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ON BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF LINEAR 

FUNCTIONAL DIFFERENTIAL EQUATIONS 

IVAN KIGURADZE, Tbilisi, and BEDRICH PUZA,1 Brno 

(Received March 24, 1995) 

Dedicated to Professor Jaroslav Kurzweil on the occasion of his 70th birthday 

INTRODUCTION 

Consider the system of functional differential equations 

(0.1) i £ ^ ) = p ( a ; ) ( t ) + g W 

with the boundary condition 

(0.2) l(x) = Co, 

where p: C(I\ (Rn) -•» L(I\ VT) and /: C(I\ W1) -> IRn are linear bounded operators, 
q e L(I\ (Rn), I = [a, b] and c0 G IRn. The condition (0.2) includes, in particular, the 
initial condition 

(0.3) x(t0) = Co, 

where to € I, and the periodic boundary condition 

(0.4) x(b) - x(a) = c0. 

By a solution of (0.1), (0.2) we understand an absolutely continuous vector function 
x: I —> IRn which satisfies (0.1) a. e. on I and verifies (0.2). 

1 Supported by Grant 201/93/0452 of the Grant Agency of the Czech Republic (Praha) 
and by Grant 0953/1994 of the Development Fund of Czech Universities. 
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The problems of existence of a solution of the differential system 

(0.5) Mil = P{t)x{T{t)) + qo{t) 

satisfying one of the conditions 

(0.6) x(t) = u(t) for t £ J, l(x) = c0, 

(0.7) x(t)=u(t) f o r £ £ J , x(t0)=c0, 

(0.8) x(t)=u(t) f o r*£ I , x(b) - x(a) = c0, 

where P G L(I; R n X n ) , q0 G L(J; IRn), r : J -> R is a measurable function and u: 

R -> (Rn is a continuous and bounded vector function,2 are reduced to the problems 
(0.1), (O.fc) (k = 2,3,4). To see this, set 

{ a for T(t) < a, 

T(t) for a ^ T(t) ^ b, 

b for T(t) > b, 

(0.10) p(x)(t)=Xj(r(t))P(t)x(T0(t)) 

and 

(O.H) «(*) = (1 - Xl(T(t)))P(tMT(t)) + q0(t), 

where Xj 1S the characteristic function of the interval I. 
If p(x)(t) = P(t)x(t), the problem (0.1), (0.2) and analogous problems for systems 

of nonlinear ordinary differential equations have been studied in detail [2-5, 9, 11, 
12, 17-19, 21-24]. Foundations of the theory of general boundary value problems 
for functional-differential equations, in particular of the problem (0.1), (0.2), were 
laid in monographs by 5. Schwabik, M. Tvrdy, O. Vejvoda [19] and N. V. Azbelev, 
V. P. Maksimov, L. F. Rakhmatullina [1]. Similar problems are also considered in [2, 
6, 7, 20]. 

In spite of a large number of papers devoted to problems of the type (0.1), (0.2) 
(see e.g. references in [1, 2, 19]), only a few efficient sufficient conditions for unique 
solvability of this problem are known at present. Here we try to fill this gap in a 
certain way. 

2 If r ( t ) G I for almost all t G I, the condition x(t) = a(t) for t £ I is to be dropped. 
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In Section 1 of the present paper we give necessary and sufficient conditions for 
unique solvability of the problem (0.1), (0.2) and prove also the J. Kurzweil - Z. Vorel 
[14, 15, 22] and Z. Opial [17] type theorems concerning correctness of this problem. 

