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WEAK AND EXTRA-WEAK TYPE INEQUALITIES FOR THE 

MAXIMAL OPERATOR AND THE HILBERT TRANSFORM 

AMIRAN GOGATISHVILI, Tbilisi, and LUBOS PICK, Praha 

(Received January 15, 1992) 

1 . INTRODUCTION 

Let $ be a nondecreasing finite function on [0,oo), not vanishing identically and 

satisfying 4>(0) = 0, let cr, g be appropriate measures in Rn, and let T be a homoge­

neous operator. The usual two-weight weak type inequality in Lp, 

Q({\Tf\>X})^CX-" J\f{x)\"da, 

where C is independent of / and A > 0, and {|T/| > A} stands for {x £ Rn ; 
\Tf(x)\ > A}, has at least two different analogues when replacing tp by $(t): 

(1) g({\Tf\ > A}) -<D(A) <C C J *{C\f(x)\)da, 
R* 

"weak type inequality", and 

(2) g({\Tf\ > A}K C J <*(C \f(x)\/\) ACT, 
R» 

"extra-weak type inequality" (this terminology goes back to [18], for justification see 
Remark 1 and Remark 2). 

We start with proving some simple preliminary results concerning $ and related 
functions (Section 2), and use them in Section 3 to give a characterization of the 
couples of measures (<r,g) for which (1) or (2) hold with T — M^, where M^ is the 
Hardy-Littlewood maximal operator related to a doubling measure /i (cf. [6], [1], [2], 
[15], [17] and [18]). This characterization is slightly more general than that in [18], 
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where $ is assumed to be a Young function. We also give a new direct proof of 

necessity of the condition for the extra-weak type inequality. 

As a consequence we obtain in Section 4 a new general characterization for the Aoo 

condition, of independent interest, which sheds light onto the relationship between 

two conditions proved earlier by Hruscev [11] and Fujii [5]. 

The main results are the theorems in Section 5, which give necessary and sufficient 

conditions on a weight w for the inequalities 

and 

oo 

•>({//•/> A}) •*(AKo J HC\f\)w, 
— OO 

oo 

w({H'f>\})^C J <S>(C\f\\-x)w 

to hold, where H* is the maximal Hilbert transform . In the latter case <P is assumed 

to satisfy the A 2 condition near zero. 

Positive constants independent of the appropriate quantities are always denoted 

with C and need not keep their value from line to line. Throughout we take 0 • oo to 

be zero. 

2. T H E FUNCTIONS $ , <1>, It* AND 5 * 

We define the complementary function to 4> by 

*(f) = sup(s< - $ ( s ) ) . 

Clearly, 4>(0) = 0 and 4> is nondecreasing. The subadditivity of supremum easily 

implies tha t 4> is always convex. For any <J> we have (<P)~ ^ <£, equality holds if 4> 

itself is convex. If 4>i ^ <I>2, then 4>2 ^ 4>i, and if $\(t) = a4>(6/), a, 6 > 0, then 

4>j(^) = a<l(*/a6). 

Moreover, the Young inequality st ^ <b(s) + $(t) holds. 

We say tha t $ G A 2 if $(2*) <$ C<&(t) for t ^ 0. 

It is also worth to notice that unlike $ , the function 4> may j u m p to infinity at 

some point t > 0. For example, if 4>(l) = l, then <P(t) = oo • X(i,oo)(0- -* c a n e v e n 

be <l> = oo everywhere on (0,oo) (put e.g. $(t) = y/t). We say that 4> is reasonable 

if there exists t > 0 such that <&(t) < oo. 
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We put 

ЯФ(ť) = îíi-. and SФ(t) = ^ Җ ť Jг 0. 

Lemma 1. Tije following statements are equivalent. 

(i) Tije function <0 is reasonable; 

(ii) there exists £ > 0 such that S& is bounded on [0,e); 

(iii) tijere exist C,T > 0 such that /?*(*) J> C for * ̂  T. 

P r o o f . (i)=>(iii). Suppose that (iii) is not true, i.e., there is a sequence tn —• oo 

such that I2<i>(£n) < l/7i. Then for any t > 0 

<$(£) ^ sup <n(tf — #<j>(<n)) ^ sup *n(£ ) = oo, 

whence <f> is not reasonable. 

