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Abstract. Let a, b, c, r be positive integers such that a2 + b2 = cr, min(a, b, c, r) > 1,
gcd(a, b) = 1, a is even and r is odd. In this paper we prove that if b ≡ 3 (mod 4) and
either b or c is an odd prime power, then the equation x2 + by = cz has only the positive
integer solution (x, y, z) = (a, 2, r) with min(y, z) > 1.

Keywords: exponential diophantine equation, Lucas number, positive divisor

MSC 2000 : 11D61

1. Introduction

Let
�
, � , � be the sets of all integers, positive integers and rational numbers

respectively. In 1933, Terai [10] proposed the following conjecture.

Conjecture 1. If (a, b, c) is a primitive Pythagorean triple such that

a2 + b2 = c2, a, b, c ∈ � , gcd(a, b) = 1, a ≡ 0 (mod 2),

then the equation

x2 + by = cz, x, y, z ∈ �
has only the solutions (x, y, z) = (a, 2, 2).

This problem is related to an early conjecture of Jeśmanowicz [5]. As an analogue
of Conjecture 1, Cao and Dong [3] considered the following conjecture:
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Conjecture 2. If a, b, c, r, s, t are fixed positive integers such that

ax + bt = cr, min(a, b, c, r, s, t) > 1, gcd(a, b) = 1, a ≡ 0 (mod 2),

then the equation

xs + by = cz, x, y, z ∈ �
has only the solutions (x, y, z) = (a, t, r).

However, the condition min(y, z) > 1 is necessary in Conjuecture 2 (see [4]). In
general, this conjecture is far from solved. In this paper we consider the case that a,
b, c, r are fixed positive integers satisfying

(1) a2 + b2 = cr, min(a, b, c, r) > 1, gcd(a, b) = 1, a ≡ 0 (mod 2), r 6≡ 0 (mod 2).

In this respect, Cao, Dong and Li [4] proved that if

(2) a = |Vr|, b = |Ur|, c = m2 + 1

and b is an odd prime power with b ≡ 3 (mod 4), where m is an even integer with

m > 1 and the integers U(r), V (r) satisfy

(3) Vr + Ur

√
−1 =

(
m +

√
−1

)r
,

then the equation

(4) x2 + by = cz, x, y, z ∈ � min(y, z) > 1

has only the solution (x, y, z) = (a, 2, r). In this paper, we show that the condition
(2) can be eliminated from the above mentioned result. We shall prove two general
results:

Theorem 1. If (1) holds and b is an odd prime power with b ≡ 3 (mod 4), then
(4) has only the solution (x, y, z) = (a, 2, r).

Theorem 2. If (1) holds, b ≡ 3 (mod 4) and c is an odd prime power, then (4)
has only the solution (x, y, z) = (a, 2, r).
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2. Proof of Theorem 1

Lemma 1 ([8, pp. 122–123]). Let r be an odd integer with r > 1. Then every
solution (X, Y, Z) of the equation

X2 + Y 2 = Zr, X, Y, Z ∈ � , gcd(X, Y ) = 1, Y ≡ 0 (mod 2)

can be expressed as

X + Y
√
−1 = λ1

(
m + λ2l

√
−1

)r
, λ1, λ2 ∈ {−1, 1},

Z = m2 + l2, m, l ∈ � , gcd(m, l) = 1, m ≡ 0 (mod 2).

Lemma 2. Let k be an odd integer with k > 1, and let ω(k) denote the number
of distinct prime divisors of k. If the equation

(5) m2 + l2 = k, m, l ∈ � , gcd(m, l) = 1, m ≡ 0 (mod 2)

has solutions (m, l), then (5) has exactly 2ω(k)−1 solutions (m, l).

�������
	
. This lemma follows directly from Lemma 1 of [7]. �

Lemma 3 ([6]). The equation

x2 − 1 = Y n, X, Y, n ∈ � , min(X, Y, n) > 1

has only the solution (X, Y, n) = (3, 2, 3).

Lemma 4 ([9]). Let d is a positive square free integer with square free, and let

h(−d) denote the class number of the imaginary quadratic field Q
(√

−d
)
. If d > 2,

then the equation

1 + dX2 = Y n, X, Y, n ∈ � , Y 6≡ 0 (mod 2),

n > 1, n 6≡ 0 (mod 2), h(−d) 6≡ 0 (mod n)

has no solutions (X, Y, n).

1111



Lemma 5. Let p be an odd integer with p ≡ 3 (mod 4). The equation

(6) 1 + 3X2 = p2n, X, n ∈ � , n 6≡ 0 (mod 2)

has only the solution (p, X, n) = (7, 4, 1).
�������
	

. Since h(−3) = 1, by Lemma 4 we can suppose that n = 1 in (6). Then
(u, v) = (p, X) is a solution of the equation

(7) u2 − 3v2 = 1, u, v ∈ � .

