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Abstract. We give a full characterization of the closed one-codimensional subspaces of c0,
in which every bounded set has a Chebyshev center. It turns out that one can consider
equivalently only finite sets (even only three-point sets) in our case, but not in general. Such
hyperplanes are exactly those which are either proximinal or norm-one complemented.
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In various concrete problems, there is a need to approximate simultaneously a
bounded set A of data in a given metric space (X, d) by a single point of X . One of
the possibilities is to look for a point for which the supremum of its distances from
the points of A is minimal (“least deviation principle”), or geometrically, the center
of a closed ball B of minimal radius such that B ⊃ A. The study of such points
(“Chebyshev centers” or “best simultaneous approximants”) is one of important
subjects in Approximation Theory.
Precisely speaking, a point x0 ∈ X is called a Chebyshev center of a set A whenever

ϕ(x0) = inf ϕ(X), where
ϕ(x) = sup

a∈A
d(x, a).

Chebyshev centers were studied mostly in the case where X is a normed (or Ba-
nach) space with the usual distance d(x, y) = ‖x−y‖. We refer the reader to [5], [6],
[3], [2], [1] for the basic properties and references. For example, Garkavi [5] proved
that each bounded set in X has at most one Chebyshev center if and only if X is
uniformly rotund in every direction. He also gave the first example of nonexistence
of centers: a closed hyperplane X in C[0, 1] and a three-point set A ⊂ X that has no
Chebyshev center in X . While the question about uniqueness is completely solved,
the same cannot be said about the problem of existence. It is known that, in re-
flexive or dual spaces (more generally: in spaces which are norm-one complemented
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in their biduals), as well as in the classical spaces `p, Lp[0, 1] (1 6 p 6 ∞), C(K),
c0, every bounded set has a Chebyshev center. But no satisfactory characterization
is known, and many other problems concerning the existence of Chebyshev centers
remain open.

One of the questions studied by the author was the following: given a Banach
space X in which every finite (or every compact) set has a Chebyshev center, is it
true that every bounded set in X has a Chebyshev center? The answer is negative
in general: a counterexample of the form X = c0(Y ) was given in [8]. The present
paper is a by-product of the author’s looking for such a counterexample. Our results
imply (cf. Theorem 2) that, if X is a 1-codimensional closed subspace of the classical
sequence space c0, such that every three-point set in X has a Chebyshev center,
then already every bounded subset of X has a Chebyshev center. (Observe that
a two-point set {x, y} always has at least one Chebyshev center, namely the point
(x+ y)/2.)
The main idea for the proof of our Theorem 1 has its roots in the above mentioned

example by A. L. Garkavi. His example can be easily modified to obtain the following
example of nonexistence of Chebyshev centers in a hyperplane of c0 (which we state
without proof).

Example. Let f = (fi) ∈ `1 = (c0)∗ have infinite support, f1 = f2 = f3 = 1 and
∞∑

i=4

|fi| = 1. Then the three-point set, whose elements are

(−1, 1, 1, 0, 0, . . .), (1,−1, 1, 0, 0, . . .), (1, 1,−1, 0, 0, . . .),

belongs to f−1(1) and has no Chebyshev center in f−1(1).

Let us start with two technical lemmas and an easy fact.

Lemma 1. Let f = (fi) ∈ `1 be a sequence with infinite support supp f . Suppose
2‖f∞‖ < ‖f‖1. Then there exist three disjoint finite nonempty subsets A1, A2, A3

of supp f such that

min{−α1 + α2 + α3, α1 − α2 + α3, α1 + α2 − α3} > β > 0,

where

αk =
∑

i∈Ak

|fi| (k = 1, 2, 3) and β =
∑

i∈B

|fi|

with B = � \ (A1 ∪A2 ∪ A3).
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���������
. Without any loss of generality we can (and do) suppose that ‖f‖∞ =

|f1|; hence 0 < |f1| <
∞∑

i=2

|fi|. Put

m = max
{
k ∈ � :

k∑

i=1

|fi| <
∞∑

i=k+1

|fi|
}

and observe that maximality of m implies |fm+1| > 0. So we have

m∑

i=1

|fi| < |fm+1|+
∞∑

i=m+2

|fi|,(1)

|fm+1| 6 |f1| <
∞∑

i=2

|fi| 6
m∑

i=1

|fi|+
∞∑

i=m+2

|fi|(2)

and, again by maximality of m,

(3)
∞∑

i=m+2

|fi| 6
m∑

i=1

|fi|+ |fm+1|.