These general results are applied in Section 2 to the problem (0.5), (0.6). 
Throughout this paper the following notation is used: 
I = [a,6], R = ]-oo, oo[, R+ = [0, oo[, 
(Rn—the space of n dimensional column vectors x = (xi)^=1 with elements Xi G R 

(i = 1,..., n) and the norm 
n 

IWI = £ N ; 
z = l 

RnXn—the space of n x n matrices X = {xik)™k=i with elements Xik G U (i, k = 
1,..., n) and the norm 

11*11 = £ M; 
t,fc=i 

K = {(Xi)?=i €Mn:XiZ0(i = l,... ,n)}; 

KXn = {(xik)Zk=i € Rn x n : xik > 0 (t, k = 1, •.., n)}; 

if a;, y G IRn and X, Y £ IRnXn then 

a:<2/<^?/-.-celRn . , X < Y » Y - X G R n x n ; 

if i = (x.)n
= 1 G IRn and X = (x.fc)

n
fc=1 G IRnxn then 

N = (|x<|)n
=1, \X\ = (|a:.fc|)nfc=1; 

det(X)—the determinant of the matrix X; 

X~x—the inverse matrix to X; 

r(X)—the spectral radius of the matrix X\ 

E—the unit matrix; 
O—the zero matrix; 
C(7, Un)—the space of continuous vector functions x: I -* Un with the norm 

||a;||c = max{| |a;(«)| | :*€/}; 

if x = (xi)?=1 G C(/, (Rn) then 

\x\c = (\\xi\\c)?=1; 
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L/X(I, IRn), where 1 ^ ji < -j-oo—the space of vector functions x: I -> lRn with 

elements integrable in the //-th power with the norm 

x\\w=[ I Ыt)\Гdť = U«Mt)r 

if x = (Xi)?=1 e L^(I; (Rn) then 

\X\L* = (\\Xi\\Ln)n
=1] 

L(I, (R n x n )—the space of integrable matrix functions X: I -> IRn X n; 
if X = (xik)?k=l: I -> (R n x n then 

rnax{K(*)} = (max{xik(t)})lk=v 

ess sup {X(t)} = (esssupixik^)})7! 
tei tei ' 

If Z € C(I; (RnXn) is a matrix function with columns z1,...,zn and ^: C(I; IRn) -> 

L(I; lRn) is a linear operator then g(Z) stands for the matrix function with columns 

g(z1),...yg(zn). 

1. PROBLEM (0.1), (0.2) 

In this section, along with the problem (0.1), (0.2), we have to consider the corre­

sponding homogeneous problem 

(1.1) ^>=p(x)(t), 

(1.2) l(x) = 0. 

Throughout this section we will assume 

(i) p: C(I; IRn) —> L(I; IRn) is a linear operator for which there is an integrable 

function rj: I -> U such that 

||pO*)(t)|| < V(t)\\x\\c for * e I, x e C(I; Kn); 

(ii) /: C(I; IRn) -> IRn is a bounded linear operator; 

(hi) qeL(I;Un),c0 <E Un. 

According to the terminology of the monograph by L.V. Kantorovic, B.Z. Vulich 

and A.G. Pinsker [10], p is an operator of the class H£ and admits the representation 

by means of the Stieltjes integral (see [10], p. 317). In particular, Chapter V of the 

344 



monograph [19] is dedicated to boundary value problems for the system (0.1) with 

an operator p from the class H°. 

1.1. Existence and uniqueness theorems. Let B = C(I; (Rn) x lRn be the 

Banach space containing elements u = (x;c), where x G C(I; Un) and c G IRn, with 

the norm 

IN|B = INIC + I|C||. 

For an arbitrary u = (x; c) G B and an arbitrary but fixed point to G I we set 

(1.3) f(u)(t) = (c + x(t0) + f p(x)(s) ds, c - l(x)) for t G I, 

h(t)= ( I q(s)ds,Coj iortel. 

The problem (0.1), (0.2) is equivalent to the following equation in B: 

(1.4) u = f(u) + h, 

since u = (x, c) is a solution of (1.4) iff c = 0 and a; is a solution of the problem (0.1), 

(0.2). 

However, in view of (i)-(iii) and (1.3), / : B —•> B is a linear compact operator. 

Therefore by the Predholm alternative for operator equations ([16], p . 275) it is 

necessary and sufficient for unique solvability of (1.4) that the operator equation 

(1.5) u = f(u) 

have only the trivial solution. However, (1.5) is equivalent to the problem (1.1), 
(1.2). Thus the following theorem is valid. 