(iii)=>(ii). Assume that (ii) is not valid; then there is a sequence tn —> 0+ such 

that S$(tn) > n, n G N. So, there exists another sequence, sn , such that n2n < 

sn(/n — R<p(sn)). Obviously it must be sn > n and R<t>(sn) < tn) which contradicts 

(iii). 

The remaining implication is obvious. • 

The equivalence of (i) and (ii) says that once $ is finite near zero, it is bounded 
by a linear function near zero, which might seem to be somewhat surprising. But it 
naturally corresponds to the fact that $(0) = 0 and $ is convex. 

We say that 3> is quasiconvex if there exists a convex function $0 such that $(t) ^ 

*o(0 $ C*(Ct), t 2 0. 

Lemma 2. ([10]) Tije following statements are equivalent. 

(i) <I> is quasiconvex; 
(ii) there exists C > 0 such that for s <^ t 

*(s) < cMct)_ 

(iii) there exists C > 0 such that for any cube Q and function f 

* UQ) Il/(x)l Mx)) ^CW)I *(C|/WI) Mx)' 
Q Q 

(iv) there exists C > 0 such that for all s, t > 0 and a £ (0, 1) we have 

<& (as + (1 - a)t) <J C[a$(Cs) + (1 - a)<P(Ct)]. 
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Let us recall tha t if 4> itself is convex, then all the statements of Lemma 2 hold 

with C = 1. In particular, S<j> is always nondecreasing. 

Analogously to quasiconvexity we can define quasiconcavity; then the correspond­

ing counterpart lemma holds. We omit the details. 

Coro l lary 1. A quasiconvex function is reasonable. 

P r o o f . Let 4> be quasiconvex. Then it follows from Lemma 2, (ii), tha t 

R*{t)>C-xT-l*(C-lT) 

for any 0 ^ T ^ t. Taking a T so that 4>(C_1F) > 0, we get from Lemma 1 that $ 

is reasonable . D 

Let 4> be quasiconvex. We say that <I> is a Young's function if lim R$(t) = 0 

and lim R<&(t) = oo. If R<p(t) ^ C, t ^ 0, we say that $ is of bounded type near oo 
t—*oo 

( $ E Boo). If R<t>(t) ^ C " 1 , t > 0, we say that $ is of bounded type near 0 ( $ E B0). 

L e m m a 3 . Let 4> be convex. Then $ E B0 if, and only if, <& = 0 near 0, and 

$ E I?oo if, a j-d only if, $ = oo near oo. 

P r o o f . Assume that 4> E I?oo, that is, R<p(t) ^ C. Then, clearly, for t > C, 

4>(l) = sup s(t — R<p(s)) = oo. 
«>o 

If 4> E B0, tha t is, H<j> ^ C " 1 , then for t <$ C " 1 

$(t) = sup B(* - R*(s)) = 0, 
5>0 

since the expression in the brackets is negative. 

Conversely, let $ = 0 on [0,e]. Note that as <t> is convex, we have (<&J = $ . 

Therefore, 

$(t) = m a x { sup ts] sup (ts - $(B))} ^ et, t ^ 0. 
5 ^ £ a > £ 

If $ = oo on [T, oo), then 

<*>(*) = sup (st - $(*)) = sup (st - 4>(s)) ^ Tt , * ;> 0. 
3 > 0 «t^T 

D 
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Lemma 4. If$ is convex, then 

(3) *(AS*(0) < CA*(«), « £ 0, A G [0,1]. 

P r o o f . Since 4>(0) = 0 and $ is convex, it will suffice to prove 

(4) * (S * (0KC* ( t ) , <^o. 

First, if <£ is a Young function, then (4) holds with C = 1 (see [18]). In this case 
the Young inequality implies t $ $~l (t)$~l(£), and it thus suffices to substitute 

. - *(0. 
Next, keeping in mind that 4> and 4> are convex, we can observe using Lemma 2, 

(ii), that for t G [e,T], £,T > 0, it is 

*(S*(0) = fl*(5*(0)5#(0 < e~1H<i>(5^(T))^(T). 

Hence, it will suffice to prove that (4) holds near 0 and near oo. 

Let $ G B0 H Boo. Then by Lemma 3, (4) holds trivially for t G [0, e] U [T, oo]. 

