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Abstract. We show that solutions to some Hamilton-Jacobi Equations associated to the
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Keywords: Hamilton-Jacobi equation, stochastic semilinear equation, invariant measure,
Log-Sobolev inequality, hypercontractivity

MSC 2000 : 60H15

1. Introduction

Let us consider a stochastic evolution equation on separable Hilbert space H :

(1.1)

{
dY (s) =

(
AY (s) + F (Y (s))

)
ds+ dW (s),

Y (0) = x ∈ H.

We assume that A is a generator of a strongly continuous semigroup S = (S(t)) on H

and W is a standard cylindrical Wiener process on H defined on a stochastic basis

(Ω, F , (Ft),�). Under some conditions on S and the nonlinear mapping F : H → H

(see below for details) there exists a unique solution Y (·, x) to (1.1) for each x ∈ H .
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Let Ptϕ(x) = �ϕ
(
Y (t, x)

)
be the transition semigroup of the process Y . Assume

that ν is an invariant measure of this semigroup, that is
∫

H

Ptϕ(x)ν(dx) =
∫

H

ϕ(x)ν(dx), ϕ ∈ Cb(H).

Then the semigroup (Pt) may be extended to a C0-semigroup of contractions on the

space Lp(H, ν) for each p ∈ [1,∞). If the function ϕ is sufficiently regular then the
function u(t, x) = Ptϕ(x) is a solution of the Backward Kolmogorov Equation





∂u

∂t
(t, x) =

1
2
tr

(
QD2u(t, x)

)
+

〈
Ax+ F (x), Du(t, x)

〉
,

u(0, x) = ϕ(x).

Moreover, the generator N of the semigroup (Pt) in Lp(H, ν) is an extension of the
differential operator

N0ϕ(x) =
1
2
tr

(
QD2ϕ(x)

)
+

〈
Ax+ F (x), Dϕ(x)

〉
,

for smooth cylindrical functions, see for example [7], [3], [4], [11]. If the generator N
of (Pt) in Lp(H, ν) satisfies, for p > 1, the Logarithmic Sobolev Inequality

(1.2)
∫

E

ϕp logϕp dν � α(p)
〈
(λ(p) −N)ϕ, ϕp−1〉+ ‖ϕ‖p

p log ‖ϕ‖p
p,

where ‖·‖p stands for the norm in Lp(H, ν) then the semigroup (Pt) has the so-called

hypercontractivity property:

(1.3) ‖Ptϕ‖q(t) � em(t)‖ϕ‖p,

where q(t) > p. It is well known, see for example [1], that this property yields the
existence of the spectral gap for the generator N in L2(H, ν).

The aim of this paper is to show that the analogous hypercontractive estimate
(1.3) holds for solutions to the following Hamilton-Jacobi Equation (HJE):

(1.4)





∂u

∂t
(t, x) =

1
2
tr

(
QD2u(t, x)

)
+

〈
Ax+ F (x), Du(t, x)

〉

−G
(
Q1/2Du(t, x)

)
+ f(x),

u(0, x) = ϕ(x),

where the Hamiltonian G : H → � is specified below. It is well known that equa-

tion (1.4) is related to the problem of optimal control of the stochastic evolution
equation

(1.5)

{
dX(s) =

(
AX(s) + F (X(s))− α(s)

)
ds+ dW (s),

X(t) = x ∈ H, t � s � T,
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where the control α belonging to a set of admissible controls A is an H-valued

process. The cost functional to be minimised is

J(t, x, α) =
∫ T

t

(
f(Xα(s, x)) + g(α(s))

)
ds+ ϕ

(
Xα(T, x)

)
,

where Xα stands for the solution of (1.5) corresponding to the control α. Then the
Hamiltonian G is defined as

(1.6) G(p) = sup
a
{〈p, a〉 − g(a)},

and the optimal cost

u(t, x) = inf
α∈A

�J(t, x, α)

satisfies (under some technical conditions) the HJE (1.4).

We will formulate now the main assumptions of this paper. Let us consider a

linear equation

(1.7)

{
dZ = AZ dt+ dW,

Z(0) = x ∈ H.

Let

Qt =
∫ t

0
S(s)S∗(s) ds.

If tr(Qt) < ∞ for all t > 0, then the process

(1.8) Z(t, x) = S(t)x+
∫ t

0
S(t− s)dW (s), x ∈ H,

defines a solution to (1.7) inH and moreover Z(t, x) ∼ N
(
S(t)x, Qt

)
. We will assume

a stronger condition.

Hypothesis 1.1. We have

tr(Q∞) < ∞.