The number

ε :=
1
2

min
{
|fm+1|+

∞∑

i=m+2

|fi| −
m∑

i=1

|fi|,
m∑

i=1

|fi|+
∞∑

i=m+2

|fi| − |fm+1|
}

is greater than 0 by (1), (2). Let n ∈ � be such that
∞∑

i=n+1

|fi| < ε and
n∑

i=m+2

|fi| > 0.

Let us show that the sets

A1 = {1, 2, . . . ,m} ∩ supp f,

A2 = {m+ 1},
A3 = {m+ 2,m+ 3, . . . , n} ∩ supp f

satisfy the required conditions.
First, note that the sets Ak are nonempty disjoint subsets of supp f . Moreover,

α1 =
m∑

i=1

|fi|, α2 = |fm+1|, α3 =
n∑

i=m+2

|fi|, β =
∞∑

i=n+1

|fi|,
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and 0 < β < ε (supp f is infinite!). Using the definition of ε we get 2ε 6 α2 + α3 +
β − α1, which implies

β 6 α2 + α3 − α1 + 2β − 2ε < α2 + α3 − α1.

Similarly, 2ε 6 α1 + α3 + β − α2 implies

β 6 α1 + α3 − α2 + 2β − 2ε < α1 + α3 − α2.

Moreover, (3) is equivalent to α3 + β 6 α1 + α2, hence

β 6 α1 + α2 − α3.

�
The following easy fact is well known and belongs, more or less, to the mathemat-

ical folklore. We present a sketch of its proof for the sake of completeness. (Note
that the equivalence (i) ⇔ (ii) holds in every normed space.) Recall that a subset H
of a metric space is called proximinal if every x ∈ X has a nearest point in H (i.e., a
point y0 ∈ H such that d(x, y0) 6 d(x, y) for every y ∈ H).

Fact 1. Let f = (fi) ∈ `1 = (c0)∗. Then the following assertions are equivalent:
(i) f attains its norm;
(ii) f−1(0) is proximinal;
(iii) f has a finite support supp f = {i : fi 6= 0}.
���������! ���#"$�������

. It is sufficient to give a proof for ‖f‖ = 1.
a) Let us prove (i) ⇔ (ii) for a general normed spaceX (instead of for c0). Suppose

there exists v ∈ X with ‖v‖ = 1 and f(v) = 1. Given x ∈ X , put y0 = x−f(x)v and
observe that y0 ∈ f−1(0) and, for each y ∈ f−1(0), ‖x − y‖ > |f(x− y)| = |f(x)| =
‖x− y0‖. Thus f−1(0) is proximinal.
Now, suppose that f−1(0) is proximinal. Take x ∈ f−1(1) and y0 ∈ f−1(0) such

that ‖x − y0‖ = dist(x, f−1(0)). Putting v0 = x − y0, we have f(v0) = 1 and
‖v0‖ = dist(0, f−1(1)). Denote by U the open unit ball of X and observe that the
definition of ‖f‖ implies that U ∩ f−1(1) = ∅ and tU ∩ f−1(1) 6= ∅ whenever t > 1.
Consequently, ‖v0‖ = dist(0, f−1(1)) = 1 = f(v0).
b) Let us show (i) ⇔ (iii). If supp f is finite then f attains its norm at the point

v ∈ c0 given by v(i) = sgn fi. On the other hand, if there is v ∈ c0 such that

‖v‖ = 1 = f(v), we have
∞∑

i=1

|fi| · |v(i)| =
∞∑

i=1

|fi| since

1 = f(v) =
∞∑

i=1

fiv(i) 6
∞∑

i=1

|fi| · |v(i)| 6
∞∑

i=1

|fi| = 1.