If <£ G Boo \ Bo, then (4) holds trivially for t G [T,oo). Moreover, there exists 

a Young function * such that *(*) = $(t) for t G [0ye]. Let t G (0, #*(£)), and 

r = R*l(t). Then 

^ ( 0 = sup s(t - #*($)) = sup s(t - .R*(s)) = <l(0, 
0 < 5 < r 0 < 5 < r 

that is, <t near zero is determined only by the behaviour of $ near zero. As ^ is 
Young's, (4) holds for # , and hence also for 4> and small values of t. 

Finally, if <f> G B0 \ Boo, then (4) holds trivially for t G [0,£], and there exists a 
Young function tf such that ty(t) = $(t) for t ^ T. It is not hard to verify that <l 
and ^ coincide for large values of t (cf. [14], Theorem 1.2.1). As ty is Young's, (4) 
holds for t£, and hence also for <l> and large values of t. D 

Corollary 2. (cf. [18]). If $ is convex, then for all t ^ 0 

(5) R*(S*(t)) ^Ct. 

P r o o f . Multiply (4) by \/S*(t). Q 
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3. T H E HARDY-LITTLEWOOD MAXIMAL OPERATOR 

Let // be a complete cr-finite Borel measure, satisfying the doubling condition 
H(2Q) <C C/.i(Q)} where 2Q is the cube concentric with Q and with sides twice as 
long. Let Q and a be measures absolutely continuous with respect to /.i and vice 
versa, that is, there exist measurable functions ^-, ^-, ^E, and ^-. 

' ' dg ' d/i ' da ' d/i 

For a /j-rneasurable function h and a /i-measurable set E we shall write h(E) = 
JEhdfA and hE = (^(E)~l)h(E). 

In this section we shall be concerned with the inequalities 

(6) g({M»f > A}) • *(A) ^C J*(C \f(x)\) dtr, 

and 

(7) e({M,f > A}) ^ C J * ( C |/(*)|/A) dtr, 
R* 

where the Hardy-Littlewood maximal operator related to /* is given by 

AfřI/(x) = s u p - l - / | / ( y ) | d / 1 ( y ) . 

L e m m a 5. (i) Let the weak type inequality (6) hold. Then <$ is quasiconvex. 
(ii) Let the extra-weak type inequality (7) hold. Then $ is reasonable. 

P r o o f . (i) Take A such that the set E = {^(x) ^ A'"1; ^(x) ^ A} has 
positive measure and let Q be a cube such that [i(Q C\ E) > fi(Q)/2. By (6), 

(8) $ ( 2 - 1 | / | g n E ) ^ C A 2 ^ ( C | / | ) g n E . 

Let s J > 0 a n d « G (0, 1). Write Q 0 E as F U F', where /t(F) = a • /t(Q n F), and 
define f(x) = s • XF(X) + t • XF'(~)- Then (8) turns to 

<P(2~l(as + (1 - a)t)) <: CK2(a<P(Cs) + (1 - a)Q(Ct)), 

which is by Lemma 2 equivalent to the quasiconvexity of <I>. 
(ii) Assume that <$ is not reasonable. Then, by Lemma 1, there is a sequence 

{tn}, tn /* oo, such that <&(tn) < n~ltn. Taking arbitrary cube Q and its subsets 
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En in order that n(Q) = C~l <„/«(E„) where C is from (7), and putt ing / = \En 

and A = 4 § j in (7) we get 
f(Q) 

g(Q) <^C4>(c- -Z^ ) a(En) < C 
џ(En)J v " ' џ(En) 
KQ)\ l v ^ n f(Q) <E») 

which yields QQ ^ — • <j£n. Letting shrink En to a density point of {0 < a(x) < 00}, 

we get Q = 0 almost everywhere on the set where <r is finite. However, this contradicts 

the mutual absolute continuity of the measures Q and a. 

We have seen that the weak type inequalities turn out to be strong enough to 

guarantee quasiconvexity of <I>, while the extra-weak type ones imply merely reason-

ability of 3>. This is caused by the fact that (7), unlike (6), provides some control of 

the growth of <$> only from one side. 

From now on we shall assume for simplicity sake that $ itself is convex. 

The pair (<J, Q) is said to satisfy the A$(/.i) condition (((T,Q) G A<p(/.i)) if either 4> 

is Young's and there exist C, e such that 

(9) 5,-y 'mR* im J * (*" t)d") <c 

Q 

or 4> G #0 U 5oo and there is C such that for all Q and almost every x G Q 

$Hc£">-
The pair (<r, D) is said to satisfy the F<j>(//) condition if there are C, £ > 0 such 

tha t 

<"> -?mh('-&*>-m)«<c-
Q 

We shall prove that the pairs (<r, g) satisfying A<j>(/j), or £$(/*), are good for weak, 

or extra-weak, resp., type inequalities involving the operator M^. 

