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Abstract. Vector-valued pseudo almost periodic functions are defined and their properties
are investigated. The vector-valued functions contain many known functions as special
cases. A unique decomposition theorem is given to show that a vector-valued pseudo almost
periodic function is a sum of an almost periodic function and an ergodic perturbation.
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In [13, 14], we defined and in.« tigated the space of numerical pseudo almost pe-
riodic functions, which is a new generalization of the almost peridic functions; as for
the space of almost periodic functions and some of its generalizations, pseudo almost,
periodic functions have many applications in the theory of differential equations. In
this paper, we deal with vector-valued pseudo almost periodic functions.

Throughout this paper, X denotes a Banach space and J, stands for [a,c0) when
a € R and for R when a = —o0; C(J,, X) denotes the space of all bounded continuous
functions from J, to X. Also, m denotes Lebesgue measure on R.

Definition 1. A subset P of J, is said to be relatively dense in J, if there exists
a number [ > 0 such that

tt+lNP#0 (t € Ja)-

Definition 2. A closed subset C of J, is said to be an ergodic zero set in J, if
m(CNla,t])/(t—a) = 0ast — oo (m(CN[-t,t])/2t = 0 as t = oo, when a = —0c0).

Since tgm m(C N[a,t])/(t —a) = tli}m m(C N[a,t])/t for a € R, we will use the
(o o) oo
latter limit.
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Proposition 3. Let C be an ergodic zero set in J,. Then for any 6 > 0 and
L > 0, there exists an interval (u,v) C J, with the properties that v — u > L and

m(C N (u,v)) < 4.

Proof. If such a (u,v) does not exist, one sees readily that lim tinf m(C N
—00
[a,t])/t > é/2L (lim ti_IBf m(C N [—t,t])/2t > 6/2L when a = —0). O
(e ]

Proposition 4. Let P be relatively dense in J, and let C be an ergodic zero set
in Jo. Then for any given interval [c,d] C R and § > 0, there exist (u,v) C J, and
T € P such that

le,d] + 7 C (u,v),

and
m(C N (u,v)) < 6.

Proof. Let! > 0be the number for P as in Definition 1 and let L = + (d — ¢).
By Proposition 3, there exists an interval (u,v) C J, such that m(CN(u,v)) < § and
L < v—u. Since we can assume that u—c € J,, we can choose 7 € [u—c,u—c+I{]NP.
If t € [c,d],

u<c+7TLt+7<d+7<d+u—c+l<v,

that is, [c,d] + T C (u,v). O

Definition 5. A function f € C(J,, X) is said to be pseudo almost periodic if for
each € > 0, there are a number § > 0, a relatively dense subset P(e) of J,, and an
ergodic zero subset C¢ of J, such that

(1) If@®) - ft+7)l<e (T €Pe) tit+7€]a\Ce),
and
(2) IF@E) - f)l<e  (¢,t" €T\ Ce, |t' = "] <9).

PAP(J,, X) will denote the set of all pseudo almost periodic functions from J, to
X and PAPy(Ja, X) is defined to be the set of all the functions f € C(Jq, X) with
the property that 1/t fat [|f(z)||dz — O ast — oo (1/2¢ fﬁt | f(z)||dz — 0 ast — oo,
when a = —00).
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Remarks 6. Under some restrictions on a and C, in Definition 5, the functions
defined there reduce to familar ones which have been extensively investigated. For
example,

(1) when a = —o0, so J, = R, and C. = 0, PAP(R, X) = AP(R, X), the space
of almost periodic functions [1, 3, 4, 5, 8].

(2) when @ = 0 and C. = 0, PAP(Jo,C) = SAP(Jo), the space of strongly
almost periodic functions [2, 6].

(3) when a = 0 and C. is bounded, PAP(Jo,C) = AP(Jo), the space of almost
periodic functions [2, 6].

(4) when a € R and C. is bounded, PAP(J., X) = AAP(J,, X), the space of
asymptotically almost periodic functions [10, 11, 12].

In all the cases mentioned in Remarks 6, (2) in Definition 5 is a consequence of
(1). However, we will show in Example 14 that (2) is independent of (1).
The proofs of the following two propositions are straightforward, we omit them.

Proposition 7. A function ¢ € C(J,,X) is in PAPy(Ja, X) if and only if, for
€ >0, the set Ce = {t € J,: ||l(t)|| > €} is an ergodic zero set in J,.