Let ν be a probability measure on H . If (Pt) is a C0 semigroup in Lp(H, ν) then
the domain of its generator in Lp(H, ν) will be denoted by domp(N).
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Hypothesis 1.2. The function F : H → H is Lipschitz continuous. There exists

a nondegenerate probability measure ν on H such that (Pt) is a strongly continuous
semigroup in Lp(H, ν). Moreover,

∫

H

|x|2ν(dx) < ∞.

Finally we will need assumptions on G and f .

Hypothesis 1.3. G : H → � is Lipschitz and there exists c > 0 such that

G(x) � −c, x ∈ H.

We have ϕ, f ∈ Lp(H, µ). Moreover, ϕ, f, g � 0, where g is conjugate to G (see

(1.6)).

Let us note that G satisfies Hypothesis 1.3 if the admissible controls α take values

in a bounded subset of H . An important case of quadratic Hamiltonian is excluded
by this condition.

In the sequel we denote by Cb(H) the space of bounded continuous functions on H

and C1b (H) stands for the space of bounded continuous functions with bounded and
continuous Fréchet derivatives.

Let Pn be an orthogonal projection in H such that dim im(Pn) = n and im(Pn) ⊂
dom(A∗). We define the space

FC20 (A
∗) = {ϕ ∈ C20 (H) : ϕ = f ◦ Pn, n � 0, f ∈ C20 (�

n )}.

In the notation f ◦ Pn above we identify Pnx with the the vector

(〈x, h1〉, . . . , 〈x, hn〉) ∈ �
n ,

where h1, . . . , hn generate the space im(Pn).
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2. Preliminaries on HJB equation

For ϕ ∈ C1b (H) we denote by Dϕ the Fréchet derivative of ϕ. Then

‖Dϕ‖p
p =

∫

H

|Dϕ(x)|pν(dx) < ∞.

Note that we use the same notation for the norms in space Lp(H, ν) of real-valued

functions and in the space Lp(H, ν;H) of vector-valued functions.

Hypothesis 2.1. The operator
(
D, C1b (H)

)
is closable in Lp(H, ν).

Let W 1,p(H, ν) be the Sobolev space defined as the closure of C1b (H) in the norm

‖ϕ‖1,p =
(
‖ϕ‖p

p + ‖Dϕ‖p
p

)1/p
.

If Hypothesis 2.1 is satisfied then W 1,p(H, ν) is a continuously imbedded subspace
of Lp(H, ν).

A solution to (1.4) is defined as a function u ∈ W 1,p(H, µ) such that

(2.1) u(t, ϕ) = Ptϕ+
∫ t

0
Pt−s

(
f −G

(
Du(s, ϕ)

))
ds.

In [2] and [11] this equation was studied in the spaceCb(H). If ϕ and f are continuous

functions of polynomial growth then the solution to (2.1) exists by a result in [10].
The existence and uniqueness of solutions for ϕ, f ∈ L2(H, ν) in case of degenerate

noise was proved in [9] under the assumption that ν is an invariant measure for the
system (1.1).

Theorem 2.2. Assume Hypotheses 1.1, 1.2, 1.3 and 2.1. Then for each p ∈
(1,∞) there exists a unique solution to equation (2.1).

�����. Under the present assumptions the proof is rather standard so it is only
sketched here. Note first that the law of the process Y is absolutely continuous with

respect to the Gaussian law of the process Z. Therefore, by [13] the mapping F is
ν-a.s. Gateaux differentiable and DF ∈ L∞(H, ν). Next, by the result in [8] the

function Ptϕ is Gateaux differentiable on H and the Bismut-Elworthy formula holds:
for ϕ ∈ Cb(H)

(2.2) 〈DPtϕ(x), h〉 =
1
t
�

(
ϕ
(
Y (t, x)

) ∫ t

0
〈ζh(s, x), dW (s)〉

)
,
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where ζ(t, x) = DY (t, x) is well defined and for any h ∈ H the process ζh(t, x) =

ζ(t, x)h satisfies an equation




dζh

dt
(t, x) =

(
A+DF

(
Y (t, x)

))
ζh(t, x),

ζ(0, x) = h.

It is easy to see that (2.2) yields

‖DPtϕ‖p � c√
t
‖ϕ‖p, t � T,

first for ϕ ∈ Cb(H) and then for ϕ ∈ Lp(H, ν) by approximations. Next, let us define

an operator
K : C

(
0, T ;W 1,p(H, ν)

)
→ C

(
0, T ;W 1,p(H, ν)

)

by the formula

K v(t) = Ptϕ+
∫ t

0
Pt−s

(
f −G(Dv(s))

)
ds.