The conditions (9) and (11) take their origin in the well-known Muckenhoupt's Ap 

condition for couples of weights ( tv ,u) (see [16]) 

T(s/ , ("J")(s/' ('r" ,""d")H*c' 
Q Q 

and its simple reformulation 

1 r / \ p ' -1 
1 f ( uQ ^F 

^ P T 7 п / ( ^ ) d x ^ C , V |Q| J Ыт) 
Q 
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respectively, where |Q | = fQ dx, UQ = | Q | _ 1 fQ u, and p' = p/(p- 1). The inequality 

(10) is known as the A\ condition ([16]). The A<j>(/f) condition in the form similar to 

(9) was introduced in [18], but the key discovery is due to Kerman and Torchinsky 

[12], see also [6]. Clearly, if <b(t) = t*>, then A*(p) = E*(p) = Ap(^i). • 

T h e o r e m 1. The following statements are equivalent. 

(i) There exists C > 0 such that for all f and A the inequality (6) holds; 

(ii) there exists C > 0 such that for all f and Q, 

(12) Q(Q).*(\f\Q)<^C J*(C\f(x)\)da; 

(i i i) (<T,,O) G-4*(/ i) . 

T h e o r e m 2. Tije following statements are equivalent. 

(i) There exists C > 0 such that for aii / and A > 0 the inequality (7) holds; 

(ii) there exists C > 0 such that for aii / and Q, 

(13) e{Q)^cj*(C\f(x)\/\f\Q)da] 

(i i i) ((T,o) G F4>(/i). 

The next remark sheds light on the connection between the s tatements of both 

theorems and justifies our terminology "weak" and "extra-weak". 

R e m a r k 1. Each statement of Theorem 1 implies its counterpart in Theorem 2. 

Indeed, inserting A = 1 in (6) we get 

e{{Mltf>l})šcJ*{C\f(x)\)d<r, 

which is by homogeneity of M^ equivalent to (7). Similarly, taking ( | / | Q ) _ 1 • / 

instead of / in (12) we get (13). Lastly, to see that A^(/.i) C E$(p), simply put 

a = ^ S j in (9) in case $ is Young's, or use (10) in case 4> G BQ U Hoo 

L e m m a 6. Assume that (a, Q) G A\(p) (that is, (10) holds). Then the weak-type 

inequality (6) holds for any $. 
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P r o o f . As // is doubling, s tandard covering argument yields 

X-Q({M,f>X})^cJ\f(x)\da. 

Moreover, the convexity of $ gives via Lemma 2, (iii), that $ ( M ^ / ) ^ M^(4>(/)). 

Hence 

e({M,f > A}) • 4>(A) = e({*(M,f) > 4>(A)}) • <K(A) 

^ <?({M„ [<!>(/)] > $(A)}) • *(A) ^ C J <K(|/(x)|) d«r. 

R» 

D 

L e m m a 7. iY<I> £ B0 U Boo and tiie estimate (12) iioic/s, tijeu ((T, #) G Ai(/0-

P r o o f . Let O 6 Bo- Then inserting / = \E, E C Q, in (12), we get 

^ • ( S S ) ' " ^ 
which yields (a, g) G - 4 I ( / J ) . Now let $ G D1^. As already observed (Remark 1), (12) 

suffices for (13). Put t ing / = \E this time in (13) we obtain 

f W K C , ( E ) * ( c g ! ) , c , ( £ ) ^ , 
which is -4i(/i), again. D 

P r o o f o f T h e o r e m 1. If $ is a Young function, the proof can be done 

as in [18] with trivial changes. Assume that $ G ftU Hoo5 then the implications 

(ii)--->(iii)=>(i) follow from Lemmas 7 and 6, and the implication (i)=>(ii) is a conse­

quence of the obvious inclusion Q C {M*./ > | / | Q / 2 } . D 

P r o o f o f T h e o r e m 2 . Tha t (i) implies (ii) follows again from the inclusion 

<?C{M„/> | / | g /2} . 
The implication (iii)=4>(i) can be proved following the lines of the proof in [18]. 

The proof of (ii)--->(iii) in [18] requires somewhat complicated theory of norms in 

Orlicz spaces and saturat ion of the Holder inequality. We give here a much simpler 

direct proof, applicable to a general $ . 

