Czechoslovak Mathematical Journal

Josef Slapal
Cardinal arithmetic of general relational systems

Czechoslovak Mathematical Journal, Vol. 43 (1993), No. 1, 125-139

Persistent URL: http://dml.cz/dmlcz/128380

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/128380
http://dml.cz

Czechoslovak Mathematical Journal, 43 (118) 1993, Praha

CARDINAL ARITHMETIC OF GENERAL RELATIONAL SYSTEMS

JOSEF SLAPAL, Brno

(Received June 24, 1991)

Dedicated to Professor M. Novoiny on the occasion of his 70th birthday.

Gieneral relations, 1.e. the relations whose domains are arbitrary sets, have been
investigated in [7]. To complete this investigation, in the present paper we introduce
and study three cardinal operations of addition, multiplication and exponentiation
for gencral relational systems that generalize the three Birkhoff’s cardinal operations
for ordered sets discussed in [1] and [2]. The results attained also generalize those of
(3], [4] and [5] where the three operations have been studied for sets with reflexive
binary relations, for n-ary relational systems and for general relational systems with

the same domains, respectively.

1. PRELIMINARIES

Let 7, I be non-empty sets. Then a set of mnappings R C F! is called a relation
on [ and the ordered pair F' = (F, R) is said to be a relational system. The set F
is called the carrier of F and the set [ the domain of F. The relation R of F (i.e.
on F) will be sometimes denoted by Z(F). Let F and G be relational systems with
domains [ and J, respectively. Then F and G are said to be of the same type if
there exists a bijection of I onto J.

Besides the usual conventions, such as the associativity of the cartesian product,
we accept the following one: A nonempty set I and the set {(z,z) | z € I} called the
identity mapping (briefly the identity) of I are considered as the same domains of
relational systems. More precisely, if F and G are relational systems with domains
I and {(x,2) | 2 € I}, respectively, and with the same carrier, and if the following
condition holds: ¢ € #(G) <« there exists f € #Z(F) with g(z,z) = f(z) for all
r € I, then F and G are identified.
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1.1. Definition. Let F = (F,R) and G = ((+,5) be two relational systems
with the same domain [. We say that F is a subsystcm of G and write F C G itt
FCGand R=5SnF

1.2. Definition. Let F = (F, R) with domain [ and G = (., 5) with domain
J be two relational systems of the same type. Let a: [ — .J be a bijection and
let @: I7 — (' be a mapping. If the implication f € R = ¢ o foa~! € 5 holds.
then ¢ is called a homomorphism of F into G with regard to o. By Hom,(F.G)
we denote the set of all homomorphisis of F into G with regard to . A bijective

1

homomorphism ¢ of F onto G with regard to « such that ¢ =" is a homomorphism

of G onto F with regard to a~!

is called an somorphism of F onto G with regard
to . We write F < G and say that F and G arc isomorphic with regard to o if
there exists an isomorphism of F onto G with regard to o. If F < H holds for some
subsystem H C G, then we write F' 2G 11 =7 and a is the identity of [, then
Hom(F', G) will be written briefly instead of Hom, (F, G), F ~ G nstead of F G

«@
and F < G instead of F < G.

1.3. Example. Consider the teaching process (regarding a certain time table) in
a school. Let F, (7, I, J be the sets of teachers, subjects, classes and class-rooms,
respectively, and let card I = cardJ. For &z € [ or &£ € J we denote by F(z) the set
of all teachers that teach the class x or that teach in the class-room r, respectively.
Next, for ¢ € F we denote by (i(t) the set of all subjects that are taught by the teacher
t. Let a: I — J be a bijection such that the implication t € F(x) = t € F(a(r)) is
valid for each class x € [. (This is fulfilled, for example, if each class € [ always
occupies the same single class-room a(z)). Let R C F be the relation defined by
f€Re f(x) € F(z) for each 2 € I and let S C (7 be the relation defined by
g € 5 & for each y € J there exists t € I'(y) such that g(y) € G(t) is valid. Let
¢: F — ( be an arbitrary mapping with ¢(t) € (i(1) for every t € I. Then ¢ is a
homomorphism of (F, R) into ((7,.5) with regard to «.

1.4. Remark. a) The homomorphisin of relational systems with the same domain
I with regard to the identity of I coincides with the homomorphisin defined in [5].
In particular, if I = {1,2,...,n}, then we get the well-known homomorphism of
sets with n-ary relations. By the antihomomorphism of sets with n-ary relations
we usually understand the homomorphisim with regard to the permutation o of
I ={1,2,...,n} defined by a(z) =n —x + 1 for cach x € I.

b) The identity of the carrier of a relational system F'is clearly an isomorphism
of F onto itself with regard to the identity of the domain of F'. Further, if » is a
homornorphism of a relational system F into another one, G, with regard to a and
¥ 1s a homomorphism of G into a relational systemi H with regard to 3, then ¢ oy is

evidently a homomorphism of F into H with regard to o a. For relational systemns
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Fand G of the same type, by a morphism from F into G let us understand any
homomorphism of F' into G with regard to somne bijection of the domain of F' onto
the domain of G. Consequently, the class of all relational systems of the same type
together with these morphisms forms a category. The presented results attained on
the level of the theory of sets are more detailed than those which can be attained on

the level of the theory of categories (see [6]).