It easy to check that K is a strict contraction for T small enough and therefore the
existence of a unique solution (2.1) follows from the Banach Fixed Point Theorem.

�

We will formulate two rather standard lemmas which will be useful in the sequel.

Lemma 2.3.
(a) For each ϕ ∈ FC20 (A

∗) we have ϕ ∈ domp(N) and

(2.3) Nϕ(x) =
1
2
tr

(
QD2ϕ(x)

)
+ 〈x, A∗Dϕ(x)〉 + 〈F (x), Dϕ(x)〉.

(b) The space FC20 (A
∗) is dense in Lp(H, ν) for each p ∈ [1,∞). Moreover, if

ϕ ∈ Lp(H, ν) and ϕ � 0 then there is a sequence (ϕn) ⊂ FC20 (A
∗) such that

ϕn → ϕ in Lp(H, ν) and ϕn � 0 for all n � 1.

Lemma 2.4. Let (fn), (Gn), (ϕn) ⊂ C2b (H) ∩ domp(N) be such that fn → f ,

Gn → G and ϕn → ϕ in Lp(H, ν) and let un be the corresponding solution to (2.1).

Then the following holds.

(a) For each n � 1 and t > 0 we have un(t) ∈ domp(N), the function t → un(t) is

in C1(0, T, H) and

(2.4)





dun(t)
dt

= Nun(t) + fn −Gn

(
Dun(t)

)
,

un(0) = ϕn.
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(b) We have

lim
n→∞

sup
t�T

‖un − u‖1,p = 0.

3. Hypercontractivity

Hypothesis 3.1. The Logarithmic Sobolev Inequality holds for the generator N
in Lp(H, ν), p > 1, that is, for each p ∈ (1,∞) there exist α > 0 and λ � 0 such that
for all ϕ ∈ domp(N), with ϕ > 0,

(3.1)
∫

E

ϕp logϕp dν � α(p)〈(λ(p) −N)ϕ, ϕp−1〉+ ‖ϕ‖p
p log ‖ϕ‖p

p,

ν-a.s., where

(3.2) α(p) =
p2

4(p− 1)α, λ(p) =
4(p− 1)

p2
λ.

Theorem 3.2. Assume that Hypotheses 1.1, 1.2, 1.3 and 3.1 hold. If λ > 0 then

(3.3) ‖u(t, ϕ)‖p(t) � eλαt/p‖ϕ‖p +
p

λα
(eλαt/p − 1)‖f + c‖p,

where

(3.4) p(t) = 1 + (p− 1)e4t/α.

If λ = 0 then

(3.5) ‖u(t, ϕ)‖p(t) � ‖ϕ‖p + t‖f + c‖p.

�����. Assume first that f , G and ϕ satisfy the assumptions of Lemma 2.4,

hence (2.4) holds with un replaced by u. We start with an argument which is well
known in the theory of the Logarithmic Sobolev Inequality for diffusions, see for

example [12] or [1]. Let

F (t) = ‖u(t, ϕ)‖p(t) =

(∫

H

(
u(t, ϕ)

)p(t)
dν

)1/p(t)

.
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Then

d
dt

(
p(t) logF (t)

)
= p′(t) logF (t) + p(t)

F ′(t)
F (t)

=
d
dt
log

(∫

H

(
u(t, ϕ)

)p(t)
dν

)

=
1

(F (t))p(t)

∫

H

∂

∂t

(
(u(t, ϕ))p(t)

)
dν.

Hence,

p′(t)(F (t))p(t) logF (t) + p(t) (F (t))p(t)−1 F ′(t)

=
∫

H

(
u(t, ϕ)

)p(t)
(

p′(t) log u(t, ϕ) + p(t)
1

u(t, ϕ)
∂

∂t
u(t, ϕ)

)
dν

=
∫

H

(
u(t, ϕ)

)p(t)−1
(

p′(t)u(t, ϕ) log u(t, ϕ) + p(t)
∂

∂t
u(t, ϕ)

)
dν.

Therefore,

p2(t)(F (t))p(t)−1F ′(t)

= p′(t)

(∫

H

(
u(t, ϕ)

)p(t)
log

(
u(t, ϕ)

)p(t)
dν − (F (t))p(t) log(F (t))p(t)

)

+ p2(t)
∫

H

(
u(t, ϕ)

)p(t)−1 ∂

∂t
u(t, ϕ) dν.