Let Q be a fixed cube. If g(Q) = 0, there is nothing to prove. Let 0 < g(Q) < oo. 
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Assume first that $ £ J5oo. Then <l>, and hence also 5^, is finite on (0, oo). Given 
dcr ( 
dn[ k € N, put Qk = {x€Q; fá(x) > l/k} and 

ff(x) = gk(x) = 5* (e^^(x)) XQk{x) 

with £ to be specified later. It follows from (ii) that 

/ * (£M§) ^{x))d<T = £9Q e{Q)^ C£g{Q) + IQ' 
Qk 

where IQ is defined as follows: IQ = 0 if gQ ^ C (C is the bigger of the constants 
from (13) and (3)), and 

IQ - CegQ J <b [ —g(x) \ da if gQ > C. 

Q 

Hence, using (3) with A = C/gQ} 

•°^l*(rA<J§>)>° 
Qk 

^Ji^tQ)**, 
Qk 

^có£i^m^ix)]^ 
which yields 

"4> / * ( « f j £ « ) < ° « c - < " > + c>< I * (• H £<*>) -• 
Qk Qk 

Now (remember that S$ is nondecreasing), 

Qk Qk 

^ ee(Q) • S* (fc£ j S j ) < <*>> 

whence we can take e sufficiently small (e < C~3) and subtract in (14) to get thereby 

/•(<^£«Hi^«<«-
Qk 

556 



Since //(Q \ \JQk) = 0 and the constant at the right does not depend on k, (iii) 

follows. 

T h e situation is much simpler if $ G Boo, since then R$(t) ^ C, and inserting 

f = XE, £ C Q , into (ii) gives 

So, (<r, g) belongs to Ai(/*)- -t follows easily from (5) that (10) always implies (9), and 

therefore A\(fi) C AI>(//) for every 4>. As A^(fi) C F4>(/0 for every $ (Remark 1), 

we are done. D 

Corol lary 3. If <S> G -9oo, then A<t>(fi) = £<*>(//) = ^i(//)-

P r o o f . T h e proof of Lemma 7 shows that if $ G -9oo> then E<p(fi) C -4i(/0-
T h e remaining inclusions have been already established. • 

4. T H E C O N D I T I O N AOO 

In this section we assume that a = g. Recall that $ is convex. 

We say t h a t g G Aoo(n) if there exist <$,e G (0,1) such that E C Q and //(F) < 

c>(Q) imply g(E) < eg(Q). 

Both the endpoints of the Ap scale, the classes A\ and Aoo, are of exceptional 

meaning. Between Ai and all other Ap's there is a significant gap. For example, 

put t ing $(t) - t(\ + log"1" t)K, we get Ai(/i) C £*(//) C f) AP(P)> where both the 

inclusions are proper (see [2], [15], [17]). A different situation can be found near 

Aoo\ it is known (e.g. [4]) that ,4oo = \J Ap. This fact will allow us to obtain new 
p> i 

characterizations of ^oo • 

T h e idea is simple: First, it is easy to prove t h a t £$(//) C Aoo(fi) in any case of <I>. 

Further, we know that A<&(/.i) C E<p(n) (Remark 1). Therefore, it will suffice to take 

<I> with sufficiently rapid growth so t h a t Ap(fi) C -4<j>(//) for all p, and then it must 

be A*(n) = E*(n) = -4oo(/0-

T h e condition Aoo has been intesively studied and a lot of equivalent s tatements 

have been proved ([4], [7], [11], [5] etc.). In the particular (weighted) case d/i = dx 

and dg = iv(x)dx, Hruscev ([11]) proved that w G -4oo (we write w G Aoo instead of 

Q G -4oo(/0)> if» a n c * only if, 

(15) T (i£l / w{x) d x ) e x p (w\ /log W)dx) ŚC. 
" w[x) ) 

Q Q 
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(An independent proof of this result was given by Garcia-Cuerva and Rubio de 

Francia in [7]). By a different argument, Fujii ([5]) obtained (among others) another 

characterization of Aoo> 

(16) sup / l o g + ( - ^ 1 ) w(x)dx ^ Cw(Q). 
Q J \ WQ J 

Q 

We shall prove a new general characterization of ,4oo expressed in terms of F4>(/j) 

conditions, which covers (15) and (16) as particular cases and clarifies their mutual 

relationship. 

