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Abstract. The concept of signed domination number of an undirected graph (introduced
by J. E. Dunbar, S. T. Hedetniemi, M.A. Henning and P. J. Slater) is transferred to directed
graphs. Exact values are found for particular types of tournaments. It is proved that
for digraphs with a directed Hamiltonian cycle the signed domination number may be
arbitrarily small.
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In [1], J. E. Dunbar, S. T. Hedetniemi, M.A. Henning and P. J. Slater have intro-
duced the concept of signed domination number of an undirected graph. Here we

transfer this concept to directed graphs (shortly digraphs).

We consider finite digraphs without loops and without pairs of arcs joining the

same pair of vertices and equally directed.

Let D be a finite digraph with the vertex set V (D) and the arc set A(D). Let
|V (D)| = n. For each vertex v ∈ V (D) let N−

D [v] (or shortly N−[v]) be the set
consisting of v and of all vertices of D from which arcs go into v. If f is a mapping
of V (D) onto a set of numbers and S ⊆ V (D), then f(S) =

∑
x∈S

f(x).

Consider a function f : V (D) → {−1, 1}. If f(N−
D [v]) > 1 for each vertex v ∈

V (D), then f is called a signed dominating function (shortly SDF) on D. Denote
w(f) = f(V (D)) and call it the weight of f . The minimum of weights of all SDF

on D is the signed domination number γS(D) of D.
First we state three lemmas.
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Lemma 1. Always γS(D) ≡ n (mod 2).
���	�����

. Let n+ (or n−) be the number of vertices v of D such that f(v) = 1
(or f(v) = −1, respectively). Then n+ + n− = n, n+ − n− = γS(D), therefore
n− γS(D) = 2n− and the assertion follows. �

Lemma 2. Let u be a source of D. Let f be a SDF on D. Then f(u) = 1.
���	�����

. We have N−[u] = {u} and thus f(u) = f(N−[u]) > 1, which implies
f(u) = 1. �

Lemma 3. Let u be a vertex of indegree 1 in D, and let v be the unique vertex

from which an arc goes into u in D. Let f be a SDF on D. Then f(u) = f(v) = 1.
���	�����

. We have N−[u] = {u, v} and thus f(u) + f(v) = f(N−[u]). This is
possible only if f(u) = f(v) = 1. �

These lemmas imply the following assertion.

Theorem 1. Let D be a digraph with n vertices in which the indegrees of vertices

do not exceed 1. Then γS(D) = n.

Corollary. Let Cn (or Pn) be the directed cycle (or directed path, respectively)

with n vertices. Then γS(Cn) = γS(Pn) = n.

Now we turn our attention to tournaments.

We shall consider two particular types of tournaments.
The acyclic tournament AT(n) with n vertices has the vertex set V (AT(n)) =

{u1, u2, . . . , un}. An arc goes from ui into uj if and only if i < j.
Now let n be an odd positive integer. We have n = 2k + 1, where k is a positive

integer. We define the circulant tournament CT(n) with n vertices. The vertex set
of CT(n) is V (CT(n)) = {u0, u1, . . . , un−1}. For each i, the arcs go from ui to the

vertices ui+1, . . . , ui+k, the sums being taken modulo n.

Theorem 2. Let AT(n) for n > 3 be an acyclic tournament. If n is even, then

γS(AT(n)) = 2. If n is odd, then γS(AT(n)) = 1.
���	�����

. We have V (AT(n)) = N−[un]. If f is a SDF on AT(n), then w(f) =
f(V (AT(n)) = f(N−[un]) > 1. Therefore γS(AT(n)) > 1. If n is even, then

γS(AT(n)) must also be even (by Lemma 4) and thus γS(AT(n)) > 2.
In the case when n is even, consider the mapping f : V (AT(n)) → {−1, 1} such

that f(ui) = 1 for 1 6 i 6 1
2n + 1 and f(ui) = −1 for 1

2n + 2 6 i 6 n. Then
for 1 6 i 6 1

2n + 1 we have f(N−[u]) = i > 1 and for 1
2n + 2 6 i 6 n we have
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f(N−[u]) = n + 2− i > 1. The function f is a SDF. We have w(f) = 2. Therefore
γS(AT(n)) 6 2, which implies γS(AT(n)) = 2.
In the case then when n is odd, consider the mapping f : V (AT(n)) → {−1, 1}

such that f(ui) = 1 for 1 6 i 6 1
2 (n + 1) and f(u) = −1 for 1

2 (n + 1) 6 i 6 n. We

have f(N−[ui]) = i > 1 for 1 6 i 6 1
2 (n + 1) and f(N−[ui]) = n + 1 − i > 1 for

1
2 (n+1) 6 i 6 n. The function f is again a SDF. We have then w(f) = 1. Therefore
γS(AT(n)) 6 1, which implies γS(AT(n)) = 1. �

Theorem 3. Let CT(n) for odd n > 3 be a circulant tournament. Then
γS(CT(n)) = 2.
���	�����

. Let f be a SDF on CT(n). If f(x) = 1 for each x ∈ V (CT(n)),
then w(f) = n > 3. If it is not so, then without loss of generality we may
suppose that f(u0) = −1. Consider the sets N−[u0] = {uk+1, . . . , ur−1, u0} and
N−[uk] = {u0, . . . , uk}. As f is a SDF, we have f(N−[u0]) > 1, f(N−[uk]) > 1.
Further N−[u0] ∪N−[uk] = V (CT(n)), N−[u0]∩N−[uk] = {u0}. Therefore w(f) =
f(V (CT(n))) = f(N−[u0]) + f(N−[uk]) − f(u0) = f(N−[u0] + f(N−[uk]) + 1 > 3.
This implies that γS(CT(n)) > 2.
If k is even, then let s = 1

2k− 1. Let V − = {u1, u2, . . . , uS , uk+1, uk+2, . . . , uk+s},
V + = V (CT(n)) − V −. Define the function f such that f(v) = 1 for v ∈ V + and

f(v) = −1 for v ∈ V −. For any vertex v ∈ V (CT(n)) we have |N−[v]| = k + 1,
|N−[v]∩V −| 6 s. Therefore f(N−[v]) > k+1−2s = 3 > 1 and f is a SDF. We have

|V +| = n−2s, |V −| = 2s, w(f) = |V +|−|V −| = n−4s = 3 and thus γS(CT(n)) = 3.
If k is odd, then let t = 1

2 (k − 1). Let V − = {u1, . . . , ut, uk+1, . . . , uk+t−1},
V + = V (CT(n))−V −. Analogously as in the preceding case we define the function f

which is a SDF and w(f) = 3. Therefore again γS(CT(n)) = 3. �

Now we shall show that γS(D) can be arbitrarily small.

Theorem 4. Let q be a positive integer. Then there exists a digraph D with q+8
vertices having a Hamiltonian directed cycle and such that γS(D) 6 −q.
���	�����

. Let V (D) = {u1, u2, u3, u4, v1, v2, . . . , vq+4}. Consider the directed
cycle H such that V (H) = V (D) and the arcs of H are u1u2, u2u3, u3u4, u4v1,
v1v2, . . . , v1+3vq+4, vq+4u1. From the cycle H we construct the digraph D by adding

the edge u4u1 and the edges u2vi, u3vi for i ∈ {1, . . . , q + 4}, and u4vi for i ∈
{2, . . . , q + 4}. Let f : V (D) → {−1, 1} be such that f(ui) = 1 for i ∈ {1, 2, 3, 4}
and f(vi) = −1 for i ∈ {1, . . . , q + 4}. Then f(N−[u1]) = 1, f(N−[u2]) = 2 for
i ∈ {2, 3, 4}, f(N−[v1]) = 2, f(N−[vi]) = 1 for i ∈ {2, . . . , q + 4}. The function f

is a SDF and w(f) = −q. Therefore γS(D) 6 −q. The cycle H is Hamiltonian
in D. �
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The domination number γ(D) may be defined also for digraphs D. A subset

S ⊆ V (D) is called dominating in D if each vertex of D either is in S, or is the
terminal vertex of an arc outgoing from a vertex of S in D. The minimum number
of vertices of a dominating set in D is the domination number γ(D) of D.

Proposition. There are digraphs D with γ(D) < γS(D) and also digraphs D

with γS < γ(D).
���	�����

. The acyclic tournament AT(n) with n even has γ(AT(n)) = 1, be-
cause it has a dominating set {u1}, and γS(AT(n)) = 2, by Theorem 2; therefore
γ(AT(n)) < γS(AT(n)). On the other hand, the digraph D from Theorem 4 has
γ(D) = 2, because it has a dominating set {u2, u4}, and γS(D) = −q, therefore

γS(D) < γ(D). �
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