Then, taking (2.4) into account we obtain

p2(t)(F (t))p(t)−1F ′(t)

= p′(t)

(∫

H

(
u(t, ϕ)

)p(t)
log

(
u(t, ϕ)

)p(t)
dν − (F (t))p(t) log(F (t))p(t)

)

+ p2(t)
∫

H

(
u(t, ϕ)

)p(t)−1(
f −G

(
Du(t, ϕ)

))
dν

+ p2(t)
∫

H

(
u(t, ϕ)

)p(t)−1
Nu(t, ϕ) dν.

Since (3.1) yields

p2(t)(F (t))p(t)−1F ′(t) � − p′(t)(F (t))p(t) log
(
F (t)p(t)

)

+ p′(t)
(
α(p(t))

〈
(λ(p(t)) −N)u(t, ϕ),

(
u(t, ϕ)

)p(t)−1〉

+ ‖u(t, ϕ)‖p(t)
p(t) log ‖u(t, ϕ)‖

p(t)
p(t)

)

+ p2(t)
∫

H

(
u(t, ϕ)

)p(t)−1
(f + c) dν

+ p2(t)
∫

H

(
u(t, ϕ)

)p(t)−1
Nu(t, ϕ) dν,
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we find that

p2(t)(F (t))p(t)−1F ′(t) �
(
p2(t)− p′(t)α(p(t))

) ∫

H

(
u(t, ϕ)

)p(t)−1
Nu(t, ϕ) dν

+ p′(t)α(p(t))λ(p(t))‖u(t, ϕ)‖p(t)
p(t)

+ p2(t)
∫

H

(
u(t, ϕ)

)p(t)−1
(f + c) dν.

It follows from Hypothesis (3.1) that

p2(t)− p′(t)α(p(t)) � 0

and since 〈ϕp−1, Lϕ〉 � 0 we obtain

p2(t)(F (t))p(t)−1F ′(t) � p′(t)α(p(t))λ(p(t))‖u(t, ϕ)‖p(t)
p(t)

+ p2(t)
∫

H

(
u(t, ϕ)

)p(t)−1
(f + c) dν.

Taking into account that

∣∣∣∣
∫

H

(
u(t, ϕ)

)p(t)−1
(f + c) dν

∣∣∣∣ � ‖u(t, ϕ)‖(p−1)/p
p ‖f + c‖p,

we find that

F ′(t) � p′(t)α(p(t))λ(p(t))
p2(t)

F (t) + ‖f + c‖p.

By (3.2) and (3.4) ∫ t

0

p′(s)α(p(s))λ(p(s))
p2(t)

� λα

p
,

and the Gronwall Inequality yields

F (t) � eλαt/pF (0) +
p

λα
(eλαt/p − 1)‖f + c‖p,

which in turn implies (3.3). For arbitrary ϕ, G and f (3.3) follows from Lemma 2.4.
The last part of the theorem is obtained by an obvious modification of the above

argument. �

Example 3.3. Let F = 0 and assume that Hypothesis 1.1 is satisfied. Then
ν = N(0, Q∞) is the unique invariant measure for (Pt). Since ker(Q∞) = {0} we
find that ν is nondegenerate and clearly

∫

H

|x|pν(dx) < ∞,
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for all p � 0. By the result in [5] the Logarithmic Sobolev Inequality holds for (Pt)

with λ = 0, and α = α0, where α0 is the smallest c > 0 such that

∫ ∞

0
|S∗(t)x|2 dt � c|x|2, x ∈ H.

It follows that

‖u(t, ϕ)‖p(t) � ‖ϕ‖p + t‖f + c‖p,

where

p(t) = 1 + (p− 1)e4t/α.

Example 3.4. Let

β = sup
x∈H

|F (x)| < ∞,

and assume that Hypothesis 1.1 is satisfied. Similarly as in the previous example we

will assume that ν = N(0, Q∞). By the result in [3] for any ε ∈ (0, 1) the Logarithmic
Sobolev Inequality holds for (Pt) with

α =
α0
1− ε

and λ =
β2

2
1
ε
.

Hence (3.1) holds with these constants. Let us note that invoking [4] or [3] we can

show in this case that (3.1) is satisfied for any bounded Borel function F : H → H .

Example 3.5. Assume that Hypotheses 1.1 and 1.3 hold and moreover, for a
certain ω > 0

‖S(t)‖ � e−ωt,

and F − k is m-dissipative for a certain k ∈ (0, ω). Then by the results in [7] there
exists a unique invariant measure ν for equation (1.1) and if ν is nondegenerate then

Hypothesis 1.2 is satisfied as well. Using similar arguments as in [6] one may show
that Hypothesis 2.1 is satisfied and the Logarithmic Sobolev Inequality holds for the

generator N of the semigroup (Pt) in Lp(H, ν) with λ = 0 and α = ω − k. Hence
(3.1) holds.
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