transport commutes 

with 5 , because V.S = 0. Thus ft (sXl*x(v)) = sXl+Xl(ft(v)) — Sft(v) = ft(Sv) and 

we get sXl*x = sx*x — S. According to Lemma 2.1 sXl — sx on M. D 

T h e o r e m 2 .4 . Let M be R.r.cr-m., N = {Ax: x G M}} IT: M — N : x >-+ Ax. 

Then N is a smooth manifold and TT is a different]able submersion. 

P r o o f . According to [7] it is sufficient to show that the foliation is regular. Let 

U(x) be a convex neighbourhood of x in which there exists a foliated chart of the 

foliation A, [9], and let x\ G U(x). Suppose that A.r i, A r 2 are connected components 

of AXl O U(x) which do not coincide (xo G U(x)). Then there exists a unique 

minimizing geodesic 7(l) in U(x), where t G [^1,^2], 7(^1) = -t'l, 7(^2) = -"2- T\\e 

isometry sx transforms 7 into a geodesic 7' C U(x) and 7' is a minimizing geodesic 

[2]. Proposition 2.3 yields that ^ . ( A ^ J = AXl and sXl(x\) = x\, sXl(x2) = ^2-

Since the minimizing geodesic which connects x\ and x2 is unique vve have 7 ' = 7. 

Thus 5X l(7) = 7 and sXl+Xl(y) = SXl(j) = 7 and hence yXl G TT\. 

According to Theorem 1.4, AXl is a totally geodesic submanifold of A1, so 7 C AXl. 

Because A r i , AX2 are arevvise connected in U(x), they coincide. The contradiction 

obtained proves the theorem. • 
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3 . RlEMANNIAN REGULAR <T-MAN1F0LD AS A FIBRE BUNDLE 

Let 1(777) be the full isometry group of R.r. cr-m. M equipped with the compact 

open topology and let G = CL({sx}) be the closure in 1(M) of the group generated 

by the set {sx : x G M } . Then G is a Lie group of transformations. 

L e m m a 3 .1 . The foliation A is invariant under all transformations of the group 

G, that is, G transforms mirrors into mirrors. 

P r o o f . Consider a sequence {gn} —* g G G where gn G G. As S is invariant 

under subsyminetries, S is also invariant under each gn. But then y* • S = S • g*. As 

the tensor field S is invariant under the group G, Tl is also invariant under G. It 

follows that G transforms mirrors of the foliation A into mirrors. • 

L e m m a 3.2 [4], If G C I(M) is a closed subgroup then all G-orbits are closed 

in M. 

Let us define the action of the group G on the manifold N: G x N —• N : (g, y) »---

7T(y -X), where y = ir(x). From Lemma 3.1 we see that this definition is correct. The 

action is obviously differentiate . 

T h e o r e m 3 . 3 . Let M be a R.r. cr-m., and N the corresponding manifold of mir­

rors. Then the group G is a transitive Lie group of transformations of the manifold N. 

P r o o f . Let x0 G M , let U(xo) be a convex neighbourhood of xo with respect 

to V, which is a foliated chart of the foliation A. Suppose that x is an arbitrary 

point in U(x0), x £ AXo, r is a distance from x0 to the G-orbit G(x) of the point 

x.r = u\f d(xo, y(x)). Since G(x) is closed, one can find z G G(x) such that 
</GG 

r = d(xo, z). Let us suppose that z £ AXo. Then there is a geodesic segment of the 

length r joining XQ and : . Let w be a point of this segment between xo and z. Then 

iw & Tl because otherwise, according to Theorem 1.2, the whole segment would lie 

in Aw and : G A,, = AXo. Thus sw(z) ^ z, sw(z) G G(x). 

Hence all the points xo, z, w, s(w) lie in U(x). Using the triangle inequality we 

get 

d(x0,sw(z)) < d(xo, w) + d(w, sw(z)) = d(x0,w) + d(sw(w)sw(z)) 

= d(x0, w) + d(w, z) = d(x0, z) = r. 