T h e o r e m 3. Let <I> be such that S$(ta) is quasiconcave on (0, oo) for any cv ̂  Q 0 

and some cvo- Then A<p(/.i) = E^(/.i) = Aoo(/0-

P r o o f . First, let Q G E$([i). Then, inserting Q — a and / = \E, E C Q, in 

Theorem 2, (ii), we get 

m±c*(cm\. Q(E) ^ V »(E)J' 
Therefore, if E' = Q \ E and fi(E') < 6{i(Q), we have Q(E') < eg(Q), where (1 -

e)~l = C<I>(C7(1 - 6)). In other words, Q G Aco(/0- Note that this inclusion, 

E<p(n) C Aoo(/0) holds for any < .̂ 

Now, let Q G Aoo(/0- Then there is p > c*o + 1 such that Q G Ap(/.i) (see e.g. [4]). 

By our assumption, the function F(l) = S<p(tp~l) is quasiconcave. Taking e small 

enough (eC ^ 1) and using Jensen's inequality and (5), we get 

<*Q(Q) 

ß(Q) 
Q 

{mjjF{\a •«<«) RJt(F{(l.*Mx)\'-'U, 
t*(Q) \t*(Q)J IV" <V 

^^lg).ñф (CeҒ 
KQ) 

H(Q) \n(Q) iC.m.(^I{L>Г\Г' 
Q 

Hence, ^oo(/0 C A<t>(f.i). Since A<j>(/<) C F<i>(/0 always, the proof is complete . • 

R e m a r k 2. As we know, if <b(t) = tp or $ G #oo, then A<j> = F<j>. Now, 

Theorem 3 describes another class of functions <I> with this property. However, the 

inclusion Aq, C E$ is proper in general. The following two examples are essentially 

due to Bagby [1]: 
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If <&(t) = V> for t G [0, 1) and <&(t) = t* for t G [1, oo), where p < a, then A* = Ap 

but F4> = A7. 

If <l>(l) = <p(log+ t + l)~q, p > 1, q > 0, // is Lebesgue measure, dg = dcr = xp~ldx, 

then (a, g) G F$, but (cr, g) £ A$ = Ap. 

T h e o r e m 4. The following statements are equivalent. 

(i) £<E^oo(/i); 
(ii) there is C such that for every Q 

<17> •zmJ'-Omh™ 
(iii) there is C such that for every Q 

<l8> ^mJ'Om)^c 

P r o o f . To prove that (i)<£>(ii), put <&(t) = t( 1 + log+ t). Then <f> is convex and 

so it is indeed a complementary function (e.g. to the function (<£)~). On the other 

hand, S$(ta) = 1 + a log"1" t is evidently quasiconcave for any a > 0. Theorem 3 

therefore implies that g G -4oo(/0 if, and only if, g G E$(n), or 

•vmJ^Om)"** 
This inequality obviously implies (17), but in fact they are equivalent. This will be 

seen once we prove tha t for any Q 

<"> mJ^O-m)^mJ^{>-m) 
Q 

cf. [11], Lemma 1. 

i 
(./* + - , 

e 
Q Q 
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To prove (19), put E = ix G Q\ ^ ^ ajK*)}- T h e n ' b v t h e J e n s e n inequality, 

applied to the convex function — log, 

Q 

џ(Q) џkJ{-^dH{x))d"+џW)Jì0"џШàfl 

и(Q) 
Q 

џ(E) 

џ(E). I 1 [de, . . \ , /»(£) . Q(Q) ^)/ø ( x ) d / t 
> 77TT І 0 S "ПEл / l - ( æ ) d / * + -TTTл ' І 0 ê /Í(Q) ° \ M ^ ) j V / Mo) MQ) 

/'(£) 
»(Q) 

.(____l __t_\\ _(E) .Jť(E)\> 1 
l o g U o j ' o(E))* n(Q) g\»(Q)) * ě' 

since min Hog£ =: —1/e. 
-6(0 ,1 ) 

The equivalence of (ii) and (iii) follows from the equivalence of Q G -4QO(/0 and 

V G -4oo(^), which was proved by Coifman and Fefferman [4] provided that botli // 

and Q were doubling. In our case [i is assumed to be doubling from the very beginning 

and Q G Aoo(^) easily yields that also Q is doubling. The proof is thus complete . 

