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(Received December 30, 2002)

Abstract. We define equivariant tensors for every non-negative integer p and everyWeil al-
gebra A and establish a one-to-one correspondence between the equivariant tensors and lin-
ear natural operators lifting skew-symmetric tensor fields of type (p, 0) on an n-dimensional
manifold M to tensor fields of type (p, 0) on T AM if 1 6 p 6 n. Moreover, we determine
explicitly the equivariant tensors for the Weil algebras 
 r

k , where k and r are non-negative
integers.
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Our aim is to give a classification of all linear natural operators lifting skew-

symmetric tensor fields of type (p, 0) to tensor fields of type (p, 0) on a Weil bun-
dle TA. The result of this paper generalizes that of [5], where linear natural operators

lifting skew-symmetric tensor fields of type (2, 0) to skew-symmetric tensor fields of
type (2, 0) on TA are studied under a condition imposed on the Weil algebra A. The

condition required in [5] seems to be quite restrictive, as the algebras � r
k for k > 2

and r > 1 fail to satisfy it. In this paper we will not make any assumptions on A.
Let p be a non-negative integer. We will denote by te(M) the vector space of

tensor fields of type (p, 0) on a manifold M and by sk(M) the subspace of te(M)
consisting of skew-symmetric tensor fields. Let A be a Weil algebra and TA the Weil

functor corresponding to A, which is a product preserving bundle functor (see [3],
[1]). Fix also a non-negative integer n.

A natural operator lifting skew-symmetric tensor fields of type (p, 0) to tensor
fields of type (p, 0) on the Weil bundle TA is, by definition, a system of maps LM :
sk(M) −→ te(TAM) indexed by n-dimensional manifolds and satisfying for all such
manifolds M , N , every embedding f : M −→ N and all t ∈ sk(M), u ∈ sk(N) the
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following implication

(1)
∧p

Tf ◦ t = u ◦ f =⇒
⊗p

TTAf ◦LM (t) = LN(u) ◦ TAf.

Such a natural operator L is said to be linear if LM is linear for each n-dimensional

manifold M .
Our first goal is to construct some natural operators of this kind. The construction

will be divided into two parts. We will use equivariant tensors to obtain equivariant
maps first, and then equivariant maps to obtain natural operators.

The first part of our construction will be carried out under the condition that
p > 1.
Since A is an � -algebra, A-modules can also be treated as � -vector spaces and

A-linear maps as � -linear. The functors⊗p,
∧p may be applied to both categories.

Therefore we will use the symbols
⊗p

A,
∧p

A and
⊗p� , ∧p� to avoid ambiguity.

Let us denote by Zi,C the map
⊗p�

A −→ ⊗p�
A induced by A × . . . × A 3

(X1, . . . , Xp) −→ X1⊗ . . .⊗Xi−1⊗CXi⊗Xi+1⊗ . . .⊗Xp ∈
⊗p�

A for i ∈ {1, . . . , p}
and C ∈ A.
Definition. We call a tensor G ∈ ⊗p� A equivariant if Zi,C(G) = Zj,C(G) for

all i, j ∈ {1, . . . , p} and every C ∈ A.
Equivariant tensors may be multiplied by elements of A. Indeed, since p > 1, there

is i ∈ {1, . . . , p} and it sufficies to set CG = Zi,C(G) for C ∈ A and every equivariant
tensor G. Since G is equivariant, it is immaterial which i we choose. It is evident
that equivariant tensors form an A-module, because Zi,C ◦Zj,D = Zj,D ◦Zi,C for all

i, j ∈ {1, . . . , p} and C,D ∈ A.
We call an � -linear map H :

∧p
AA

n −→ ⊗p� An equivariant if

(2) H ◦
∧p

A
F =

⊗p� F ◦H
for every A-linear F : An −→ An.

Every X ∈ ⊗p
AA

n can be written as X i1...ipEi1 ⊗ . . .⊗Eip , where X
i1...ip ∈ A for

i1, . . . , ip ∈ {1, . . . , n} are uniquely determined and E1, . . . , En stand for the standard

basis of the A-module An. Of course,
∧p

AA
n is the subset of

⊗p
AA

n consisting of X
with the property that X iσ(1)...iσ(p) = sgnσX i1...ip for all i1, . . . , ip ∈ {1, . . . , n} and
every σ ∈ Sp, where Sp denotes the set of permutations of {1, . . . , p}. If F : An −→
An is A-linear, then there are F i

j ∈ A for i, j ∈ {1, . . . , n} such that F (Ej) = F i
jEi

for every j ∈ {1, . . . , n} and
(∧p

A
F

)
(X) = F i1

j1
. . . F

ip

jp
Xj1...jpEi1 ⊗ . . .⊗Eip

for every X ∈ ∧p
AA

n.
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The isomorphism An 3 X −→ X i ⊗ ei ∈ A ⊗ � n , where e1, . . . , en stand for the

standard basis of the vector space � n , enables us to identify An with A ⊗ � n , and
consequently