The contradiction obtained shows that z G AXo. Thus, for any mirror y — Ax, y G 

7t(U(xo)), one can find an element of the group G transforming y into y0 = A X Q , and 

for any 7/1, y2 G n(U(xo)) there exists a transformation y G G such that t/2 = y(y\)-

Covering a segment of the curve between two arbitrary points of N by a finite 

number of neighborhoods like 7r(cJ(.ro)) we conclude that the group is a transitive 

Lie group of transformations of N. • 
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Corol lary 3.4 . All Bbres of the foliation A are diffeomorphic to the standard 

fibre A = Ao, where o £ M is a fixed point. 

It is well known that the component of identity of a Lie group acting transitively 

on the manifold N is also transitive on N, so later on we will assume the group G 

to be connected. 

Corol lary 3 .5 . Let o £ M and let H be the isotropy subgroup of A0 £ N. The 

mapping G/II —+ N : gll »—» A^o) is a diffeomorphism of the manifolds G/II and N. 

Let G(G/H, II) be a principal fibre bundle with the base G/II and the structure 

group / / . Since II acts on the manifold A = Ao to the left, it is possible to consider 

G x //A, which is the fibre bundle over the base space G/II with the standard fibre 

A and the structure group H associated with the principal fibre bundle. 

Let g0x be the equivalence class containing (g, x), where (gli, x) ~ (g, hx), h £ II. 

T h e o r e m 3.6. Let M be a R.r.cr-in. The mappings <I>: G x //A —• M : g 0 x t—* 

g(x) and G/II —> N: gll *-* A^ 0 ) are diffeomorphisms. The following diagram is 

commutative: 

G x tfЛ ^M 

(3.1) 

G/II •N 

P r o o f . 4> is obviously a correctly defined, differentiable mapping, <1> is surject ive 

because G is transitive on N. Let us check the injectivity of <I>. Let g\(x\) — #2(^2), 

then 

g~lg2 — h £ II and g\ 0 X\ — g\h 0 h~lx\ = go 0 ^2-

The mapping G x A —> M : (g, x) »—»- g(x) is a submersion and the following diagram 

is commutative: 

G x Л + M 

G x tf Л 

Thus <P is a diffeomorphism and the diagram (3.1) is evidently commutative . 
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4 . M A N I F O L D OF MIRRORS AS A REGULAR S-MANIFOLD 

Let o G M be again a fixed point, y0 = Ao G N. According to Proposition 

2.3 every subsymmetry sx defines a diffeomorphisin sy of the manifold N, where 

y G 7r(x). It is clear that sy(y) = y and symy = 5 , where the Jordan normal form 

S coincides with the normal form of the tensor field S restricted to T 2 . It is also 

evident that S is invariant under the group G acting transitively on N. 

L e m m a 4 . 1 . Let g(A0) = Ax, where x = g(o) G M. Then sx = g • s0 • g~l on M, 

9 ' O. 

P r o o f . sx(x) = x and (g-s0 -g~l)(x) = x. Then sx+x = Sx and (g • s0 -g~x)+x = 

g*Q • so*o ' (J+x ~ 9*° ' S° ' 9*z ~ Sx, because S is G-invariant. According to Lemma 

2.1, sx coincides with g • s0 • g~l on M. • 

P r o p o s i t i o n 4 .2 . Let M be a R.r. cr-m. and let N be a manifold of mirrors. Then 

p: N x N —* N : (t/i, y2) »—> syi(y2) is a real analytic mapping. 