-1

¢) From F 2 G and G "< F it does not follow that F £ G (not even if « is the
identity—see [2]).

Similarly to the papers [3], [4] and [5], the present one is intended as a generaliza-
tion of Birkhofl’s arithmetic of ordered sets ([1], [2]). We shall define and study three
cardinal operations of addition, multiplication and exponentiation for relational sys-
tems of the same type. For relational systems with the same domain these operations
coincide with those investigated in [5] and if, moreover, this domain is finite, then we
obtain the direct operations introduced in [4]. For ordered sets we get the cardinal

operations discussed in [1] and [2].

2. CARDINAL ADDITION

2.1. Definition. Let F = (F, R) with domain [ and G = ((,S) with domain
J be two relational systems of the same type. Let av: [ — J be a bijection and let
Fod¢ =0 The cardinal sum F i G of F and G with regard lo « is the relational
systemm H = (1, T) with domain o where I{f = F UG and T is defined as follows:
he ", h el & there exists f € R such that h(z,y) = f(x) for all (z,y) € a or
there exists g € 5 such that (e, y) = g(y) for all (x,y) € a.

If I = J and o 1s the identity of I, then we write briefly F' + G instead ofF:{'- G.

Let F = (F,R) and G = (F,5) be two relational systems witn the same domain
and the same carrier. Put F < G iff R C 5. Clearly, < is au vraer on the set of all

relational systems with the same given domain and with the same given carrier.

2.2. Proposition. Let F = (F,R) with domain [ and G = (G, 5) with domain
J be two relational systems of the same type. Let o [ — J be a bijection and let
F'nG =0. Let H = (H.T)=F -1 G. Then H s the least element (with respect
to <) in the set of all relational systems L with the same domain o and the same
carrier Il for which the following two conditions are true:

(1) The identity of F' is a homomorphism of F into L with regard to the bijection
d: 1 — o defined by 3(r) = (¢,a(x)) forall x € 1.

(2) The identity of (i 15 a homomorphism of G into L with regard to the bijection
v: ) — « defined by 4(y) = (a=Y(y),y) for all y € J.
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Proof. By idp denote the identity of /7 and by id the identity of (v, Clearly.
idp € Homy(F, H) and i1dg; € Hom, (G, H). Let L = (1.17) be a relational system
with domain « fulfilling both the conditions (1) aud (2). Let h € T be a mapping.
Then (1) there exists f € R such that h(x,y) = f(r) for all (&, y) € a or (ii) there
exists g € S such that h(z,y) = g(y) for all (r,y) € a. Let the condition (i) be true.
Then idpofo =t = fop~=t el/. Since f(a) = h(r,y) = h(r, ale)) = h(3(r)) for
any r € [, we have f = ho 3. Therefore fo3™' =hopopg™ =h. Thus h € [,
Sitiilarly we can show that i € UV if the condition (1) is true. Hence 7°C (7] Le.
H < L. This proves the statement. G

2.3. Lemma. Let Fy = ("), ) with domain | an Gy = ((/.S)) with domain
J be relational systems of the same tyvpe. Let Fy = (I, Ry) with domain | and
Go = (G, Sy) with domain J be relational systems (of the same type) as well. Let
a: 1 — J be a bijection. Then

()Y iIf Iy NFy = Gy0Gy =0, then f € Homy (F,.G,) and g € Hom, (F». G4)
mmply fUg € Hom,(F) + F», G| + G»);

() if FiNGy = FonGy =0, then f € Hom(F, Fy) and g € Hom(G, G») imply
fUg € llom(F) £ Gy, F. 1 Go).

Proof. (1) Let N Fy = GiNGy = 0 and let f € Hom, (F,.G,). g €
Homg (Fy, Gy). Put h = fUg. Let p € 2(F)+F,) = R{UR,. Suppose p € R|. Then
fopoa~! €S| and since fopoa~! = hopoa™! we have gopoa~! € Sy. Similarly.
supposing p € Ry we get hopoa™! € Sy, Hence p € RyU Ry = hopoa™' € S| US,.
Therefore h € Hom(F) + F», G| + G4).