But this, since |fi| · |v(i)| 6 |fi| for all i, implies that |fi| · |v(i)| = |fi| for all i. Since
v ∈ c0, we must have fi = 0 for all sufficiently large i. �
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Lemma 2. Let f = (fi) ∈ `1 = (c0)∗ have an infinite support and let (λi) be a
sequence of nonnegative numbers such that λi → 0. Let ϕ : c0 → % be given by

ϕ(x) = max
i∈ & [λi + |x(i)|].

If y ∈ c0 is such that ϕ(y) > ϕ(0), then there exists z ∈ c0 such that

f(z) = f(y) and ϕ(z) < ϕ(y).

���������
. Denote I = {i ∈ � : λi + |y(i)| = ϕ(y)} and observe that I is finite and

|y(i)| > 0 whenever i ∈ I (since ϕ(y) > ϕ(0) > 0). Put a = max{λi + |y(i)| : i ∈
� \ I}. Since a < ϕ(y), there exists ε > 0 so small that

a+ ε < ϕ(y)− ε and ε < min
i∈I

|y(i)|.

Since f has infinite support, there exists i0 ∈ (supp f) \ I . Put

δ = ε ·min{1, |fi0 |/‖f‖1}

and define

z(i) =





(sgn y(i))(|yi| − δ) if i ∈ I ;

y(i0) +
δ

fi0

∑

j∈I

fj sgn y(j) if i = i0;

y(i) otherwise.

We have

f(z)− f(y) = −δ
∑

i∈I

fi sgn y(i) + fi0

δ

fi0

∑

j∈I

fj sgn y(j) = 0.

Moreover, we have

λi + |z(i)| = λ(i) + |y(i)| − δ = ϕ(y)− δ > ϕ(y)− ε

for i ∈ I , and

λi0 + |z(i0)| 6 λi0 + |yi0 |+
δ

|fi0 |
∑

j∈I

|fj | 6 a+ δ
‖f‖1

|fi0 |
6 a+ ε.

The choice of ε implies that ϕ(z) = ϕ(y)− δ < ϕ(y). �
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As was already mentioned in the introduction of the present paper, the proof of
the following theorem was inspired by the first example of nonexistence of Chebyshev
centers given by Garkavi [5].

Theorem 1. Let f = (fi) ∈ `1 = (c0)∗ be such that supp f is infinite and
2‖f‖∞ < ‖f‖1. Then there exists σ ∈ % and a three-point set S = {u, v, w} ⊂ f−1(σ)
such that S has no Chebyshev center in f−1(σ).
���������

. Let Ak, αk (k = 1, 2, 3), B and β be as in Lemma 1. Put A =
A1 ∪ A2 ∪ A3,

σ = min{−α1 + α2 + α3, α1 − α2 + α3, α1 + α2 − α3},

ξ =
σ + α2 − α3

α1
, η =

σ − α1 + α3

α2
, ζ =

σ + α1 − α2

α3
.

Define u, v, w ∈ c0 by

u(i) =





ξ sgn fi if i ∈ A1,

− sgnfi if i ∈ A2,

sgn fi if i ∈ A3,

0 if i ∈ B;

v(i) =





sgn fi if i ∈ A1,

η sgn fi if i ∈ A2,

− sgn fi if i ∈ A3,

0 if i ∈ B;

w(i) =





− sgn fi if i ∈ A1,

sgn fi if i ∈ A2,

ζ sgn fi if i ∈ A3,

0 if i ∈ B.

Observe that f(u) = ξα1 − α2 + α3 = σ, f(v) = α1 + ηα2 − α3 = σ, f(w) =
−α1 + α2 + ζα3 = σ, and σ > 0.