Proposition 8. Let C;, i =1,2,...,n, be ergodic zero sets. Then C = |J C; is
=1
also an ergodic zero set in J,.

Let g € C(R, X) and let € > 0. Set
Ple)={reR:|g(t) —g(t+71)|| <e forallte R}.

Then, from Remark 6 (1), g € AP(R, X) if and only if P(e) is relatively dense in R.

Ifge AP(R,X) and ¢ € PAPy(Ja, X), set f = gIJ“ +¢. Then f € PAP(J,, X).
For, the almost periodicity of g implies that there is a relatively dense subset
P(g/3) C R such that

lo@®) —gt+l <3 (teR, e P(e/3).

The uniform continuity of g [5, Theorem 6.2] implies that there is a number § > 0
such that '

€
lg(®) =gl <3 (¢ € R, |t' =17 <4).

Set
€
Ce = {teda: le®ll > 5 };
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by Proposition 7, C. is an ergodic zero set of J,. Now it is easy to show that f
satisfies Definition 5.

The next theorem shows the converse: any function f € PAP(J,,X) has a unique
decomposition like this. As in [13], we will call g the almost periodic component and
@ the ergodic perturbation respectively of f. Before stating the theorem, we need
the following lemmas.

Lemma 9. Let P be relatively dense in J, and let C be an ergodic zero set in
Jo. Foreacht € P,set B ={teR:t+7€ CU(R\J,)} (Br={teR:t+7€C}
when a = —00) and

(3) B= () B..
TEP
Then m(B) = 0.

Proof. To show that m(B) = 0, it suffices to show that for any interval
[c,d] € R and 6 > 0, m([c,d] N B) < 4. Note that ¢t € R\ B if and only if there is a
7 € P such that t + 7 € J, \ C. By Proposition 4, there exist (u,v) C J, and 7 € P
such that ’

[c,d] + 7 C (u,v),

and
m(C N (u,v)) < 6.

This means that m([c,d] N B) <é. a

Lemma 10. Let P be relatively dense in J,, let C be an ergodic zero set in
Jo, and let t; € R, i = 1,2,...,n. Then for any 6 > 0, there exist a T € P and a
At € [0,6) such that t; + At+ 7€ J.\C,i=1,2,...,n.

Proof. Suppose that t; < t2 < ... < t,. Consider the interval [t;,t, + 9.
Proposition 4 shows that there exist an interval (u,v) C J, and a 7 € P such that
(t1,tn + 8] + 7 C (u,v) and m((u,v) NC) < é/n. Set

F={0<t<é: t;+t+717€C},

and

Since m(F;) < m((u,v)NC),i=1,2,...,n, m(F) < 4. Therefore [0,5) \ F # 0. We
can choose At € [0,6) \ F as required. a
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We are now going to prove the main result of the paper. Since the result for
R = J_o is a simple corollary of that for J,, a € R (see Remark 12 (3)), we will
discuss only the latter.

Theorem 11. A function f € C(J,,X) is pseudo almost periodic if and only if
there is a unique function g € AP(R, X) such that f — g]J € PAPy(Ja, X).

Proof. We only need to show the only if part.

Choose a sequence of positive numbers {e,} decreasing to zero. Let 8, P(e,/7)
and C, be for &, as in Definition 5. For P(e,/7) and C,, we have B, C R from
(3) of Lemma 9 with m(B,,) = 0. Without loss of generality, we may assume that
Cn C Cpy4 for all n € N since we can replace Cr41 by Cp U Chy1, which still
satisfies Definitions 2 and 5. Set Q(e,) = P(en/T)UP'(e,/7), where P'(e,/7) = {7:
—7 € P(en/7)}. Q(en) is relatively dense in R.

In the proof of Lemma 9, we pointed out that for each ¢t € R \ B, we can choose
a Tn,t € P(€,/7) such that t + 7, € J, \ Cy. Define a function f, on R\ B, by

(4) fa(t) = f(t+ 7).
fn is well-defined on R\ B,.
Set
B= ] B..
n=1

Since m(B,) =0,n=1,2,...,m(B) =0.
We will show that the sequence {f,} converges uniformly to a function g €
AP(R,X) on R\ B. First of all, we show that each f, satisfies

(5) | fn(t) = fa(t + 7)I| < €n, (T €Q(en), tit+7 € R\ By)
and
(6) Ifn() = fa@) <en,  (t',t" € R\ Ba, |t' —t"| < én).

