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Abstract. We define equivariant tensors for every non-negative integer p and every Weil al-
gebra A and establish a one-to-one correspondence between the equivariant tensors and lin-
ear natural operators lifting skew-symmetric tensor fields of type (p,0) on an n-dimensional
manifold M to tensor fields of type (p,0) on TAM if 1 < p < n. Moreover, we determine
explicitly the equivariant tensors for the Weil algebras Dj,, where k and r are non-negative
integers.
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Our aim is to give a classification of all linear natural operators lifting skew-
symmetric tensor fields of type (p,0) to tensor fields of type (p,0) on a Weil bun-
dle T4. The result of this paper generalizes that of [5], where linear natural operators
lifting skew-symmetric tensor fields of type (2,0) to skew-symmetric tensor fields of
type (2,0) on T4 are studied under a condition imposed on the Weil algebra A. The
condition required in [5] seems to be quite restrictive, as the algebras D, for k > 2
and r > 1 fail to satisfy it. In this paper we will not make any assumptions on A.

Let p be a non-negative integer. We will denote by te(M) the vector space of
tensor fields of type (p,0) on a manifold M and by sk(M) the subspace of te(M)
consisting of skew-symmetric tensor fields. Let A be a Weil algebra and T the Weil
functor corresponding to A, which is a product preserving bundle functor (see [3],
[1]). Fix also a non-negative integer n.

A natural operator lifting skew-symmetric tensor fields of type (p,0) to tensor
fields of type (p,0) on the Weil bundle T4 is, by definition, a system of maps Lj;:
sk(M) — te(TAM) indexed by n-dimensional manifolds and satisfying for all such
manifolds M, N, every embedding f: M — N and all ¢t € sk(M), u € sk(N) the
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following implication
(1) /\prot:uOf=>®pTTAf0LM(t):LN(u)oTAf.

Such a natural operator L is said to be linear if Ly, is linear for each n-dimensional
manifold M.

Our first goal is to construct some natural operators of this kind. The construction
will be divided into two parts. We will use equivariant tensors to obtain equivariant
maps first, and then equivariant maps to obtain natural operators.

The first part of our construction will be carried out under the condition that
p=1l

Since A is an R-algebra, A-modules can also be treated as R-vector spaces and
A-linear maps as R-linear. The functors ®”, A” may be applied to both categories.
Therefore we will use the symbols ", A% and Qp, Ap to avoid ambiguity.

Let us denote by Z; ¢ the map @2 A — @p A induced by A x ... x A >
(X1,..,Xp) — X1©0..0X,0100X,0X;119..0X, e @ Afori e {1,...,p}
and C € A.

Definition. We call a tensor G € Qp A equivariant if Z; ¢(G) = Z; c(G) for
alli,j € {1,...,p} and every C € A.

Equivariant tensors may be multiplied by elements of A. Indeed, since p > 1, there
isi € {1,...,p} and it sufficies to set CG = Z; ¢(G) for C € A and every equivariant
tensor G. Since G is equivariant, it is immaterial which ¢ we choose. It is evident
that equivariant tensors form an A-module, because Z; co Z; p = Z; p o Z; ¢ for all
i,j€{l,...,p} and C, D € A.

We call an R-linear map H: A A" — @& A" equivariant if

P P
(2) HO/\AF:®|RFOH
for every A-linear F': A™ — A™.

Every X € ®" A™ can be written as X“»E; @...® E; , where X"~r € A for
i1,...,4p € {1,...,n} are uniquely determined and E1, ..., E, stand for the standard
basis of the A-module A™. Of course, A\ A™ is the subset of Q" A" consisting of X
with the property that X’ -t = sgno X for all i1,...,4, € {1,...,n} and
every o € S,, where S, denotes the set of permutations of {1,...,p}. If F: A" —
A™ is A-linear, then there are Fj € A for i,j € {1,...,n} such that F(E;) = FJE;
for every j € {1,...,n} and

(/\Z F) (X)=F} ...F;ijl”'jpEil ®...0FE,

for every X € A\ A™.
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The isomorphism A" 3 X — X' ®e; € A® R", where ey,...,e, stand for the
standard basis of the vector space R™, enables us to identify A™ with A ® R™, and
consequently @p A™ with (Qf A) @ (Q” R™). Hence every X € @jp A™ can be
written as X @ ¢;, @ ... ®¢;,, where X-ir € Qp A for iy,...,ip € {1,...,n}
are uniquely determined. An easy computation shows that if F: A" — A" is
A-linear, then

P . .
(@R F) (X) = ((ZLFE o...0 Zp,F;;,)(Xal...Jp» ey ®...0¢,
for every X € @b A™.