(2) Let NGy = FanGoy =P and let f € Hom(Fy. Fy), g € Hom(G,, G2). Again.
put h = fUg. Let p € 2(F) ;Y-Gl ). Then (i) there exists ¢; € Ry such that p(r.y) =
qi(x) for all (x,y) € « or (i) there exists ¢» € S| such that p(x,y) = ¢2(y) for all
(z,y) € a. Let the condition (i) be true. Then foq € Ra. Put q(a.y) = f(qi(x))
for all (x,y) € a. We have hop = q and ¢ € #(F, -T— G5). Sinilarly, if the condition
(ii) is true, then g o qs € Sz and putting q(&,y) = g(q2(y)) for all (x,y) € a we get
hop=yqand q € Z(F, —?— G-). Conscquently, h € Hom(F, :Ii G, Fy ; G,). The
proof is complete. d

By virtue of the lemmima we obtain

2.4. Theorem. Let F|, = (I'), R\) with domain I and G, = ((;.5)) with
domain J be relational systems of the same type. Let Fy = (Fs, Ry) with domain [
and Gy = (G4, 52) with domain J be relational systems (of the same type) as well.
Let «: [ — J be a bijection. Then

(1) if FyNFy = GiNGy = 0, then Fy ~ Gy and Fys X Gy imply Fi+F» ~ G+ G>;
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(20l G = ool = 0 then Fro~ Fy and Gy ~ Gy nply Fli;G| ~ F-J;Gg.

2.5. Remeark. I the assumptions of Theorenn 2000 are fulfilled, then it can be

casilv <eon that the ipheation Fy € F, aad Gy 2 Gy = Fi + G) T Fo + Gy s
true whenever Fo0iGy = (00 Consequently, i Theorenn 200 the svinbols ~ and ~

I .
can be replaced by the symbols < and <. respectively.

Clearly. we have

2.6. Theorem. Let F = (F.R) with domain 1. G = ((.S) with doman ./
and H = (H.T) with domam N be relational systems of the same type. Let o
[ — J and 3: ] — KN be hijections and let 100G = Gall = ol =i Let 5
o — N oand & 1 — 3 he the bijections defined by 5(r y) = J(y) for all (r.y) € o
and a() = (o). I(a(r)) forall v € 1. Finadlv, let 0: a0 — o= be the bijection
defined by 0 y)y = (y.a) tor all (. y) € o Then

0 N B 3
(1) (FY+G)+ H=F4+(G4+H).
(2) Ficlc'y F

2.7. Remark. By virtue of (1) of the previous theorem we can write both the

o o § 3 « 3
sum (F+G)+ H and F+(G+ H) by the samesymbol F+G+H . More generally.
let e bhe acpoxsitive integer and {F, | i = 0.0 .00} a family of relational systems of

the saune type and with pairwise disjoint carriers. Let o be acbijection of the domain

of Fi—y onto the domain of F; for every 1€ {1..... nt. Then we can define the sum
g e o . . . .

F, + F\, + ...+ F, as any one obtained by inserting parentheses and replacing the

bijections ay. ... oy, by the corresponding ones.

3. CARDINAL MULTIPLICATION

3.1. Definition.  Let F = (/7 R) with domain [ and G = (G, S) with domain .J
be two relational systems of the same type. Let a: [ — ) be a bijection. The cardinal
product FX G of F and G wilh regard to o is the relational systein H = (H.T") with
domain o where Il = F x (¢ and T C 1" is defined as follows: he H*. he T <
there exist f € R and g € S such that h(x,y) = (f(2),g(y)) for all (x,y) € a.

If I = J and a is the identity of I, then we write briefly F - G instead of F ‘G

3.2. Proposition. Let F = (I, %) with domain | and G = ((;.S) with domain

J be two relational systems of the same type. Let «o: | — ] be a bijection and let
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H=(HT)=F *G. Then H is the greatest element (with respect to <) in the
set of all relational systems L with the same domain o and the same carrier I for
which the following two conditions are true:

(1) The projection of H onto F is a homomorphism of L onto F with regard to
the bijection 3: «« — [ defined by B(z,y) = x for all (x,y) € a.

(2) The projection of H onto G is a homomorphism of L onto G with regard to
the bijection y: a — J defined by y(z,y) =y for all (x,y) € a.

Proof. By prp we denote the projection of Il onto I and by prg; the projection
of I onto (/. Clearly, prp € Hom(H, F) and prg € Hom,(H,G). Let L = (H.l")
be a relational system with domain « fulfilling both the conditions (1) and (2). Let
I € U be a mapping. Then putting f = prpoho 37! and g = prgohoq~! we get
f € Rand g € 5. We have prp (h(z,y)) = f(B(x,y)) = f(z) and pry; (h(x.y)) =
g(y(x,y)) = g(y) for all (x,y) € a. Thus h(x,y) = (f(z),9(y)) for all (x.y) € .
This yields h € T'. Hence IV C T, i.e. L < H. The proof is complete. a

3.3. Lemma. Let Fy = (I, Ry) with domain [ and ¢y = ((/y,5)) with domain
J be relational systems of the same type. Let Fy = (Fy, Ra) with domain | and
Gy = ((/4,54) with domain J be relational svstems (of the same type) as well. Let
a: 1 —.J be a bijection. Then

(1) if f € Hom (F;.G)) and g € Hom, (Fs, G»), then f+ g € Hom (F, - Fy. G, -
G»);

(2) it f € Hom(Fy. Fy) and g € Hom(G, G»). then [+g € Hom(Fy Gy, Fa" Go).

Here, f % g means the direct product of the mappings f and g. Le. f*glay.rs) =

(f(x1) g(r2)).