Theorem l . l 3 . The problem (0.1), (0.2) is uniquely solvable if and only if the 

corresponding homogeneous problem (1.1), (1.2) has only the trivial solution. 

Let to be an arbitrary but fixed point from I. We define the following sequences 

of operators pk : C(I; IRn) -> C(I; (Rn) and matrices Ak G lRnXn: 

(1.6) p°(x)(t)=x(t), pk(x)(t)= f p(pk-1(x))(s)ds(k = l,2,...), 
J to 

(1.7) Ak=l(p°(E)+p1(E) + ...+pk-1(E))(k = l,2,...). 

3 See [19], p. 179, V.3.5. 
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If the matrix Ak is non-singular for some k then we set 

Pk'°(*)(t) = x(t), pk>m(x)(t) = pm(x)(t) 

-\p°(E)(t) + ...+pm-HE)(t)}A-k
1l(pk(x)). 

Theorem 1.2. Let there be positive integers k and m, a nonnegative integer ra0 

and a matrix .4 € IRnxn such that 

(1.9) r(A) < 1, 

where the matrix Ak is non-singular and the following inequality holds for an arbi­

trary solution x of (1.1), (1.2): 

(1.10) \pKm(x)\c^A\pk>m°(x)\c. 

Then the problem (0.1), (0.2) has a unique solution. 

P r o o f . According to Theorem 1.1 it is sufficient to show that the homogeneous 
problem (1.1.), (1.2) has only the trivial solution. 

Let x be an arbitrary solution of (1.1), (1.2). It is clear that 

x(t)=c + px(x)(t), 

where c = x(to). Consequently, 

x(t) = c + p1(c + pl(x))(t) 

= c + pl(c)(t)+p2(x)(t) 

= \p°(E)(t)+p1(E)(t)]c + p2(x)(t). 

If we continue this process infinitely many times, then we obtain 

(1.11) x(t) = \p°(E)(t) + .. . + pi-1(E)(t))c + pi(x)(t) 

for an arbitrary positive integer i. 
(1.2), (1.7) and (1.11) yield 

0 = Akc + l(pk(x)). 

Since the matrix Afc is non-singular, we derive from the last equation 

c = -A^l(pk(x)). 
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Using this equality, we find from (1.8) and (1.11) 

x(t)=pk'm°(x)(t),x(t)=pk'n(x)(t) 

and consequently 

pk>mo(x)(t)=pk>m(x)(t). 

The last equality and (1.10) imply 

\pk^(x)\c^A\pk^(x)\c 

and 

(E-A)\pk>m°(x)\c^0. 

However, since A is nonnegative and the condition (1.9) holds, the inverse (E — A)~l 

to the matrix E — A is nonnegative. 

Multiplying both parts of the last inequality by (E - A)'1, we obtain 

| p * ' m ° ( * ) | c < 0 

and therefore 

pк'm"(x)(t)=0. 

Consequently, x(t) = 0. 

If l(x) = x(to) then by virtue of (1.6)-(1.8) we have for arbitrary positive integers 

k and m 

Ak = E, l(pk(x)) = 0, pk'm(x)(t) =pm(x)(t). 

This is why Theorem 1.2 implies 

Corollary 1.1. Let there be a positive integer in, a nonnegative integer mo and 

a matrix A G Unxn satisfying (1.9) such that the inequality 

(1.12) \pm(x)\c^A\P

m"(x)\c 

holds for an arbitrary solution x of the system (1.1) with the initial condition 

x(t0) = 0. 

Then the problem (0.1), (0.3) has a unique solution. 
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Let us give two examples showing that the condition (1.9) imposed on the matrix 

A in Corollary 1.1 is optimal and can not be replaced by the condition 

(1.13) r(A) < 1. 