D 

To round off this section, put finally d[i(x) = dx and dg(x) = w(x)dx. Then (17) 

turns to 

SUP T7TT / l o S ~7~\dx < C ' Q \Q\ J w(x) 

exactly what we obtain after taking log of the left hand side of (15). In view of this, 

(17) is equivalent to the Hruscev condition (15). Similarly, (18) turns to 

1 / fw(x)\ 
SUP ~77vT / loS w(x) dx ^ C ' 

Q W(Q) J \ WQ J 

which is the Fujii condition (16) (even a slightly better one, as the "-f" sign is 

removed). 
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5. T H E HILBERT TRANSFORM 

In the sequel we assume that n = 1. Recall that $ is still convex. The symbol I 

will always stand for an open interval on the real line and if I = (a, 6), we denote 

V = [6, 26 —a). We shall also restrict ourselves to the case dfi(x) = dx (the Lebesgue 

measure), and dg(x) = da(x) = w(x)dx, where w is a positive measurable function 

(weight). Thus, w G A$ if either <£ is Young's and 

sup awj R<p I — / S$ ( — ) dx ) ^ C, 
a,/ \ I - 1 J \ <*">(*)/ / 

/ 

or $ G #o U Bco and tv G ^4i, that is, 

wj <C C • ess inf {tv(.r); # G / } . 

Similarly, w G F$ if 

sup —7 / S<t> ( e^y-r J dx ^ C 
/ |I| J V «>(*)/ 

/ 

The maximal operator M treated in this section is defined by 

M/(*) = s u p { | / | / ; / a _ } . 

The Hilbert transform is given for any function / satisfying 

oo 

/ |/(ic)| (l + k | ) _ 1 d r < o o 

— OO 

by the Cauchy principal value integral 

Hf(x) = - lim / 
тr £_o+ J 

* » • * . 

x - y 
R\(x-є,x+є) 

Similarly we define the maximal Hilbert transform 

Я V ( * ) = - s u p | / Ä d y 

R \ ( x - £ , x + є ) 

We shall prove the following theorems. 
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Theorem 5. The following statements are equivalent. 
(i) There exists C > 0 such that for all f for which H* f is defined and all X 

oo 

(20) w({H*f > A}) • *(A) ^ C j *(C \f(x)\) w(x) dx; 

(ii) <£ E A2, and there exists C > 0 sucii that for all f and X 

OO 

(21) w({Mf > A}) • *(A) <. C [ >*>(C\f(x)\)w(x)dx; 
— OO 

(iii) $ G A 2 and w E A$. 

Theorem 6. Let $ E A§, that is, $(2t) <$ C$(t) fort E (0,1). Then the following 
statements are equivalent. 

(i) There exists C > 0 such that for all f for which H* f is defined and all X > 0 

oo 

(22) w({H'f > A}) <. C J *(C\f(x)\/X)w(x)dx; 
- O O 

(ii) there exists C > 0 such that for all f and X > 0 

oo 

(23) w({Mf > A}) <_ c J <D(C \f(x)\/X) w(x) dx; 
— OO 

(iii) w E £«&. 

R e m a r k 3. For any interval 1 = (a, 6), / J> 0 and x E / we have 

(24) lnx/</)(*) > |//(x/</)(*)| ̂  (2*)-1 //,. 

Similarly, for x £ I' we have 

(25) !nX//)(*) > |//(X//)C*)I £ (2*)-1 / / . 

Now, (24) and (20), applied to / = xi' and A < (2n)~l, lead to 

(26) w(I)^Cw(I'). 
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Note that (22) together with (24) implies (26), too. Given / ^ 0 and A > 0, put 
ft = {Mf > X} and let F be any compact subset of ft. Then 

Iv 
FC | J I,, where fIj > A. 

j = i 

By [8], Lemma 4.4, Chap. I, §4, there is a disjoint subfamily {J,-} of {Ij} such that 

M I K ) ^ 2 2 X J , ) . Thus, by (26), (24), and (25) 

w(F)^w(\Jlj)^2y£w(Jj) 

^ C ^ > ( J / ) 

^ C ^ t v ( { | H ( / x / J ) | > ( 2 7 r r 1 A } ) 

As F was arbitrary, this inequality shows that 

w({Mf>\})^Cw({\Hf\>\}), 

and therefore in both the above theorems the implication (i)=>(ii) holds. Moreover, 
it is clear that we can replace H*/ by \Hf\ in Theorems 5 and 6. 