Proof. Let f € Hom (F,.G)) and ¢ € Hom, (Fy, G») and put h = [ *¢.
Let p € A(F\-F,). Then there exist ¢y € Ry and qo € Ry such that p(r) =
(q1(2).qa(x)) for all # € 1. Further, fogqroa™ € S and goguoan™! € S,
Put g() = (Flar (0= (). algs(a™ () for all y € J. Then ¢ € #(G) -
G-) and for any y € J we have h(p(a='(y))) = h(g (o= (W) . q2(a""(y)) =
(S(gi (=) g(g2(a=Hw)))) = q(y). Thus hopoa™! = g and henee hepoan=! €
A(G - Gy). Consequently, h € Hom(Fy - Fy. G| - G4).

(2) Let f € Hom(Fy. Fy). g € Hom(G,.G) and put h = fay. Let p € 2(F, TGy,
Then there exist ¢ € Iy and gy € Sy such that plaoy) = (qi(@).q2(u)) for all
(. y) €
for all (»r

a. Purther. foqy € Ry and yo gy € So. Put gaoy) = (S (qi(e) . u(q2tu))

) €. Then g € 2(F " Gy) and for every (.11 < o we bave h(p(r. ) =
W (e)oqeyi) = Slgie)og(q=(y)) = qleow). Thas ho p = g and hence ivo p &
A(Fy " Gy). Therefore b€ Hom(Fy © Gy, Fy " G4). The statement is proved. O
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As a consequence of the lemima we get

3.4. Theorvem. Let F| with domain I and G; with domain J be relational
systems of the same type. Let also Fy with domain I and G4 with domain J be
relational systems (of the same type). Let o: [ — J be a bijection. Then

(1) if Fy X G, and Fy X Gy, then F, - Fy <~ G, - Gy;

(2) if Fy ~ Fy and G, ~ Go, then F, © G| ~ F;, © G.

3.5. Remark. The reader can easily verify that if the assumptions of Theoremn
3.4 are fulfilled, then the nnplication F; C F» and G; C Gy = F B G, CF, ¢ G,
is true.  Consequently, in Theorem 3.4 we can replace the symbols ~ and ~ by the

I .
symbols < and <, respectively.

The following two statements are evident:

3.6. Theorem. Let F with domain I and G = (G, S) with domain J be relational

systems of the same type. Let GG be a singleton and S # 0. Let a: [ — J be

a bijection and let 3: «« — [ be the bijection defined by p(x,y) = r whenever
(£,y) € a. Then
F'GLF.

3.7. Theorem. Let F = (I, R) with domain I, G = (G, S) with domain J and
H = (H,7T) with domain N be relational systems of the same type. Let «: [ — J
and p:J — K be bijections. Let y: « — K and 6: I — [ be the bijections defined
by v(z,y) = Bly) for all (z,y) € « and §(z) = (a(z), B(a(x))) for all z € I. Let 0:
a — a~! be the bijection defined by 6(x,y) = (y.z) for all (z,y) € . Then

(1) F ¢ H=F'G"H),

(2) F'clc“ F.

3.8. Remark. By virtue of (1) of the previous theorem, an analogue of Re-
mark 2.7 is valid for cardinal multiplication of relational systems (of course, now the
assumption of pairwise disjoin carriers of the systems F; (i = 0, 1, ..., n) can be
omitted).

3.9. Theorem. Let the assumptions of Theorem 3.7 be fulfilled. Moreover, let
A:foa — fand pi: a« — foa be the bijections defined by Az, z) = (a(z), :) for
all (x,z) € Boa and p(x,y) = (z,B(y)) for all (x,y) € . Further, let o: v — « and
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a6 — p he the bijections detined by oty 2) = (s z) for all (g 2) & 5 and
o(r.y.z)=(r.y.r.2) forall (r.y.z)€d. Then

()il F NG =0 then (F36)) HA(F " H) 4 (G H):

. 3 - “ g ROTH
() ifGAH =0 then FY(GFH)Z (P &)Y (F " H).
Proof. (1) Weshall prove that the identity of (FU(G) x H is an isomorphisim
t » o A I3
of (F + G)7 H onto (F g H)+ (G -‘H) with regard to o. To this end. let /€
.a’((F;L G)7 H) be a mapping. Then there exist f € .%’(F-’;»G) and g € T such that
h(r,y.z) = (f(o.y).9(2)) for all (2, y.2) € 3. Next, (i) there exists f; € R such that
S y) = fi(a) for all (&, y) € a or (ii) there exists fo € S such that f(e.y) = [4(u)
for all (#.y) € a. Let the condition (1) be fulfilled. Then for any (xr.z.y.2) € A we
have (o' (e.2.y.2)) = h(x.y.2) = (flr.y).9(2)) = (fi(2).9(2)). Put gi(r.2) =
(fi(r),g(2)) for all (£,2) € Boa. Then ¢, € .%’(F”o-" H) and h(o™"(x.2.9.2)) =
o ’\ 2 -