Claim. ξ, η, ζ ∈ (−1, 1].
���������

. Indeed, since each of αk’s is positive and smaller than the sum of the
other two, we have

−1 <
σ

α1
− 1 =

σ + α2 − (α1 + α2)
α1

< ξ 6 (α1 − α2 + α3) + α2 − α3

α1
= 1,

−1 <
σ

α2
− 1 =

σ − (α2 + α3) + α3

α2
< η 6 (α1 + α2 − α3)− α1 + α3

α2
= 1,

−1 <
σ

α3
− 1 =

σ + α1 − (α1 + α3)
α3

< ζ 6 (−α1 + α2 + α3) + α1 − α3

α3
= 1.

This proves our claim. �
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The claim and the definition of u, v, w imply that

λi := max{u(i), v(i), w(i)} =

{
1 if i ∈ A,
0 if i ∈ B;

and

min{u(i), v(i), w(i)} = −λi (i ∈ � ).

Suppose that y ∈ f−1(σ) is a Chebyshev center for {u, v, w} in f−1(σ). This means
that y minimizes over f−1(σ) the function

ϕ(x) = max{‖x− u‖, ‖x− v‖, ‖x− w‖}
= max

i∈ & max
{
x(i)− u(i), u(i)− x(i), x(i)− v(i), v(i) − x(i), x(i)− w(i),

w(i)− x(i)
}

= max
i∈ & max

{
x(i)−min{u(i), v(i), w(i)},−x(i) + max{u(i), v(i), w(i)}

}

= max
i∈ & [λi + |x(i)|] = max

{
max
i∈A

[1 + |x(i)|],max
i∈B

|x(i)|
}
.

By Lemma 2, ϕ(y) = ϕ(0) = 1.
If |y(i)| > 0 for some i ∈ A, then ϕ(y) > 1 + |y(i)| > 1. Hence we must have

y(i) = 0 for all i ∈ A; consequently, ϕ(y) = ‖y‖∞ = 1. Define f̃ = (f̃i) ∈ `1 by

f̃i =

{
0 if i ∈ A
fi if i ∈ B.

Then f̃ does not attain its norm (by Fact 1) and

σ = f(y) = f̃(y) < ‖f̃‖1 · ‖y‖∞ =
∑

i∈B

|fi| = β 6 σ.

This contradiction completes the proof. �

Some preliminaries are needed before stating the main result of the present paper.

Fact 2 (Cf. [4]). Let f = (fi) ∈ `1 = (c0)∗. Then f−1(0) is norm-one comple-
mented in c0 if and only if 2‖f‖∞ > ‖f‖1.

We will say that a Banach space X admits generalized centers for finite sets if, for
every finite set {a1, . . . , an} ⊂ X and every continuous monotone coercive function
f : [0,+∞)n → % , the function

ψ(x) = f(‖x− a1‖, . . . , ‖x− an‖)
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attains its infimum overX . (Here “monotone”means monotone w.r.t. the coordinate-
wise partial ordering on [0,+∞)n, and “coercive” means that f(ξ) → +∞ as
‖ξ‖∞ → ∞, ξ ∈ [0,+∞)n.) The class of such Banach spaces was called (GC) and
studied in [7].

Fact 3. Let C be either the class of all Banach spaces that admit generalized
centers for finite sets, or the class of all Banach spaces in which each bounded set
has a Chebyshev center. Then
(a) C contains c0 and all finite-dimensional spaces;
(b) C is stable under making arbitrary direct `∞-sums;
(c) C is stable under applying linear projections of norm one.
���������

. (a) See [5] and [7].
(b) This was proved in [7] for generalized centers; for Chebyshev centers of bounded

sets a simple coordinate-wise argument works.
(c) See e.g. [6] for Chebyshev centers; for generalized centers the same simple

argument works (cf. also the proof of Proposition 2.2 in [7]). �

Theorem 2. Let f = (fi) ∈ `1 = (c0)∗, H = f−1(0). Then the following
assertions are equivalent.
(i) supp f is finite or 2‖f‖∞ > ‖f‖1.
(ii) H is proximinal or norm-one complemented.
(iii) H admits generalized centers for finite sets.
(iv) Every bounded subset of H has a Chebyshev center in H .
(v) Every finite subset of H has a Chebyshev center in H .
(vi) Every three-point subset of H has a Chebyshev center in H .
���������

. (i)⇔ (ii) holds by Fact 1 and Fact 2.
Let us prove that (i) implies (iii) and (iv). First, suppose that supp f is finite,

i.e., for some n ∈ � , fi = 0 whenever i > n. Then it is easy to see that H is isometric
with the `∞-sum

Y ⊕∞ c0 where Y =
{
ξ ∈ % n :

n∑

i=1

fiξi = 0
}
.