P r o o f . N = GIH has the structure of a real analytic manifold such that the 

action of G on N and the projection p: G —* GjH are analytic [2]. One can find a 

neighbourhood W C Ar of a point y0 for which there exists an analytic section v: 

W —> G of the fibre bundle p: G —• G/H . According to Lemma 4.1, sy = ^(s^) = 

~(9 ' *o • 9~l) = £ • 5t/o • <7~l- Therefore, for any y G VV, By = */(y) • 5yo • ( I / ( J / ) ) " , 
syo ^ ^ ^s analytic. Thus, the mapping (gi, y2) •—• sy . (t/2) is analytic on VV x N and, 

in fact, on M x M. • 

D e f i n i t i o n 4 .1 [4]. A regular s-manifold is a manifold N with a multiplication 

p: N x N —» N such that the mappings sy : N —> N, y G N given by sy(-r) = //(u, 2) 

satisfy the following axioms: 

1) sy(y) = 2/, 
2) each sy is a difTeomorphism, 

3) .sy • sz = sw • sy, where w = sy(z), 

4) for each y G N, sy*y : Ty(N) —• Fy(N) has no fixed vectors except the null 

vector. 

T h e o r e m 4 .3 . Let M R.r. a-m. and N its manifold of mirrors. Then N is a 

regular s-manifold. 

P r o o f . According to Proposition 4.2, p is differentiate, the axioms 1) and 2) 

are evident, 4) follows from the fact that S | has no fixed vectors except the null 

one. Consider the axiom 3). Let x, u, v ~ M, w(x) = y, w(u) = z, ir(v) = w. Let us 
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prove that sx • su = sv • sx. We have 

(sx - su)(u) = (sv • sx)(u) = v, 

ySx • Su)*u — &x*u * Su*u — &x*u ' *-"*u — *^v ' Sx*u — $v*v ' $x*u — \&v * '^x)*u-

According to Lemma 2.1 we have sx • su = sv • sx. Projecting this equality onto N, 

we obtain that sy • sz = sw • sy, where w = sy(z). • 

T h e o r e m 4.4 . Let a R.r. a-m. M be compact. Then its manifold of mirrors N 

is a Riemannian regular s-manifold. 

P r o o f . Since the group I(A/) of all isometries of M is compact, the group G is 

also compact. Assume < , >* is an arbitrary Riemannian metric on N, X, Y G Ty(N). 

The elements of the group G are isometries with respect to the following metric < . 

> on N: 

( A ' , Y ) = j (g*X,g*Y)\ 

gee 

The rest follows from Theorem 4.3. • 

R e m a r k 4.5. If H is not compact then G/H can not be a Riemannian reg­

ular s-manifold because according to [3], the isotropy subgroup of a homogeneous 

Riemannian space must be compact. 

5. T H E MAIN EXAMPLE OF A RIEMANNIAN REGULAR CT-MANIFOLD OF ORDER k 

Let (N,g2) be a Riemannian regular homogeneous .s-manifold of order k [4], then 

N = G/H where G° C H C G°\ G° = {g G G: a(g) = g}, Ga is the component 

of the identity of Ga, a is the automorphism of the group G (ak = id). (Here G is 

a connected group of isometries which acts transitively on N). Let G(G/H,H) be 

a principal fibre bundle with the base G/H and the structure group H. Let (A,g[) 

be the Riemannian manifold and let H act on A to the left. We consider the fibre 

bundle G x / / A which is associated with G(G / H, II), and again denote by g (g) x the 

equivalence class containing (g,x), where (gh,x) ~ (g,hx), h G / / . 

Now we will s tate the main theorem of this section. 

5 . 1 . M = G x //A is a R.r. a-m.o.k. 

The proof will be given step by step in the next paragraphs. 

L e m m a 5.2 [5]. The formulas 

pH • qli = V°(VTX • q" • H, p" = <T(p), q° = <T(q), p, q G G 
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define a regular multiplication on N. 

L e m m a 5 .3 . The formula 

( p 0 u) (q&v) = p(p°)~Xq<7 0 v 

defines a regular multiplication on M = G x //A. 

The projection n: G x //A —• Gj 11 is a homomorphismofspac.es with multiplica­

tions. 

The proof is analogous to that considered in [6] when cr2 = id. 