Let G be an equivariant tensor. We define H¢: A% A" — @& A™ by the formula

HE(X)=(X"""G)®e;, ®...0¢,

for X € A, A™. 1t is easily seen that H @ is an equivariant map. Thus the first part
of our construction is complete.

Before we start the second part of our construction we make a few remarks dealing
with the symmetry and skew-symmetry of tensors.

Fix 0 € S,. We will denote by 54 the map @k A — Q% A induced by A x
XA (X, X)) — X)) @ ... © X1y € @i A and by o4n the map
Rp A" — Qp A" induced by A" x ... x A" 3 (X1,..., X)) — Xo-1()® ... ®
X,-1(p) € QnA". Clearly, 04 0 Zjc = Zyi),c ©0oa for every i € {1,...,p} and
every C' € A. Tt follows that for every equivariant tensor G the tensor o 4(G) is also
equivariant and the restriction of o4 to the A-module of equivariant tensors is A-
linear. Moreover, it is easily seen that o.4» (X) = o4 (X" )®e; _, | ®...®€ _,
for every X € @5 A™. Combining these we get o 4n (H% (X)) = sgn o H74(@) (X) for
every X € A\ A", because X'w) o) =ggno X" for all iy,...,ip € {1,...,n}.
This forces

(3) oan o HY = sgnoHC <= 04(G) =G,
(4) oan o HY = HY <= 0,(G) = sgnoG,

provided p < n.

We now return to our construction and proceed to the second part. Fix an equiv-
ariant map H. The task is to construct a natural operator which we will denote
by H.

We recall that A = TR and the addition and multiplication in A are obtained by
applying T4 to the addition and multiplication in R. Similarly, applying T4 to the
addition and multiplication by elements of R in A” R” we obtain an addition and
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multiplication by elements of A in T4 A” R", so it is an A-module. Applying 74 to
the canonical map R™ x ... x R* — AP R" we get a skew-symmetric A-p-linar map
A" x ... x A" — T4 AP R" which induces an A-linear isomorphism A% A" —
TA AP R™. Therefore we can identify 74 AP’ R* with A’ A". Let W be an open
subset of R” and f: W x R* — R" a smooth map such that f,: R* > y —
f(z,y) € R™ is linear for every x € W. Then we have A\;: W x AP R" > (z,y) —
(AP f2)(y) € APR, and so T4N\;: TAW x A A" — AP A" according to our
identification. On the other hand we have T4fx: A" 3 Y — TAf(X,Y) € A"
which is A-linear for every X € TAW, as is easy to check, and so we have Apa I
TAW x NG A" 2 (X,Y) — (AL TAfx)(Y) € AL A™. Tt is a simple matter to
prove that

(5) TAN\; = Apag.

Of course, if W is an open subset of R™, then TW may be interpreted as W x
R™. Similarly, since TAW is an open subset of A", TTAW may be interpreted as
TAW x A™ = TA(W x R™). Consequently if f: W — R" is a smooth map, then
both TAT f and TTAf are maps TAW x A® — A™ x A". It is a simple matter to
prove that

(6) TATf = TTAf.

Let M be an n-dimensional manifold and ¢ € sk(M). Taking a chart p: U — R"
on M and interpreting A\’ TR™ as R” x A\” R” we have the map T4 (A\? Tpotop™'):
TAp(U)) — A" x TANPR™ = A" x A\, A" according to our identification. We
can also interpret Q@7 TTAR™ as A" x ®p A™. Of course, TAp: TAU — A™ is a
chart on T4 M. This enables us to define Hy(t) by the requirement that

®pTTAgpoETM(t) o T4~ = (idan xH) OTA(/\pTgootocp_l)

for every chart ¢: U — R™ on M. A trivial verification shows that taking another
chart ¢: V — R" on M yields the same Hy;(t) on TAU NTAV, which is due to (2),
(5) for f = PoT(po~1), where P stands for the projection ¥(UNV) x R®* — R™,
and (6) for f = 1 o 1. This means that Hy(t) is well defined and it is easy to
show that H is a linear natural operator. Thus the second part of our construction
is complete.

Finally, we have the natural operator HE for every equivariant tensor G and we

can now formulate our main result.
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Theorem. If 1 < p < n, then for every linear natural operator L lifting skew-
symmetric tensor fields of type (p,0) to tensor fields of type (p,0) on the Weil bun-
dle T# there is a uniquely determined equivariant tensor G such that L = HE.

HC lifts all skew-symmetric tensor fields to skew-symmetric tensor fields if and
only if G is symmetric.

HE lifts all skew-symmetric tensor fields to symmetric tensor fields if and only if
G is skew-symmetric.