(e, z) for all (2,2, y,2) € X. Therefore hop™! € .%((me H)+(G’3H)). Similarly.
if the condition (ii) is fulfilled, then putting ¢2(y, =) = (f2(y), ¢(=)) for any (y.z) € 3
we get qa € :'tl’(G:i’H) and h(o~ (e, 2,4,2)) = qu(y. 2) for all (¢, z,y.2) € X, Again,

Joa

A a3 . .
hoo ' € #((F"- H)+ (G- H)). Conversely, having h € (FUG) x H) with
idoan A i . . . .
hoo ! € #((F " H)+ (G ?H)), reversing the considerations we can easily show
that h € #((F -T- G) ! H). The assertion (1) is proved. As for (2), the proof is
similar. O

4. CCARDINAL EXPONENTIATION

4.1. Definition. Let F = (F, R) with domain [ and G = ((;.5) with domain
J be relational systems of the same type. Let a: I — J be a bijection. The cardinal
power F(AG of F and G with regard to o is the relational systemn H = (H.7T) with
domain o where /{ = Hom,-1(G,F) and T' C I is defined as follows: h € H™,
heTo'he Rforallted.

Here, for any £ € ¢ and h € ™, 'h is the mapping 'h: I — F defined by
thix) = h(x.a(x))(t) whenever 2 € I. (We should write more precisely 'h,, instead
of th. Since it will be always clear which bijection o is considered, we will omit the
index a.)

If I = J and a is the identity of I, then we write FS instead of F A G.

4.2. Theorem. Let Fy = (F, Ry) with domain [ and Gy = ((7..5)) with domain
J be relational systems of the same type. Let also Fy = (Fa, Ra) with domain I and
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G = ((/4.Sy) with domain J be relational systems (of the same type). Let oz [ — ]
be a bijee llun Then
(1) if Fy X Gy and Fs ~ Ga, then FF: 2 GS2:

(2) if Fy ~ Fy and G| ~ G4. then Fy ’A G, ~ F, A' G.

Proof. (1) Let fi: Fy — () be an isomorphism of Fy onto G, with regard
to a and let fo: Fy — (/9 be an mumorplu.\m of Fs onto G4 with regard to «. For
any [ € Hom(Fy, Fy) put o(f) = fi o fo f7'. We shall prove that y is a bijection
of Hom(F.. Fy) onto Hom(G4,Gy). Clearly, ¢ is injective. Let f € Hom(Fa, Fy)
and let g € Sy be a mapping. Then j'._,_l ogow € Ry. Hence fo j"._,‘l ogoan €
Ry and thus fio fo fi'ogoaoa™ = ¢(f)og € S; . We have proved the
implication f € Hom(Fy, F)) = ¢(f) € Hom(G4, Gy). Similarly we can prove that
f € Hom(G., G,) = j'l_1 ofofo = ¢ Yf) € Hom(Fy, F;). Therefore ¢ is a
bijection of Hom(Fs, Fy) onto Hom(G2, Gy). Let h € ‘f?(FlF’) Then th € R, for
every { € Fy. Thus, for any { € Fy we have f; otho 0-1 € S;. Let u € Gy be an
element. Then *(p ohoa™')(y) = p(h(a~ (y))(u) = fi (h(a (v)) (_I'2 (v)))

[T @ f(a=1(y))) holds for every y € J. Thus ¥ (<,ooh.oa Y es,. (,onsequem.ly,
pohoa=! € 4( GlG"). Therefore ¢ is a homomorphism of FIF2 onto GlG2 with regard
to a. Now, reversing the considerations we can show that h € f;’?(FlF’) whenever
h e (llom(F-_;,Fl))' and wo hoa~! € #(GS?). Therefore ¢ is an isomorphism of
F,F" onto Gf;? with regard to «. The proof of (1) is complete. The assertion (2) can
be proved sunilarly. 0

4.3. Remark. It can be easily shown that if the as<umptlonb of Theorem 4.2

are fulfilled, then the implication Fy C F> and G| = G2 = F A G, C F, A Go is
true.  Consequently, in Theorem 4.2 the assertions (1) and (2) can be replaced by
the follow in;., ones:

(1) If F; X G, and F» £ Ga, then FF? X GS2.
(2) It F; < Fs and G| ~ Ga, then F; A Gy < Fs A Gy.

The following result is evident.

4.4 Theorem. Let F with domain I and G = (G, S) with domain .J be relational
systems of the same type. Let (i be a singleton and S # 0. Let «: I — J be a
hijection. Let B: « — I and 5: a~' — J be the bijections defined by B(x,y) =
and y(y,x) =y for all (r,y) € a. Then

(1) FAGLF
(2) cAFla.
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4.5. Theorem. Let F = (F,R) with domain I, G = ((,5) with domain .J
and H = (1, T) with domain N be relational systems of the same type. Let «:
I — J and g:.J — K be bijections. Let v: o — KN and é: foa — J he the
hijections defined by 4(x,y) = B(y) for all (x,y) € a and é(x,2) = (a(x),z) for all
(2,2) € Bow. Finally, let A\: v — & be the bijection defined by Az, y,z) = (r,z,y.z)
for all (x,y,z) €5. Then

Boa s il

(FG)AHA(F A H) (GAH).