⊗p� An with (
⊗p� A) ⊗ (

⊗p � n ). Hence every X ∈ ⊗p� An can be
written as X i1...ip ⊗ ei1 ⊗ . . .⊗ eip , where X

i1...ip ∈ ⊗p� A for i1, . . . , ip ∈ {1, . . . , n}
are uniquely determined. An easy computation shows that if F : An −→ An is
A-linear, then

(⊗p� F
)

(X) =
((
Z

1,F
i1
j1
◦ . . . ◦Z

p,F
ip
jp

)(Xj1...jp

))
⊗ ei1 ⊗ . . .⊗ eip

for every X ∈ ⊗p� An.

Let G be an equivariant tensor. We define HG :
∧p

AA
n −→ ⊗p� An by the formula

HG(X) = (X i1...ipG)⊗ ei1 ⊗ . . .⊗ eip

for X ∈ ∧p
AA

n. It is easily seen that HG is an equivariant map. Thus the first part
of our construction is complete.
Before we start the second part of our construction we make a few remarks dealing

with the symmetry and skew-symmetry of tensors.
Fix σ ∈ Sp. We will denote by σA the map

⊗p� A −→ ⊗p� A induced by A ×
. . . × A 3 (X1, . . . , Xp) −→ Xσ−1(1) ⊗ . . . ⊗ Xσ−1(p) ∈

⊗p�
A and by σAn the map⊗p� An −→ ⊗p� An induced by An × . . . × An 3 (X1, . . . , Xp) −→ Xσ−1(1) ⊗ . . . ⊗

Xσ−1(p) ∈
⊗p�

An. Clearly, σA ◦ Zi,C = Zσ(i),C ◦ σA for every i ∈ {1, . . . , p} and
every C ∈ A. It follows that for every equivariant tensor G the tensor σA(G) is also
equivariant and the restriction of σA to the A-module of equivariant tensors is A-
linear. Moreover, it is easily seen that σAn(X) = σA(X i1...ip)⊗ei

σ−1(1)
⊗ . . .⊗ei

σ−1(p)

for every X ∈ ⊗p� An. Combining these we get σAn(HG(X)) = sgnσHσA(G)(X) for
every X ∈ ∧p

AA
n, because X iσ(1) ...iσ(p) = sgnσX i1...ip for all i1, . . . , ip ∈ {1, . . . , n}.

This forces

σAn ◦HG = sgnσHG ⇐⇒ σA(G) = G,(3)

σAn ◦HG = HG ⇐⇒ σA(G) = sgnσG,(4)

provided p 6 n.

We now return to our construction and proceed to the second part. Fix an equiv-
ariant map H . The task is to construct a natural operator which we will denote

by H̃ .
We recall that A = TA � and the addition and multiplication in A are obtained by

applying TA to the addition and multiplication in � . Similarly, applying TA to the
addition and multiplication by elements of � in ∧p � n we obtain an addition and
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multiplication by elements of A in TA
∧p � n , so it is an A-module. Applying TA to

the canonical map � n × . . .× � n −→ ∧p � n we get a skew-symmetric A-p-linar map
An × . . . × An −→ TA

∧p � n which induces an A-linear isomorphism
∧p

AA
n −→

TA
∧p � n . Therefore we can identify TA

∧p � n with
∧p

AA
n. Let W be an open

subset of � n and f : W × � n −→ � n a smooth map such that fx : � n 3 y −→
f(x, y) ∈ � n is linear for every x ∈ W . Then we have λf : W ×∧p � n 3 (x, y) −→
(
∧p

fx)(y) ∈ ∧p � n , and so TAλf : TAW × ∧p
AA

n −→ ∧p
AA

n according to our
identification. On the other hand we have TAfX : An 3 Y −→ TAf(X,Y ) ∈ An

which is A-linear for every X ∈ TAW , as is easy to check, and so we have ΛT Af :
TAW × ∧p

AA
n 3 (X,Y ) −→ (

∧p
A T

AfX)(Y ) ∈ ∧p
AA

n. It is a simple matter to

prove that

(5) TAλf = ΛT Af .