Remark. For p = 0 the theorem and the lemma below are not true, but the
second part of our construction still works and we have a one-to-one correspondence

between the natural operators and the equivariant functions (cf. [4]).

Let e € sk(R™) be given by e(z) = (z,e1 A ... Aep) for x € R”.

Lemma. If1 < p < n and J, K are two linear natural operators such that
Jrn(e) = Kpn(e), then J = K.

Proof of Lemma. Since linear natural operators form a vector space, it suffices
to prove that if L is a linear natural operator such that Lg»(e) = 0 then L = 0. We
will write T4oR™ for the fibre of TAR" over 0.

Let o € (NU{0})™.

We prove that Lpn(€q;)|7a,pn = 0 for every i € {0,...,p—1}, where e, ; € sk(R")
is given by e, () = (x, (z')** ... (z")*e1 A...Aep) for z € R". This holds for i = 0,
because e,,0 = e. Assume that ¢ > 1 and the formula holds for ¢ —1. It is well known
that there exist a neighbourhood I of 0 in R and an embedding g: I — R such
that ¢(0) = 0 and Tg(z,1) = (g9(x),1 + g(x)*?) for every x € I. Then (1) for
f =idgi-1 xg X idgn-i, t = €q,i—1 and u = e, i—1 + €q,; yields the desired formula.

Let eq € sk(R™) be given by eq(x) = (z,2%1 A ... Aep) for x € R". It
is well known that there are a neighbourhood I of 0 in R*P*! and an embed-
ding g: I — R P! such that g(0) = 0 and Tg(z,(1,0,...,0)) = (g9(z), (1 +
(g (z))2r ... (g PF(x))*,0,...,0)) for every x € I. Then (1) for f = idp»r-1 Xg,
t=¢eqp—1 and u=eq 1+ €y yields Lpn(eq)|ra,rn = 0.

Let 8 € (NU{0})™, 41,...,ip € {1,...,n} be such that i1 < ... < i, and let
€s,i...i, € sk(R™) be given by eg;, 4, () = (z, wPei A .. Neg,) for x € R". Clearly,
there are 7 € S, such that 7(1) = 41,...,7(p) = 4, and a € (NU {0})" such that
a1 = Br(1); -+, 0n = Br(ny- Then (1) for f: R" >0 — (x'ril(l), .. .,x'ril(")) € R,
t =eq and u = eg,..i, yields Lrn(eg,i;..i,)|Ta,rn = 0.

Obviously, for every ¢ € sk(R™) and every r € N there is a polynomial ¢ € sk(R"™)
such that jjt = jjg. But we have proved that Lpn»(q)|74,r» = 0. Hence the base-
extending Peetre theorem (see [3]) gives Lpn (t)|7a,pn = 0. This forces L = 0, as is
easy to show, and the lemma is proved. O
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Proof of Theorem. It is seen at once that

(7) HCgn(e)(X) = (X,l' Z SgnaG®eg(1)®...®eg(p)>
P o€S)
for every X € A™.
Taking f = hidg~, where h € R\ {0}, t = e and u = hPe in (1) and letting
h — 0 we obtain Lgn(e)(X) = Lgn(e)(0) for every X € A™. Therefore there are
Giiv € @p A for i, ...,ip € {1,...,n} such that

1
LRn(e)(X) _ <X’HG11..-1P ® e, ®...®6ip>

for every X € A™.

Taking f = idgr xhidgn-», where h € R\ {0}, t = e and u = e in (1) and letting
h — 0 we obtain G = 0 whenever there is j € {1,...,p} such that i; > p.

Taking f = idpi-1 xhidg X idgn-t, where I € {1,...,p} and h € R\ {0}, t =e
and u = he in (1) and letting h — 0 we obtain G'*» = 0 whenever there are
J.ke{l,...,p} such that j # k, i; =1 and i = L.

Thus if G'+% # 0, then there is o € S, such that (1) = iy,...,0(p) = i,. Taking
f:R* >z — (:I:Tfl(l),...,xfl(")) € R", where 7 € S, is such that 7|1, 1 = 0,

.....

= e and u = sgnoe in (1) we obtain G = sgnoG" . Therefore there is
G € @f A such that

1
(8) LRn(e)(X) = (X,—| Z Sgn0G®eg(1) ®---®€o(p))
" o€Ss,
for every X € A™.
Let i, € {1,...,p} be such that i # j. Then (1) for
(27)°
2

I R"Bx—><x1,...,xi_1,xi+ ,xiH,...,x")eR",
t =eand u = e yields Q" TTAf(Lgrn(e)(X)) = Lgn(e)(TAf(X)) for every X € A™.
An easy computation shows that

» Lod—Lij+l.p 1
(®" 1741 (Lan (e)(x))) = 1 Zix:(6) = Zix:(G)),
whereas (Lgn(e)(TAf(X)))bd=15i+1p = (. But for every C € A there is X €
A" such that X7 = C, and so Z; ¢(G) = Z; c(G). This means that G is equivariant.
The lemma now leads to L = HS, on account of (7) and (8).