Since X is even and 2 +
√

3 is the fundamental solution of (7), we get

(8) p + X
√

3 =
(
2 +

√
3
)2t =

(
7 + 4

√
3
)t

, t ∈ � ,

whence we obtain

(9) p =
[n/2]∑

j=0

(
t

2j

)
7t−2j48i.

Since p ≡ 3 (mod 4), we see from (9) that t is odd. Hence, by (9), we get t = 1 and
p = 7. Thus, (6) has only the solution (p, X, n) = (7, 4, 1). The lemma is proved. �

Lemma 6 ([3, Lemma 1]). Let b be an odd prime power, and let c be a positive

integer with gcd(b, c) = 1. If (4) has a solution (x, y, z) such that both y and z are

even, then we have

(i) b = 239, c = 13, (x, y, z) = (28560, 2, 8).
(ii) b2 + 1 = 2c2, (x, y, z) = ( 1

2 (b2 − 1), 2, 4).
(iii) b2t + 1 = 2c, (x, y, z) = ( 1

2 (b2t − 1), 2t, 4), where t is a positive integer.

Let α, β be algebraic integers. If α + β and αβ are nonzero coprime integers and
α/β is not a root of unity, then (α, β) is called a Lucas pair. Further, let A = α + β

and C = αβ. Then we have

α =
1
2
(
A + λ

√
B

)
, β =

1
2
(
A− λ

√
B

)
, λ ∈ {−1, 1},

where B = A2 − 4C. The numbers of the pair (A, B) are called the parameters
of the Lucas pair (α, β). Two Lucas pairs (α1, β1) and (α2, β2) are equivalent if
α1/α2 = β1/β2 = ±1. Given a Lucas pair (α, β), one defines the corresponding
sequence of Lucas numbers by

Ln = Ln(α, β) =
αn − βn

α− β
, n = 0, 1, 2 . . . .
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For equivalent Lucas pairs (α1, β1) and (α2, β2), we have Ln(α1, β1) = ±Ln(α2, β2)
for any n > 0. A Prime p is called a primitive divisor of Lt(α, β) if p | Ln and
BL1 . . . Ln−1 6≡ 0 (mod p). A Lucas pair (α, β) such that Ln(α, β) has no primitive
divisors will be called an n-defective Lucas pair. Further, a positive integer n is

called totally non-defective if no Lucas pair is n-defective.

Lemma 7 ([11]). Let n satisfy 4 < n 6 30 and n 6= 6. Then, up to equivalence,
all parameters of n-defective Lucas pairs are given as follows:

(i) n = 5, (A, B) = (1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76), (12,−1364).
(ii) n = 7, (A, B) = (1,−7), (1,−19).
(iii) n = 8, (A, B) = (2,−24), (1,−7).
(iv) n = 10, (A, B) = (2,−8), (5,−3), (5,−47).
(v) n = 12, (A, B) = (1, 5), (1,−7), (1,−11), (2,−56), (1,−15), (1,−19).
(vi) n ∈ {13, 18, 30}, (A, B) = (1,−7).

Lemma 8 ([1, Theorem 1.4]). If n > 30, then n is totally non-defective.

Lemma 9. If a, b, c, r satisfy (1) and b is an odd prime with b ≡ 3 (mod 4), then
either (a, b, c, r) = (524, 7, 65, 3) or a, b, c and r satisfy (2).
�������
	

. By Lemma 1, we get from (1) that

a + b
√
−1 = λ1

(
m + λ2l

√
−1

)r
, λ1, λ2 ∈ {−1, 1},(10)

c = m2 + l2, m, l ∈ � , gcd(m, l) = 1, m ≡ 0 (mod 2).(11)

From (10), we obtain

(12) b = λ1λ2l

(r−1)/2∑

i=0

(
r

2i + 1

)
mm−2i−1(−l2)i.

Since b is an odd prime power with b ≡ 3 (mod 4), we have

(13) b = pk,

where p is an odd prime and k is an odd integer. By (12) and (13), we get

(14) l = ps,

∣∣∣∣
(r−1)/2∑

i=0

(
r

2i + 1

)
mr−2i−1(−l2)i

∣∣∣∣ = pk−s, s ∈ � , 0 6 s 6 k.

By (3), (10), (11) and (14), if s = 0, then a, b, c, r satisfy (2). If s > 0, let

(15) α = m + l
√
−1, β = m− l

√
−1.
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Then (α, β) is a Lucas pair with parameters (2m,−4l2). Further, let Ln(α, β) (n > 0)
denote the corresponding Lucas numbers. Then, by (14), we get

(16) l = ps, |Lr(α, β)| = pk−s, 0 < s 6 k.