Of course, if W is an open subset of � n , then TW may be interpreted as W ×
� n . Similarly, since TAW is an open subset of An, TTAW may be interpreted as
TAW × An = TA(W × � n ). Consequently if f : W −→ � n is a smooth map, then

both TATf and TTAf are maps TAW × An −→ An ×An. It is a simple matter to
prove that

(6) TATf = TTAf.

LetM be an n-dimensional manifold and t ∈ sk(M). Taking a chart ϕ : U −→ � n

onM and interpreting
∧p T � n as � n ×∧p � n we have the map TA(

∧p Tϕ◦ t◦ϕ−1) :
TA(ϕ(U)) −→ An × TA

∧p � n = An ×∧p
AA

n according to our identification. We
can also interpret

⊗p
TTA � n as An ×⊗p�

An. Of course, TAϕ : TAU −→ An is a

chart on TAM . This enables us to define H̃M (t) by the requirement that

⊗p
TTAϕ ◦ H̃M (t) ◦ TAϕ−1 = (idAn ×H) ◦ TA

(∧p
Tϕ ◦ t ◦ ϕ−1

)

for every chart ϕ : U −→ � n on M . A trivial verification shows that taking another

chart ψ : V −→ � n onM yields the same H̃M (t) on TAU∩TAV , which is due to (2),
(5) for f = P ◦T (ψ ◦ϕ−1), where P stands for the projection ψ(U ∩V )× � n −→ � n ,

and (6) for f = ψ ◦ ϕ−1. This means that H̃M (t) is well defined and it is easy to
show that H̃ is a linear natural operator. Thus the second part of our construction

is complete.
Finally, we have the natural operator H̃G for every equivariant tensor G and we

can now formulate our main result.
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Theorem. If 1 6 p 6 n, then for every linear natural operator L lifting skew-

symmetric tensor fields of type (p, 0) to tensor fields of type (p, 0) on the Weil bun-
dle TA there is a uniquely determined equivariant tensor G such that L = H̃G.

H̃G lifts all skew-symmetric tensor fields to skew-symmetric tensor fields if and

only if G is symmetric.

H̃G lifts all skew-symmetric tensor fields to symmetric tensor fields if and only if

G is skew-symmetric.

Remark. For p = 0 the theorem and the lemma below are not true, but the
second part of our construction still works and we have a one-to-one correspondence

between the natural operators and the equivariant functions (cf. [4]).

Let e ∈ sk( � n ) be given by e(x) = (x, e1 ∧ . . . ∧ ep) for x ∈ � n .

Lemma. If 1 6 p 6 n and J , K are two linear natural operators such that

J
�

n(e) = K
�

n(e), then J = K.
���������

of Lemma. Since linear natural operators form a vector space, it suffices

to prove that if L is a linear natural operator such that L
�

n(e) = 0 then L = 0. We
will write TA

0 � n for the fibre of TA � n over 0.
Let α ∈ ( � ∪ {0})n.
We prove that L

�
n(eα,i)|T A0

�
n = 0 for every i ∈ {0, . . . , p−1}, where eα,i ∈ sk( � n )

is given by eα,i(x) = (x, (x1)α1 . . . (xi)αie1∧ . . .∧ep) for x ∈ � n . This holds for i = 0,
because eα,0 = e. Assume that i > 1 and the formula holds for i−1. It is well known
that there exist a neighbourhood I of 0 in � and an embedding g : I −→ � such
that g(0) = 0 and Tg(x, 1) = (g(x), 1 + g(x)αi) for every x ∈ I . Then (1) for
f = id

�
i−1 ×g × id

�
n−i , t = eα,i−1 and u = eα,i−1 + eα,i yields the desired formula.

Let eα ∈ sk( � n ) be given by eα(x) = (x, xαe1 ∧ . . . ∧ ep) for x ∈ � n . It
is well known that there are a neighbourhood I of 0 in � n−p+1 and an embed-

ding g : I −→ � n−p+1 such that g(0) = 0 and Tg(x, (1, 0, . . . , 0)) = (g(x), (1 +
(g1(x))αp . . . (gn−p+1(x))αn , 0, . . . , 0)) for every x ∈ I . Then (1) for f = id � p−1 ×g,
t = eα,p−1 and u = eα,p−1 + eα yields L

�
n(eα)|T A0

�
n = 0.