Proof. Let prp: F x (i — F and prgy: I x (i — ( be the projections.
For any h € Homy 1(H, F° G) put hp = prpoh and hg = prgoh. Clearly.
prp € llomQ(F G, F) and prg; € [lom,s(F G, G) where p:a« — [and o: a — J
are the bijections defined by o(z,y) = z and o(x,y) = y whenever (z,y) € . Since
0077 = (Boa) and goy™! = g7 by 1.4.b) we have hp € Homyoq,-1 (H, F) and
h¢; € Homy—i (H, G). Further, let iy € Homgoq)-1(H, F) and hy € Homy- (H, G)
and put h(t) = (hi(t),ha(t)) for all t € H. Let f € T. Then h(f(5(x.y))) =
(hi (S (v, ), he(f (32 9))) = (b (f(B(a(2))))  ha(f(B(y)))) for all (x,y) €
. Since hjyofopow € Rand hgo fo 3 € S| we have ho foy € Z(F ' G).
Therefore h € Hom,_(H, F B G) and clearly hy = hp, ha = hg. Now, let
Hom, 1 (H, F° G) — llom(ﬂo(,)-.(H, F) x Homg-1(H, G) be the mapping defined
by ¢(h) = (hp, h¢) whenever b € Hom,_(H, F B G). We have proved that ¢ is
surjective. But ¢ 1s clearly injective and hence it is a bijection. Let g € 2 ((F B
G) A H). Then 'y € 4(F B G) for all t € . Thus, there exist p € R and
q € S such that ‘g(x,y) = (p(z),q(y)) for all (x,y) € a. For any (x,z.y.2) € 6
we have o(g(A7H(x,2,0,2))) = ¢lo(e,p.2)) = ({9020, 2)) o (92,9, 2)) ;). Put
r(x,2) = (9(x,a(x),2)) . forevery (x,z) € o and s(y, =) = (g( ")y, 2)),, for
every (y,z) € 8. Then 5&‘( (AN, z,y,2))) = (r(z,2),8(y, 2)) forall (x,z,y,2) €
and r € (Hom(zon)-1(H, F))Hoa € (Homy- (H, G))ﬁ‘ Now we have

r(x, B(a(x)))(t) = (g9(x, a(x), B(a(2)))) 7 (
pre (g (Jf afx), flo(x) )) (1)) =pre (‘y(x, u( )))
pre (p(e), qla(x))) = plr)

2

“r(r)

Il

for any t € H and x € I. Hence '» = p for all t € H. Similarly,

Il

s(y) = sy, BW) () = (9(a™" (W), v, 8(1))) (1)
= prg (9™ W), w. BW)) (1) = pre (‘g(a™(w),v))

pre (p(e™ (), a(v)) = a(y)

Il
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forany t € Il and y € J. Thus 's = q for all t € . Therefore 'r € R and 's € S
forall t € I1. (“‘omequontly, r € #(F ﬁ&a H) and s € (G g H). This results in
pogor~! € #((F A H (Gg H)) and we have proved that ¢ is a homomorphism
of (F" G)AH onto (F A H)é(GZH) with regard to A. Reversing the argument we
can easily show that pogoA~! € !f?((FﬁX]H)?(GZH)) implies g € .‘;’?((F?G)AH)

whenever g € (Hom,-(H, F - G))". Therefore ¢ is an isomorphism with regard to
A and the proof is complete. O

4.6. Theorem. Let F = (F, R) with domain I, G = (G, S) with domain J and
H = (/1,T) with domain K be relational systems of the same type. Let GNH = ()
andlet a: 1 — J and 3: J — K be bijections. Let y: [ — f and é: a — Boa be the
bijections defined by () = (a(z), B(a(z))) for all z € I and §(x,y) = (z, 3(y)) for
all (£,y) € a. Finally, let A: 4 — 6 be the bijection defined by A z,y,z) = (¢,y.x, =)
for all (x,y,z) € 7. Then

v A A a 5 Boa
FA(G+H)~(FAG):(F A H).

) , B ..
Proof. For any h € Hom,-1(G + H,F) let hg denote the restriction ,Il(r'
and hy the l(\!l‘l(LlOll hlll ic. let hg = ho 1d(, and hyy = hoidy. Clearly,

g € Hom,(G, G+ H) and idy € lom,(H, G+ H) where ¢: J — 3 and o:
K — 3 are the bijections defined by o(y) = (y,3(y)) for all y € J and o(z) =
(:37%z).2) forall : € K. Since v 'op=0a"land v ' oo = (Boa)”!, by 1.4.h)
we have he; € Hom - (G, F) and hy € Homyygen)-1(H, F). Further, let hy €
Hom, -1 (G. F), hy € Homygoa)-1 (H, F) and put h = hy Uhs. Let f € .‘?(Gi H).
Then (i) there exists p € S such that f(y,:) = p(y) for all (y,z) € 3, or (ii)
there exists ¢ € T such that f(y,z) = q(=) for all (y,z) € 3. Let the condition
(i) be fulfilled. Then h(f(3(2))) = h (f(a(x).3(a(z)))) = ha(q(F(a(x)))) for
any » € I. Henee ho foy = h, opoa € K. Similarly, if the condition (ii)
(

h(f () = b (f(a(e).B(a())) = hz(g(3(a(2))))

