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C z e c h o s l o v a k M a t h e m a t i c a l Journa l , 43 ( 1 1 8 ) 1 9 9 3 , P r a h a 

A T O P O L O G I C A L CHARACTERIZATION OF STATIONARY SETS 

MOHAMMAD ISMAIL, Slippery Rock 

(Received May 25, 1992) 

If X is a topological space and x G X, then let t(x, X) denote the 'tightness of X 

at x\ Recall tha t t(x,X) is the smallest cardinal number r such that if A C X and 

x e A, then there exists B C A such that \B\ <: r and x G B. The 'tightness' of X 

is defined as 

t(X) = sup{* (x ,K ) : xeX}. 

Let K denote an uncountable regular cardinal with the usual order topology. A 

subset S of K is called 'stationary' if for every closed unbounded (cub) subset C of K, 

C fl S 9-= <p. Stationary sets, with the subspace topology, are interesting topological 

spaces and their properties have been extensively studied in such articles as [F] and 

[j/DL]. The aim of this article is to prove the following topological characterization 

of stationary sets . 

T h e o r e m . For a subset S of K, the following are equivalent: 

(a) S is stationary 

(b) If X is a compact Hausdorff space and for each x G X, t(x,X) < K, then for 

any continuous function f: S —• X, there exists a unique point x G X such that 

| / - » ( * ) | = K. 

(c) If X is a compact Hausdorff space which contains a subspace homeomorphic 

to S, then there exists x G X such that t(x,X) ^ K. 

P r o o f . (a) —• (b) Let S be stationary and let / : S —• X be a continuous 

function, where X is a compact Hausdorff space and for each x G X, t(x,X) < K. 

For each 0 < K, let Sp = {a G S: a $> /?} and let Yp = f(Sp). Then {Yp : 0 < K} 

is a decreasing family of nonempty closed subsets of X. Therefore, f ] Yp ^ (p. Let 
0<K 

xe f) Yp. 
P<K 

Let us show that \f~l(x)\ = K. Assume the contrary and let \f~x(x)\ < K. Then 

there exists 7 < K such tha t f~l(x) D Sy = <p. Then for each a G S<y, there exists 
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a neighborhood Ua o f / ( a ) in X such that x £ Ua. By the continuity of / , there 

exists f3a < a such tha t f((/3aja]C\S) C Ua. Then x £ f(((3a,a] O S). Since the 

map a —• /3a is a regressive map of the stationary set 5 7 into /c, by Fodor 's theorem 

for stationary sets (otherwise known as the Pressing Down Lemma) (See [F] or [J, 

Theorem 22, p . 59]), there is a stationary subset A of 5 7 and a (3 < K such that 

pa = P, for each a G A. Thus a: $ / ( ( /?, a] H S ) , for each a E -4. Therefore, if 

B C Sp and |H| < K, then, since there exists a £ A such that / ( # ) C / ( ( /? , a] fl 5 ) , 

x (£ f(B). This is a contradiction since x G Yp = f(Sp) and <(x,X) < /c. Hence 

i/-x(*)i = *• 
Note that the point x is unique. Indeed, if y G X and y -̂  x, then since f~l(x) 

and f~l(y) are disjoint closed subsets of 5 , they cannot be both unbounded. Hence 

./"'(v)! < *• 
(b) —> (c) is obvious 

(c) - (a) 

Let S be a nonstationary subset of K. Then 5 C K \ C, for some cub subset C of 

/c. We will show that K \ C, and hence S) can be embedded in a compact Hausdorff 

space X such that t(x,X) < K, for each x G X. 

Let {P a : a G J} be the collection of all maximal convex subsets of K\C. Note that 

Pas are disjoint clopen subsets of K \ C and K\C = \J Pa. Hence K \ C = ® { P a : 

a G J}, the disjoint sum of Pas. Since each Pa is a bounded subset of K, it can be 

embedded in a compact Hausdorff space Ya such that t(y, Ya) < «, for each y G Ya. 

For example, if Pa C [0,/?], for some /? < /c, then [0,/?] is one such space. Let y be 

the disjoint sum of Yas. Then Y is a locally compact Hausdorff space and K \ C is 

embedded in Y. Let X = Y u j i } be the one-point compactification of Y. Note that 

t(x} X) ^ UJQ < K and for each y G Yt t(y} X) = ^(y, Y) < K. Hence X is the desired 

compact Hausdorff space. • 

From (c) —•• (a), it follows that if K = i/+ is a successor cardinal, then every non-

stationary subset of K can be embedded in a compact Hausdorff space X such that 

t(X) -̂  v < K. Also, if K = uq, each nonstationary subset of K can be embedded in 

a disjoint sum of first countable compact Hausdorff spaces. The one-point compact­

ification of such a disjoint sum is sequential. We, therefore, obtain the following. 

T h e o r e m . If K is a successor cardinal (respectively, if K = c^ij, then a subset T 

of K is nonstationary if and only ifT can be embedded in a compact Hausdorff space 

X such that t(X) < K (respectively, X is sequential). 

The following example shows that the above theorem is not true for regular limit 

cardinals. 
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E x a m p l e . Let K be an uncountable regular limit cardinal, and let C be the set 

of all limit cardinals less that K. Then C is a cub subset of K. Let T = K\C. Then 

T is nonstationary. Let us show that t(T) = K. 

Let v be an arbitrary cardinal less that K and let A = { a G T: v < a < «/+}. 

Then i/+ G I in T, but for any subset B of A such that \B\ ^ v, */+ £ B in T. 

Therefore, £(T) ^ i/+. Since 1/ is arbitrary, it follows that t(T) = K. Hence, T cannot 

be embedded in any space of tightness less than K. 

E x a m p l e . For every uncountable regular cardinal /c, there exists a first count­

able countably compact Hausdorff space of cardinality K which cannot be embed­

ded in a compact Hausdorff space of tightness less than K. Let S = {a < K : 

cf(oc) = u>o}. Then S is such a space. Note that 5 is a stationary subset of K. 
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