Let β ∈ ( � ∪ {0})n, i1, . . . , ip ∈ {1, . . . , n} be such that i1 < . . . < ip and let

eβ,i1...ip ∈ sk( � n ) be given by eβ,i1...ip(x) = (x, xβei1 ∧ . . .∧ eip) for x ∈ � n . Clearly,
there are τ ∈ Sn such that τ(1) = i1, . . . , τ(p) = ip and α ∈ ( � ∪ {0})n such that

α1 = βτ(1), . . . , αn = βτ(n). Then (1) for f : � n 3 x −→ (xτ−1(1), . . . , xτ−1(n)) ∈ � n ,
t = eα and u = eβ,i1...ip yields L

�
n(eβ,i1...ip)|T A0

�
n = 0.

Obviously, for every t ∈ sk( � n ) and every r ∈ � there is a polynomial q ∈ sk( � n )
such that jr

0t = jr
0q. But we have proved that L

�
n(q)|T A0

�
n = 0. Hence the base-

extending Peetre theorem (see [3]) gives L
�

n(t)|T A0

�
n = 0. This forces L = 0, as is

easy to show, and the lemma is proved. �
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���������
of Theorem. It is seen at once that

(7) H̃G
�

n(e)(X) =
(
X,

1
p!

∑

σ∈Sp

sgnσG ⊗ eσ(1) ⊗ . . .⊗ eσ(p)

)

for every X ∈ An.
Taking f = h id

�
n , where h ∈ � \ {0}, t = e and u = hpe in (1) and letting

h → 0 we obtain L
�

n(e)(X) = L
�

n(e)(0) for every X ∈ An. Therefore there are
Gi1...ip ∈ ⊗p� A for i1, . . . , ip ∈ {1, . . . , n} such that

L
�

n(e)(X) =
(
X,

1
p!
Gi1...ip ⊗ ei1 ⊗ . . .⊗ eip

)

for every X ∈ An.
Taking f = id

�
p ×h id

�
n−p, where h ∈ � \ {0}, t = e and u = e in (1) and letting

h→ 0 we obtain Gi1...ip = 0 whenever there is j ∈ {1, . . . , p} such that ij > p.

Taking f = id � l−1 ×h id
� × id � n−l , where l ∈ {1, . . . , p} and h ∈ � \ {0}, t = e

and u = he in (1) and letting h → 0 we obtain Gi1 ...ip = 0 whenever there are
j, k ∈ {1, . . . , p} such that j 6= k, ij = l and ik = l.
Thus if Gi1...ip 6= 0, then there is σ ∈ Sp such that σ(1) = i1, . . . , σ(p) = ip. Taking

f : � n 3 x −→ (xτ−1(1), . . . , xτ−1(n)) ∈ � n , where τ ∈ Sn is such that τ |{1,...,p} = σ,
t = e and u = sgnσe in (1) we obtain G1...p = sgnσGi1 ...ip . Therefore there is

G ∈ ⊗p� A such that

(8) L
�

n(e)(X) =
(
X,

1
p!

∑

σ∈Sp

sgnσG⊗ eσ(1) ⊗ . . .⊗ eσ(p)

)

for every X ∈ An.

Let i, j ∈ {1, . . . , p} be such that i 6= j. Then (1) for

f : � n 3 x −→
(
x1, . . . , xi−1, xi +

(xj)2

2
, xi+1, . . . , xn

)
∈ � n ,

t = e and u = e yields
⊗p

TTAf(L
�

n(e)(X)) = L
�

n(e)(TAf(X)) for every X ∈ An.
An easy computation shows that

(⊗p
TTAf(L

�
n(e)(X))

)1,...,j−1,i,j+1,...,p

=
1
p!

(Zj,Xj (G)− Zi,Xj (G)),

whereas (L
�

n(e)(TAf(X)))1,...,j−1,i,j+1,...,p = 0. But for every C ∈ A there is X ∈
An such that Xj = C, and so Zi,C(G) = Zj,C(G). This means that G is equivariant.
The lemma now leads to L = H̃G, on account of (7) and (8).

Since the last assertions of the theorem are consequences of (3) and (4), the proof
is complete. �
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The remainder of this paper will be devoted to an example.

Example. Fix non-negative integers r, k. We recall that the Weil algebra � r
k

consists of r-jets at 0 of smooth functions � k −→ � and the addition and multipli-
cation in � r

k are induced by the addition and multiplication in the algebra of such
functions. Our purpose is to find all equivariant tensors for � r

k .