A
for all v € I ie. ho foq = hsoqoidoa € R. Therefore h € Hom,-1(G +

1s fulfilled. then we obtain

3
H.F) and clearly hy = hg and ha = hg. Now, let ll()”l.)—l(G‘;*‘ H.F) —
Hon, -1 (G. F) x Howgz00)-1(H, F) be the mapping defined by o(h) = (hg,hy)

Bl
whenever i € Hom, - (G + H, F). We Lave shown that ¢ is surjective. Since o is
hi i
obviously injective, it is a bijection. Let ¢ € #(FA(G+H)). Then 'g € R for every
t € GU . For any (x,y,¢,2) € 6 we have o(g(A" (e, y,2,2))) = p(g(x.y.2)) =
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((gey.2)),. (y(w.y.:))"}. Put r(eoy) = (gl gy 3()),, for every (o g) < ooand
sr.z) = (5/(.:'.:}(,:’).;)")” for every (o) € 3o a. Then o(y(N ey o)) =
(r(r.y). s(r.2)) and r € (Hom, - (G.F))" s & (Mo, ., -1 (H. F)7" W have
"r(e) = r(roa(e))(f) = (_q(.r.n(Jf)...'l(u(.r))))“,(l'l = gl a(e). o)t = Lyl
for every £ € (7 and & € 1. Sunilarly,

C(e) = sl (@) = (a(raled Aalr), (1)

= g(r.ale). A(al))0) = fyte)

for every t € I and o € 1. Thus'r = 'y € Rforovery i € G and 's = g = R
for every ¢t € . This yields r € . 2(F Al G) and s € 2(F 2. H). Consequently.
pogod~l € .%’((FAG)'?(FLX'H)). Therefore ¢ is a homomorphism ufFé;l_G—;H)
onto (F’AIG)T(F'Z. H) with regard to A, By the reverse considerations we can show
that pogo A~ € 2((F A G) ’ (F'dZ}:l H)) implies gy € #(F A (G -;- H)) whenever
g € (Hom, - (G ;— H.F))W. Therefore 2 is an isomorphism and the statement s
proved. g

However, the law F A (G g H) ~ (F (A. G) A H does not hold in general for
relational systems F, G, H of the same type and for the corresponding bijections
a, 3,4, 6. Now we are aiming at giving some sufficient conditions for the validity of
this law.

Let F = (F. R) be a relational systetn with domain 1. The system F s called

(1) descrete i R={fe FI | e F: flr)=t forallrel}.

(2) reflerive iff the discrete relational system G with domain [ and with carrier
F satisfies G < F,

(3) complete it R = I,

4.7. Theorem. Let F = (F, R) with domain I, G = ((Z,S) with domain .J and
H = (11, T) with domain K be relational systems of the same type. Let a: [ — ]
and B:.J — K be bijections. Let 4: I — 3 and b: « — KN be the bijections defined
by y(x) = (a(x),3(a(x))) for all £ € I and &(x.y) = 3(y) for all (£.y) € a. Let G

and H be reflexive. Then

, @ &
FAWG H)<(FAG)AH,

i
Proof. First, note that 54 = & is valid. Let f € Hom(GL~ H,F)and r € H. By
Ju: GG — F we denote the mapping defined by f, (1) = f(u, v) whenever 1 € (7. Let
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g € S. Putting g*(y,2) = (g(y), v) for all (y,z) € B we get g* € .@(Gﬂ H) since H
is reflexive. Hence f o g* oy € R. However, f(g*(7(z))) = f (¢ (a(z), B(a(z)))) =
f(g(a(z)),v) = f,(9(a(z))) for any z € I. Therefore fog* oy = f, 0 goa which
yields f, o goa € R. Consequently, f, € Homy,-:(G,F). Let v € G, h € T
and put i(y,z) = (u, h(2)) for all (y,z) € B. Then h € Q(Gﬂ H) because G is
reflexive. Thus fohoy € R. Let f': H — Homg,-1(G, F) be the mapping defined
by f'(v) = f, for every v € H. Then *(f' o ho 6)(z) = f' (h(6(z,a(2)))) (v) =
£ (h(B(a(2)))) (u) = Fapiam (@) = £ (u,h(B(a(2)))) = f (h(a(2), B(a(2)))) =
S(h(y(x))) forallu € Gand z € I. So“(f'ohod) = fohoyforaluedG
and this 1mplies “(f’ ohoé) € Rforall u e G. Hence f'ohoé € .??(F A G) and
f" € Homg-1 (H, FA G). Now we can define a mapping ¢: Hom,y_l(G H,F)—
Homg-: (H, F g G) by o(f) = f' for every f € Ilom,y_l(G - H,F). 1t is easy

y
to see that ¢ is an injection. Let p € Z(F A (GﬁH)) Then (*¥)p € R for

a 5
all (u,v) € (7 x H. We are to show that pop € Z((F A G) A H), ie. *(po

p) € Z(F & G) for every v € H, but this is equivalent to “(*(p o p)) € R for all
(u,v) € GG x H For any z € I and (u,v) € G x H we have “(Y(¢ o p))(z
P, ot ) e (o(z,0(2), B(0(2))) (W) = (p(a, (z),ﬁ(a(x))))
(p(z, af a(z))))u(u = p(z, a(z), Bla(z))) (v, v) = (”'”)p(.r). So #(¥
(wv)p for d” (u,v) € G % H and hence “(Y(¢ o p)) € R for all (u,v)