It implies that the Lucas number Lr(α, β) has no primtitive divisors. Since r is an
odd integer with r > 1, by Lemmas 7 and 8 we obtain r = 3.
When r = 3 and s = k, we get from (14) that

(17) p2s − 3m2 = 1.

Since b ≡ 3 (mod 4), we see from (13) that p ≡ 3 (mod 4). Hence, by Lemma 5, we
get from (17) that p = 7, s = 1 and m = 4. Therefore, by (10) and (11), we abtain
(a, b, c, r) = (524, 7, 65, 3).
When r = 3 and s < k, since s > 0 and gcd(m, l) = 1, we get from (14) that

p = 3, k − s = 1 and

(18) m2 − 32s−1 = 1.

By Lemma 3, we find from (18) that m = 2 and s = 1. Hence, by (13), we get
b = 32 = 9. But, since b ≡ 3 (mod 4), this is impossible. Thus the lemma is proved.

�
�������
	

of Theorem 1. Since b ≡ 3 (mod 4), by Theorem of [4] and our Lemma
9 it suffices to prove the theorem for (a, b, c, r) = (524, 7, 65, 3). Then (4) can be
written as

(19) x2 + 7y = 65z, x, y, z ∈ � , min(y, z) > 1.

Let (x, y, z) be a solution of (19) with (x, y, z) 6= (524, 2, 3). By Lemma 6, we have
y ≡ 0 (mod 2) and z 6≡ 0 (mod 2). Hence, by Lemma 1, we get

x + 7y/2
√
−1 = λ1

(
m + λ2l

√
−1

)z
, λ1, λ2 ∈ {−1, 1},(20)

65 = m2 + l2, m, l ∈ � , gcd(m, l) = 1, m ≡ 0 (mod 2).(21)

Since ω(65) = 2, by Lemma (2), (21) has exactly two solutions (m, l) = (4, 7) and
(8,1).

When (m, l) = (4, 7), let

(22) α = 4 + 7
√
−1, β = 4− 7

√
−1.
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Then (α, β) is a Lucas pair with parameters (8, 196). Further, let Ln(α, β) (n > 0)
denote the corresponding Lucas numbers. Then, from (20) and (22) we get

(23) 7y/2−1 = |Lz(α, β)|.

This implies that the Lucas number Lz(α, β) has no primtitive divisors. On the other
hand, since z > 1 and (x, y, z) 6= (524, 2, 3), we see from (20) that z > 3. But, by
Lemmas 7 and 8, (23) is impossible.

When (m, l) = (8, 1), we get from (20) that

(24) 7y/2 = λ1λ2

(z−1)/2∑

i=0

(−1)i

(
z

2i + 1

)
8z−2i−1.

Since 8 ≡ 1 (mod 7) and

(z−1)/2∑

i=0

(−1)i

(
z

2i + 1

)
=

z∑

j=0

(
z

j

)
sin

jπ
2

(25)

= 2z sin
zπ
4

(
cos

π
4

)z

= (−1)(z−1)(z+5)/82(z−1)/2,

by (24), we obtain 0 ≡ ±2(z−1)/2 (mod 7), a contradiction. Thus, (4) has only the
solution (x, y, z) = (524, 2, 3) for (a, b, c, r) = (524, 7, 65, 3). The theorem is proved.

�

3. Proof of Theorem 2

Lemma 10 ([2, Theorem 4]). Let D be a positive integer with D > 2, and let p

be an odd prime with D 6≡ 0 (mod p). If (D, p) = (3s2 + 1, 4s2 + 1), where s is a

positive integer, then the equation

(26) X2 + DY = pz, X, Y, Z ∈ �

has at most three solutions (X, Y, Z) = (s, 1, 1), (8s2 + 3s, 1, 3) and (X3, Y3, Z3),
where Y3 is even. Otherwise, (26) has at most two solutions (X, Y, Z). Further, if
these are (X1, Y1, Z1) and (X2, Y2, Z2), then Y1 ≡ Y2 (mod 2).
�������
	

of Theorem 2. Since c is an odd prime power, we have c = pt, where

p is an odd prime and t is a positive integer. Hence, if (x, y, z) is a solution of (4),
then (X, Y, Z) = (x, y, tz), is a solution of the equation

(27) X2 + bY = pZ , X, Y, Z ∈ � .
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Since b ≡ 3 (mod 4), hence if (4) has a solution (x, y, z) 6= (a, 2, r), then (27) has
at least two solutions (X, Y, Z) with Y ≡ 0 (mod 2). But, by Lemma 10, this is
impossible. Thus, the theorem is proved. �
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