We have a family of symmetries {sy: y G N} on N, sy(z) = y • 2, and a tensor 

field Sy = sy*y which is invariant under all sy. It is clear that Sk = I. The family 

of subsymmetries {sx : '̂ G AI}, ^r(^) = # • ~, and the tensor field Sx = sx+x are 

defined on M. S is invariant under all sx from regularity condition. Since TT is a 

homoniorphisiu of spaces with multiplications, we have 

( 5 T ) 7T • Sx = ^(Jtr)! -X-S = S. 

L e m m a 5.4. Let Aj. be ri.e fibre which contains x G M. Then sx = id on Ax and 

if x\ G Aj then sx = sXl. 

P r o o f . Let x = p ® u, : = ^ w v G Ax , then p = qll because it(x) = 7r(z), 

x • c = (p 0 u) • (f/ 0 v) = (r/ 0 hu) • (</ 0 v) = q(qa)~X • qa ® v = </ 0 v. If 

it^ = p{ 0 u, G A r , then pi = ph because n(x) = 7r(x\) and x'i = p\ 0 t/i = p0 l/ui, 

X! • 5 = ( p 0 AMI) • (<l 0 t>) = Hp*7)-1'/*7 <8> v = x • z, \fz G A/. D 

The foliation A = {AJ;: x G M} defines the distribution F1 on AI. According 

to Lemma 5.4 ,$'| = I and since S has no fixed vectors except the null vector, 

the eigenspace of Sx corresponding to the eigenvalue 1 coincides with T*. Let T2 

be the direct sum of all eigenspaces of Sx except T*. From (5.1) we get Sk = I, 

and 7T*: T2 —> T ^ ^ N ) is an isomorphism. The structure of the almost product 

T(M) = T 1 (f) T2 is defined on AI. The action of the group G on the homogeneous 

space N = G/II induces the action of G on M z G ' x / / A : (<7,P0 u) »—></• />0 u and 

vve have 

~((l ' x) = </ ' *"(*). P, 7 £ G, a: G AI. 

L e m m a 5.5 . 77ie tensor field S is invariant under all elements of G on M. 

P r o o f . We shall show that (q • sx)(z) = (sg(x)q)(z), q G G, x, z G AI. Indeed, 

r/ . (* • z) = r/ • p(pa)~l • r" 0 v, (qp 0 w) • (or 0 v) = (op) • (qapa)~l • qa • r a 0 v = 

7 • P • (pa)~l ' 7'n 0 v where £ = p0 w, z = r 0 v. Considering the tangent mappings 

we get ym • Sx = S'^(r) • </*£•. D 
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According to Lemma 5.5 the distributions T], T2 are invariant under G, hence 

tlie foliation A is also G'-invariant. 

Define tlie following Riemanniaii metric on tlie distribution T2: 

<J2AX,Y) = gl{x)(-*X}w*Y), A M ' e . 7 * . 

Then g2{p*X,p+Y) = g2(w* -p*X,7r* • p*Y) - g2(p* • 7r*N,p* • w+Y) = g'2(X,Y), 

where A\ Y G T~, p G G. Thus the elements of the group G are isometries on T2. 

Let o G M be a fixed point and Ao = A. 

Define a Riemannian metric on the distribution T[ as follows: 

r/i(A\ Y) = gl(l>*X,P*Yh p G G\ p(z) G A, N, Y G T l . 

The element p exists because G is a transitive Lie group of transformations of Ar. Let 

g G G, g(x) G A then A is invariant under li = p-g~] and h G //• Since / / acts on A 

as an isometry group, we get g](g*X,g*Y) = gl(h + g*X,li*g*Y) - gx(p*X1p*Y)< N, 

Y G F 1 . 

It follows that the metric gx is well-defined on Tl. It is clear that the elements of 

the group G are isometries on T l . 

Define a Riemannian metric on M as follows: g\ — g1, g\ = g2, T l , T2 are 

orthogonal in the metric g. From the above we see that G is an isometry group with 

respect to g. The transformation sx is identified with an element of G and sr is an 

isometry, too. 

Hence Theorem 5.1 follows. 
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