(a3

Thus pop € Z((F A G) A H). Reversing the previous considerations we can

wwp):
€ Gx H.

[d 1 v
easily show that pop € Z((F A G) A H) implies p € Z(F A (Gﬁ H)) whenever
¥ 5
€ (Hom, - ((Gﬁ H)A F))7 Thus ¢ is an isomorphism of F' A (Gﬂ H) onto the
a ] /
subsystem of (F'A G) A H, whose carrier is ¢( Hom, -1 (G'-j H, F)), with regard to

Y a ]
the identity id : v — 4. Therefore FF A (GﬁH) < (F A G)A H and the proof is
complete. a

4.8. Theorem. Let the assumptions of Theorem 4.7 be fulfilled. If, moreover, F
is reflexive and both G and H are discrete, then
¥ 8 a 8
FA(G-H)~(FAG)AH.

Proof. If F is reflexive and both G and H are discrete, then clearly G? H
is discrete and F A G is reflexive. Therefore Hom,-1(G ? H,F) = F¢*H and

(e
Homg-1(H,F A G) = (F)#. The mapping ¢ defined in the proof of Theorem 4.7
is obviously a bijection of F¥*H onto (F¥)# . This fact implies the statement. O
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Let F' = (F, R) be a relational system with domain I. Let J, K be sets equipotent
with I and let o: [ — J, B: [ — K be bijections. The system F is called diagonal
with regard to the pair («, B) iff the following holds:

Let {fj | j € J} be a family where f; € R for all j € J. Let {gx | k € K'} be the
family of elements of F/ defined by g4 (i) = fc,(,-)(ﬁ‘l(k)) foreveryi € I and k € K.
If gr € R for all k € K, then putting h(i) = fq(i)(¢) whenever i € | we get h € R.

It can be easily seen that F' is diagonal with regard to (a, 8) iff it is diagonal with
regard to (0, o).

If I = J = K and both « and 3 are identities, then the diagonality of F' with
regard to («, 3) coincides with the diagonality of F' introduced in [5]. If, moreover, I
is finite, then F' is diagonal with regard to (c, 3) iff R satisfies the diagonal property
defined in [4]. In particular, if card I = 2, i.e. if R is a binary relation on F, then F
is diagonal with regard to («, B) iff R is transitive.

4.9. Theorem. Let the assumptions of Theorem 4.7 be fulfilled. If, moreover, F
is diagonal with regard to (o, o ), then

« §
FAG H)~(FAG)AH.

Proof. Let g € Homs-:(H,F A G) and put f(u,v) = g(v)(u) for any u € G
and v € H. Let h € .?t’(Gl3 H). Then there exist hy € S and hy € T such that

h(y,z) = (h1(y), ho(z)) for all (y,z) € B. As gohyob € Z(F A G), we have
“(gohyoé) € R for every u € G. Thus, putting f; = M) (g o hy o §) whenever
J € J we get fj € R. Next, as g(v) € Hom,-1(G, F) for all v € H, we have
g(h2(k)) € Hom,-1(G, F) for all k € K. Therefore, putting g = g(’lz(k)) ohjoa
we get gr € R whenever k € K. Further,

fa (B ) () = Mg o iy 0 8) (B 0 @) (k)
= (ha(6((80 @) (&), (oo (B0 @) )(8))) (A o))
= (ha((B oo (o)) (8)) (s (o))
= f(hi(a(d)), ha(k))
and
gk(i) = g(h2(k)) (b1 (a(2))) = f(h1(a(d)), ha(k))

forall i € I and k € \'. Hence ¢x(i) = fa(,)( (Boa)~l(k)) foreveryi€ [ and k € K.
Since F is diagonal with regard to («, 3 o ) and since

Fuoi) = £ (b (a(0), he(B(a(0)))) = £ (h(a), Ba(®))) = £(h(x(1)))
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holds for every i € I, we have fohoy € R. Consequently, f € Hom, -, (Gﬁ H,F).
Now, if ¢ is the mapping defined in th proof of Theorem 4.7, then g = ¢(f) and
therefore ¢ is a surjection. This yields the statement. O

Let us conclude with the following evident assertion:

4.10. Proposition. Let F with domain I, G with domain J and H with domain
K be relational systems of the same type. Let «, (3, v, 6 be the bijections defined in
the same way as in Theorem 4.7. If F' is complete, then

a )
FAWG H) ~(FAG)AH.
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