We show (6) first. According to (4),

(7) Ifa(t) = FulE = I + 7)) = FE" + Tl

where t' + T ¢, t + Th € Jo \ Cn. Lemma 10, along with the facts that C,, is
closed and f is continuous at t' + 7, ¢, t" + T ¢ € Jo \ Cn, implies that there are a
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T € P(e,/7) and At € [0, 6,,) such that

'+ Ty + AL+ 7, " + Ty + At + 1,
"+ At T + At 4T
'+ 1oy + AL "+ T + ALE T, \ Ce

and

If(t' 4+ Tne) = F(E + Tnp + AL)|| < en/T,

8)
M@ + Tpr) — F(E" + Tnpr + Ab)|| < €n/7.

It follows from (1), (2) and (8) that

If(E + o) = F(E" + Toen)|

S+ Tne) = O + o + Al
+NfE + T + AL) = f(¢' + Top + At +7)]|
I fE + Tnp + At +7) = f(t" + Tp + At + 7))

) N+ T + At +7) = f(t" + At +7)]|

+F@E" + At +7) = f(" + o + At +7)||
F I f (" + Tagr + At +7) = f(" + T + AL)]|
FNFE + T + AL) = FOE" + Tnen) |

< E&n.

Similarly, we can show (5) in the case that 7 € P(e,/7) and t, t + 7 € R\ B,.
If r € P'(ep/7) and t,t+7 € R\B,,set T =t+7and 7’ = —7. Then 7' € P(e,/7)
and t =T + 7'. Therefore

1fa(t) = fa(t + Dl = [1fa(T) = fo(T + 7| < €n.

Now we show that the sequence {f,} converges uniformly on R\ B. In fact, for
t € R\ B, by (4) fm(t) = f(t+7m,t) and fo(t) = f(t+ Tnt), where t+Tm t € Jo \ Cm
and t + 7pt € Jo \ Cn. Say, m > n, so Cr, D Cp, and J, \ Cr, C Jo \ Crn. Note that
€n > €m. In (9), replace t', ¢’ by t, Th ¢ and 7, by T and 7, respectively, and
€n by €m, and choose 7 € P(e,,/7); we get

1 fm(t) = fu (O = Nf(E + Tm,e) — f(E+ )l
(10) dep, 3en
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Thus there is a function g on R\ B such that f, — g uniformly on R\ B as n = co.
For € > 0, we choose jo such that €, < /5 and

(11) lg(®) - fi®Il <z (tER\B).

Now we show three assertions.
(i) If a sequence {t,} C R\ B is Cauchy, so is {g(¢.)}. For, by (6) and (11)

llg(tn) — g(Etm)Il < 19(tn) = Fio (tn)ll + 1 Fio (n) = Fio (tm)II
+ ”fjo(tm) —g(tm)|l <e.

This implies that g is continuous on R \ B and extends uniquely to R by continuity.
(if) g € AP(R, X). By (5) and (11) one can similarly show that, for all t € R and
TE Q(E.‘io),

llg(t) — gt + )l
< llg(t) — gt + At + [lg(t + At) — £, (¢ + At)||
+ 1 fio(t + AL) = fi (¢ + At + 7| + [ f5o (¢ + At +7) — g(t + At +7)||
+ gt + At +7) — gt +7)| <e,

where, as before, a small number At > 0 is chosen such that t+At, t+At+7 € R\ B,
llg(t)—g(t+At)|| < €/5, and ||g(t+7)—g(t+At+7)|| < e/5. Since Q(ej,) is relatively
dense in R, g € AP(R, X).

(i) f - g|; € PAPo(Ja, X). In fact, if z € Ja \ (Cj, U B), then by (1), (4) and
(11)

() — g(@)Il < lIf() = fio @ + [ Fso (z) — ()|

= £(z) = f(z + Tjo,2) |l + [ fjo (@) — g()]
<e.