Since the last assertions of the theorem are consequences of (3) and (4), the proof

is complete. (I
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The remainder of this paper will be devoted to an example.

Example. Fix non-negative integers r, k. We recall that the Weil algebra D7,
consists of r-jets at 0 of smooth functions R*¥ — R and the addition and multipli-
cation in D} are induced by the addition and multiplication in the algebra of such
functions. Our purpose is to find all equivariant tensors for D .

Write |af = |ai| + ...+ |ag| for a € ZF and I} = {a € (NU{0})*: |a| < r}. Let
J* be the r-jet at 0 of R* 3 2 — 2% € R for o € I}. Clearly, every G € @k A can
be written as

Y Gad®...®J%,
a€(Ip)r
where G, € R for € (I])? are uniquely determined. Let ¢;: I} — (I};)P for
i € {1,...,p} be given by t;(a); = o and ¢;(a); = 0 for j € {1,...,p} such that
i # j and for a € I]. We claim that if G is an equivariant tensor, then

Gotii(@)-u;8), i aj =B €I}
0, if aj —p¢1I;

for every a € (I])?, every § € I and all ¢,5 € {1,...,p} such that ¢ # j. Indeed,

(9) is the same as (Zi,Jﬁ (G))a-i-u(ﬁ) = (Zj,Jﬁ (G))a-ﬂi(ﬁ)'
We first consider the case k = 1. Write || = |a1| + ... + |ap| for a € (I7)P and

9) oe¢+6€I,Z:>Ga{

D; = Z JM®. .. ®J%
ag(Iy)?
|| =1

forie 7.

Ifk=1and p > 1, then D; fori € {(p— 1)r,...,pr} form a basis of the R-vector
space of equivariant tensors for j,. Consequently, the dimension of this space equals

r 4+ 1 and all equivariant tensors are symmetric.

To prove this, observe that if G is an equivariant tensor and «, 8 € (I7)? are such
that |a| = |4|, then G, = Gg. Indeed, it suffices to use (9) and the induction on
(i,7) € {1,...,p} x{0,...,r} with respect to the lexicographic order to show that if
a, € (I7)P are such that |o| =8|, j = |6 —ai| and oy = § for l € {i + 1,...,p},
then G4 = G. Thus G is a linear combination of D; for ¢ € {0,...,pr}. But if
i € {0,...,(p — 1)r — 1}, then there is o € (I{)? such that |a| = 4, |a1] < 7 —1
and ap = 0. Then (9) yields G, = 0. Thus G is a linear combination of D; for
1 € {(p—1)r,...,pr}. On the other hand, D; for every i € {(p — 1)r,...,pr} is
an equivariant tensor, because Z; ;u)(D;) = D;y; for every j € {1,...,p}. This
completes the proof. |
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It is worth pointing out that T9 is the tangent bundle functor. Fix an n-
dimensional manifold M and t € sk(M). Writing

t =t (q) O a2
aqzl 6qu
in local coordinates ¢ on M we easily obtain
—_— Otir-in ) o
HPr-1 (1) = . P——N... N =—
M (1) dq (@) Bgn Bgir

p
o 0 0 0 0 0
+j:1 (q) 20 AR e A 4 A Py AR 90

and 9
HDw y(t) = ¢htv A A —
Mm(t) (q) Py a0

in the local coordinates (g, ¢) induced by ¢ on TM (cf. [2]).

‘We now turn to the case k > 2.

Ifk >2andp > 2, then J* ® ... ® J% for o € (I};)P with the property that
o] = 7, ..., |ap| = r form a basis of the R-vector space of equivariant tansors
for Dj,. Consequently, the dimensions of this space and its subspaces consisting of

symmetric and skew-symmetric tensors equal

(3 (), (),

We only need to show that if G is an equivariant tensor and a € (I})?, i €
{1,...,p}, are such that |oy| < r — 1, then G, = 0. Fix j € {1,...,p} such
that ¢ # j and let €1,...,¢, be the standard basis of the module Z*. Then (9)
and the induction on ¢ € N U {0} show that either a; — g1,y — ge2 € I and
Ga = Gasq(ui(er)—u;(e1) 41, (e2)—i(eo)) for every ¢ € N U {0}, which is impossible, or
G, =0.
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