P r o o f of T h e o r e m 5. Coifman [3] proved that if w G -4oo and 4> E A2, 
then 

sup *(A) • w ({H*f > A}) <: C sup <f>(A). w ({Mf > A}). 
A A 

This proves (ii)=>(i). It remains to prove that (i) suffices for $ G A2, the rest 

follows from Theorem 1. We shall use the idea from [9]. Given A > 0 we put 

/(x) = (2Cr1Ax(o,i)(x). Then, by (i), 

*(A) < C , , „ ^ ( Q , 1 ) ^ l x • *(A/2), 
v ; ^ tD({H*X(o,i)>2C}) v ' 

and we are done. • 

P r o o f of T h e o r e m 6. The implications (i)=>(ii)=>(iii) follow from Re­
mark 3 and Theorem 2. We shall prove (iii)=>(i). Given a function / and A > 0, 
put ft = {Mf > A}, F = R \ft. Then ft = (J I., where Ij are closed intervals with 
disjoint interiors such that dist(F, Ij) = | I ; | (the Whitney decomposition—cf. [8]). 
Since 4Ij always meets F, it must be | / | / . ^ 4A. As usual, we split / into the "good" 
and the "bad" parts, namely, 

g(x) = / ( X ) X F ( Z ) + ]£// ,• •*/,(*), 
3 

b(x) = f(x) - g(x) = £ (/(*) ~ //;) X/>(-0 = £ W*)-
3 3 
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To estimate the "good" part is easy. Our assumption 4> G AS] guarantees that 

4>(A) ^ C\p for A G (0, 1] and all p bigger than some po- As observed in the proof 

of Theorem 3, (iii) implies that w G ̂ 4oo, hence w G Ap for p bigger than some p\. 

Therefore, for such p, H* is bounded on Lp, w ([7], Chap. IV, Theorem 3.6), and we 

have for p ^ max(pOjPi) (recall that | / | ^ A almost everywhere on F) 

(27) ({H'g>\})^C J ( ^ ) w(x)dx 
— OO 

/ ("-J-H w(x)dx + Cw(n) 
F 

/ * ( A / W(x)dx + Cw(ft)-

ŠC 

ŠC 

Now let us deal with the "bad" part. As known ([19], Chap. II, 4.6.2), for x G F 

we have 

HЧ(x) ^ C ?/ 
1 1 

\x-t\ \x-U 
\bj(t)\dt + C0Mb(x), 

where tj is the center of Ij. Note that \x — tj\ is comparable to \x —1\ for every t G Ij 

and x G F. Hence, making use of the definition of 6j, the estimate |/|/. <C 4A, and 

the estimate 

II; I 

we obtain 

(28) 

\x-tj\ 
<ZCM(Xi3)(x), x Є Ғ , 

HЧ(x) <í C Ç A У 16,(01 dt + C0 MЬ(x) 
1І 

^ C E ( | 7 Г 7 Ï Ï ) І/І/> + COM6(X) 

As already mentioned, w £ Ap for some p > 2. Put r = p/2, then r > 1 and we 

can invoke the vector-valued weighted strong-type inequality ([13], Theorem 1, or 
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[7], Chap. 5, Theorem 6.4 and Remark 6.5 a) to obtain thereby 

(29) w({x e F; CX £ M 2 ( X / J ) ( X ) > X}) ^ C f [^M2(X/y)(x)]r
W(x)da 

i J
F i 

^C J^2xij(x)w(x)dx 

n i 

^C^2w(Ii) = Cw(n), 
3 

as Ij's have disjoint interiors. Since |6(x)| ^ \f(x)\ +4A, it is 

(30) {x e F; CoMb(x) > 5C0A} c{xeF; Mf(x) > X} = 0. 

Now, (28), (29) and (30) give 

(31) w({x e F; H*b(x) > (5C0 + 1)A}) ^ Cw(Q). 

It follows from Theorem 2 that 

CO 

•j(ӣ)^C í фícЩ^) w(x)dx. 

Combined with (27) and (31) this leads to 

w({H*f>(bC0 + 2)X)) 

^ w({H*g > A}) + w({x eF;H*b> (bC0 + 1)A}) + w(Q) 

ŚC Jф(cЩ^Jw(x)dx, 

which easily yields the desired estimate. • 

Acknowledgement: We wish to thank Petr Gurka for a lot of valueable com­
ments. 
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