Set Mo = sup ||f(s) — g(s)], it follows from the inequality above that when ¢ is
€l

scda
sufficiently large

i [ -—s@ies<e-aes [ i) -o@lae]

< ={(t — a)e + Mym(Cj, UBN[a,1])} < 2,

ol e B

because m(Cj, N[a,t])/t = 0 as t - oo and m(B) = 0.
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Finally, the decomposition is unique. Note that, for ¢ € AP(R, X), g| 5, €
PAPo o, X) & ||g];, ()|| € PAPo(Ja,C) & lg()ll € PAPo(R) ¢ g = 0, where
llg()|| is the function t € R — ||g(t)||. Therefore if there are two functions g,
92 € AP(R, X) such that f — g:|; € PAPo(Ja, X), i = 1,2, then gi|; —gaf; €
PAPy(Ja, X). So g1 = g2.

The proof is complete. O

5.

As a consequence of Theorem 11, we have
PAP(J., X) = AP(R, X) ® PAPy(J,, X).

In case X = C, we will omit X from our notation and write, for example, PAP(J,)
for PAP(Ja, X).

Remarks 12. (1) and (2) are known decomposition theorems; we have them
as corollaries of Theorem 11.

(1) For afunction f € AP(Jo) (as in Remark 6 (3)), it is known that f = 9|Jo +,
where g € AP(R) and ¢: J, = C is continuous and has limit of zero when
t — oo; see, for example, (2, 4.3.14].

(2) For a function f € AAP(J,, X) (as in Remark 6 (4)), it is shown in [10,
Theorem 3.4] and [12] that f = g|Ju + ¢, where ¢ € AP(R,X) and ¢:
J. = X is continuous and vanishes at oco.

(3) When the functions of (1) and (2) in Remarks 6 are scalar-valued, there is
no essential difference between them because by Theorem 11 each function
of type (2) has a unique extension a function of type (1).

Remark 13. Let WRC(Jo, X) be the space of vector-valued weakly almost
periodic functions with totally bounded ranges. It follows from [7, Theorem 4.17]
and [9, Theorem 7] that f is in WRC(Jo, X) if and only if f = g] j, T % where
g € AP(R,X) and ¢ € WRCy(Jo, X), the space of ‘flight vectors’, those members
of WRC(Jo, X) that have 0 in the weak closure of the set of translates. With a
proof similar to that of Corollary 4.19 in [7], one can show that WRCy(Jo, X) C
PAPy(Jo, X). Thus, WRC(Jo, X) C PAP(Jo, X).

Now we give an example to show that (2) is independent of (1) in Definition 5.

Example 14. For n > 4, define a function f on [n,n + 1) as follows:

— 1B (- ) + 1, te€nn+1i),

50 —(t—n)+1/2, tem+in+1),
0, te[n+%,n+1—n#“),
(n+1)[t—(n+1- 25 teln+1-r,n+1).
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The graph of the function f in each interval [n,n + 1) consists of four segments, and
f:[4,00) = [0,1] is continuous. For each € > 0, set P(¢) = {n: n = 4,5,...} and

Ce = [4,4+1/4U { G [n—=1/n,n+ 1/n]}; then the function f satisfies all the
n=5

conditions in Defiuition 5 except (2) since
1
(12) lim f(n+1/n)= =, while f(n—-1/n)=0, n=35,6,....
n—00 2

(12) also shows that the function f can not have a decomposition as in Theorem 11.

The following theorem comes directly from Definition 5
Theorem 15. PAP(J,, X) is a Banach space.

Theorem 16. Let f; € PAP(J.,X),i=1,2,...,n. For each € > 0, there are a
d > 0, a relatively dense subset P(e) of J,, and an ergodic zero subset C, of J, such
that fori =1,2,...,n, '

(13) Wfi(t) = fit+ )l <e (T €P(e), t,t+7€la\Ce),
and
(14) I£:() = @I <= (" €la\Ce, |t' = t"] <9).

Proof. We know from Theorem 11 that f; = gilj + ¢;, where g; € AP(R, X)
and ¢; € PAPy(Ja,X), i = 1,2,...,n. Therefore there exists a relatively dense
subset P(g) of J, from [5, Proof of Theorem 6.9] such that for: =1,2,...,n

llg:(t) —gs(t + 1)l <e/3  (tE€R, 7€ Pe)).

Since an almost periodic function is uniformly continuous on R [5, Theorem 6.2],
there exists a § > 0 such that

llg:(t") — g:(¢")|| < €/3 (i=1,2,...,n, |t' —t"] < ).

Set C; = {t € Ja: ||lp:i(t)|| 2 €/3},i=1,2,...,n and

Cg = C,'.

>

i=1

By Propositions 7 and 8, C; is an ergodic zero set in J,. The proof is finished. O
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