Write |α| = |α1|+ . . .+ |αk| for α ∈ � k and Ir
k = {α ∈ ( � ∪ {0})k : |α| 6 r}. Let

Jα be the r-jet at 0 of � k 3 x −→ xα ∈ � for α ∈ Ir
k . Clearly, every G ∈ ⊗p� A can

be written as ∑

α∈(Ir
k )p

GαJ
α1 ⊗ . . .⊗ Jαp ,

where Gα ∈ � for α ∈ (Ir
k)p are uniquely determined. Let ιi : Ir

k −→ (Ir
k)p for

i ∈ {1, . . . , p} be given by ιi(α)i = α and ιi(α)j = 0 for j ∈ {1, . . . , p} such that
i 6= j and for α ∈ Ir

k . We claim that if G is an equivariant tensor, then

(9) αi + β ∈ Ir
k =⇒ Gα =

{
Gα+ιi(β)−ιj(β), if αj − β ∈ Ir

k

0, if αj − β /∈ Ir
k

for every α ∈ (Ir
k)p, every β ∈ Ir

k and all i, j ∈ {1, . . . , p} such that i 6= j. Indeed,

(9) is the same as (Zi,Jβ (G))α+ιi(β) = (Zj,Jβ (G))α+ιi(β).
We first consider the case k = 1. Write |α| = |α1|+ . . .+ |αp| for α ∈ (Ir

1 )p and

Di =
∑

α∈(Ir
1 )p

|α|=i

Jα1 ⊗ . . .⊗ Jαp

for i ∈ � .
If k = 1 and p > 1, then Di for i ∈ {(p− 1)r, . . . , pr} form a basis of the � -vector

space of equivariant tensors for � r
k . Consequently, the dimension of this space equals

r + 1 and all equivariant tensors are symmetric.

To prove this, observe that if G is an equivariant tensor and α, β ∈ (Ir
1 )p are such

that |α| = |β|, then Gα = Gβ . Indeed, it suffices to use (9) and the induction on

(i, j) ∈ {1, . . . , p}×{0, . . . , r} with respect to the lexicographic order to show that if
α, β ∈ (Ir

1 )p are such that |α| = |β|, j = |βi − αi| and αl = βl for l ∈ {i+ 1, . . . , p},
then Gα = Gβ . Thus G is a linear combination of Di for i ∈ {0, . . . , pr}. But if
i ∈ {0, . . . , (p − 1)r − 1}, then there is α ∈ (Ir

1 )p such that |α| = i, |α1| 6 r − 1
and α2 = 0. Then (9) yields Gα = 0. Thus G is a linear combination of Di for
i ∈ {(p − 1)r, . . . , pr}. On the other hand, Di for every i ∈ {(p − 1)r, . . . , pr} is
an equivariant tensor, because Zj,J(1)(Di) = Di+1 for every j ∈ {1, . . . , p}. This
completes the proof. �
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It is worth pointing out that T � 11 is the tangent bundle functor. Fix an n-

dimensional manifold M and t ∈ sk(M). Writing

t = ti1...ip(q)
∂

∂qi1
∧ . . . ∧ ∂

∂qip

in local coordinates q on M we easily obtain
�
HDp−1M (t) =

∂ti1...ip

∂qj
(q)q̇j ∂

∂q̇i1
∧ . . . ∧ ∂

∂q̇ip

+
p∑

j=1

ti1...ip(q)
∂

∂q̇i1
∧ . . . ∧ ∂

∂q̇ij−1
∧ ∂

∂qij
∧ ∂

∂q̇ij+1
∧ . . . ∧ ∂

∂q̇ip

and �
HDpM (t) = ti1...ip(q)

∂

∂q̇i1
∧ . . . ∧ ∂

∂q̇ip

in the local coordinates (q, q̇) induced by q on TM (cf. [2]).
We now turn to the case k > 2.

If k > 2 and p > 2, then Jα1 ⊗ . . . ⊗ Jαp for α ∈ (Ir
k)p with the property that

|α1| = r, . . ., |αp| = r form a basis of the � -vector space of equivariant tansors
for � r

k . Consequently, the dimensions of this space and its subspaces consisting of

symmetric and skew-symmetric tensors equal
(
r + k − 1
k − 1

)p

,

((
r+k−1

k−1

)
+ p− 1
p

)
,

((
r+k−1

k−1

)

p

)
.

We only need to show that if G is an equivariant tensor and α ∈ (Ir
k)p, i ∈

{1, . . . , p}, are such that |αi| 6 r − 1, then Gα = 0. Fix j ∈ {1, . . . , p} such
that i 6= j and let ε1, . . . , εk be the standard basis of the module � k. Then (9)

and the induction on q ∈ � ∪ {0} show that either αj − qε1, αi − qε2 ∈ Ir
k and

Gα = Gα+q(ιi(ε1)−ιj(ε1)+ιj(ε2)−ιi(ε2)) for every q ∈ � ∪ {0}, which is impossible, or
Gα = 0.
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