Then (iii) and (iv) follow from Fact 3(a,b). Second, if H is norm-one complemented
in c0, the properties (iii), (iv) follow from Fact 3(a,c).
The implications [(iii) or (iv)]⇒ (v) ⇒ (vi) are obvious ((iii) implies (v) since the

function ξ 7→ max{ξ1, . . . , ξn} is continuous, monotone and coercive on [0,+∞)n).
The remaining implication (vi) ⇒ (i) follows from Theorem 1: if (i) does not hold,

there exists a three-point set in f−1(σ) without Chebyshev centers in f−1(σ); it
suffices to apply a translation that maps f−1(σ) onto H to show that (vi) does not
hold. �
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Concluding remarks.
(a) We have learned recently that N. V. Zamyatin proved in [9] the following char-
acterization of hyperplanes H ⊂ C(K) in which every bounded subset has a
Chebyshev center (recall that the elements of C(K)∗ can be identified with
signed regular Borel measures on K of bounded variation):
Let K be a compact topological space, µ ∈ C(K)∗, H = µ−1(0). Then the
following assertions are equivalent:
(α) Either H is proximinal and suppµ is extremally disconnected in K, or

2|µ({k})| > ‖µ‖C(K)∗ for some k ∈ K.
(β) Every bounded subset of H has a Chebyshev center in H.
While the methods of [9] are completely different from ours, the condition (α)
presents analogues to conditions (i), (ii) of Theorem 2.

(b) Let us remark that in [8] we have studied (among others) the Banach spaces X
for which every bounded subset of the space c0(X) of all null sequences in X
(with the supremum norm) has a Chebyshev center. An example therein shows
that the conditions (iv) and (v) from Theorem 2 are not equivalent for a general
Banach space H .

References

[1] D. Amir: Best simultaneous approximation (Chebyshev centers). Parametric Opti-
mization and Approximation (Oberwolfach 1983), Internat. Ser. Numer. Math. 72
(B. Brosowski, F. Deutsch, eds.). Birkhauser-Verlag, Basel, 1985, pp. 19–35.

[2] D. Amir and J. Mach: Chebyshev centers in normed spaces. J. Approx. Theory 40
(1984), 364–374.

[3] D. Amir, J. Mach and K. Saatkamp: Existence of Chebyshev centers, best n-nets and
best compact approximants. Trans. Amer. Math. Soc. 271 (1982), 513–524.

[4] J. Blatter and E.W. Cheney: Minimal projections on hyperplanes in sequence spaces.
Ann. Mat. Pura. Appl. 101 (1974), 215–227.

[5] A.L. Garkavi: The best possible net and the best possible cross section of a set in a
normed space. Izv. Akad. Nauk. SSSR 26 (1962), 87–106. (In Russian.)

[6] R.B. Holmes: A Course in Optimization and Best Approximation. Lecture Notes in
Math. 257. Springer-Verlag, 1972.

[7] L. Veselý: Generalized centers of finite sets in Banach spaces. Acta Math. Univ. Come-
nian. 66 (1997), 83–115.

[8] L. Veselý: A Banach space in which all compact sets, but not all bounded sets, admit
Chebyshev centers. Arch. Math. To appear.

[9] V.N. Zamjatin: The Chebyshev center in hyperspaces of continuous functions. Funk-
tsional’nyj Analiz, vol. 12 (A.V. Štraus, ed.). Ul’janovsk. Gos. Ped. Inst., Ul’janovsk,
1979, pp. 56–68. (In Russian.)

Author’s address: Dipartimento di Matematica, Università degli Studi di Milano, Via
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