Let us consider differential systems 

(i.i4) ^ r = ^ ) 

and 

(1.15) ^ L = 2j\(s)ds 

on the interval I = [0,1] with the initial condition 

(1.16) x(0) = 1. 

Each solution of the system (1.14) as well as of (1.15) has the form 

x(t) = ct, 

where c G IRn is an arbitrary constant vector. Consequently, the initial value prob­

lems (1.14), (1.16) and (1.15), (1.16) have no solution. On the other hand, we have 

p1(x)(t)=tx(l) 

for the system (1.14) and 

p2(x)(t) =pl(x)(t)=2t f x(s)ds 
Jo 

for the system (1.15). Consequently, the conditions (1.12) and (1.13) with m = 1, 

ran = 0 (m = 2, m 0 = 1) and A = E are satisfied for the system (1.14) (for the 

system (1.15)). 

Corollary 1.2. Let there be nonnegative integers m and mo and a matrix 

_4 G (Rn X n such that 

(1.17) r(A) < * 
2(Ь-аУ 
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and let 

(1.18) \p(pm(x))\L2^A\pm»(x)\L2 

be satisfied for an arbitrary solution x of the system (1.1) with the initial condition 

x(to) = 0. Then the problem (0.1). (0.3) has a unique solution. 

P r o o f . We have to prove that the system (1.1) with the initial condition 

(1.19) x(to)=0 

has the zero solution only. 

Let x be an arbitrary solution of the problem (1.1), (1.19). Then according to 

(1.6), 

x(t)=pm°(x)(t)=pm+1(x)(t) 

and 

(1.20) \pm°(x)\L* = \pm+1(x)\L2. 

However, 

P
m+i(x)(t0)=0, -^t\p

m+1m))=p(pm(x))(t). 

Therefore in accordance with Wirtinger's inequality ([8], p. 409) 

\pm+1(x)\L* < 2^^-\p(P
m(x))\L,. 

This inequality together with (1.18) and (1.20) implies 

\pm»(x)\L2<^B\pm»(x)\L2 

and 

(E-B)\pm°(x)\L2<0, 

where 

B=2-^^-A. 

However, by virtue of (1.17) we have r(B) < 1. Thus the previous inequality yields 
\pm°(x)\ ^ 0. Consequently, x(t) = pm°(x)(t) = 0. D 
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The condition (1-17) in Corollary 1.2 is also optimal. Indeed, let us consider the 
homogeneous problem 

a.:) ^-*(H-
x(0) = 0 

on the interval I -= [0, | ] . It has a nontrivial solution 

x(t) = Esint, 

in spite of the fact that the condition (1.18) with ra0 = m = 0 and A = E is satisfied 
for the system (1.21), but the matrix A satisfies the equality 

T{A) = W^a) 
instead of (1.17). 

Corollary 1.3. Let a matrix 

(1.22) B^JLJ p(pJ(E))(s)ds 

be non-singular for some nonnegative integer i and let there exist a matrix B 6 [Rnxn 

such that the inequalities 

(1.23) / \p(x)(t)\dt ^ B\x\c 
J a 

hold for each solution x of the system (1.1) with the condition x(b) = x(o) and 

(1.24) v(B + \Brl\Bi+2) < 1. 

Then the problem (0.1), (0.4) has a unique solution. 

P r o o f . It is sufficient to prove that all assumptions of Theorem 1.2 are satisfied 
for l(x) = x(b) - x(a), k = i + 2, ra = 1 and ra0 = 0. Indeed, as a consequence of 
(1.22)-(1.24), (1.6)-(1.8) yield B{ = A,, 

\PHZ)\C< I \p(x)(s)\ds^B\x\c, 
Ja 

l ^ » l c ^ / | p (p j - 1 ( a ; ) ) ( S ) | d S <5 |p ' , - 1 ( ; r ) | c^ / i J 'Nc (j = l , 2 , . . . ) , 
J a 

ll(pfc0z))l = | / p(pi+1(x))(s)ds 
I Ja 

< / \p(pi+1(x))(s)\ds ^ B\pi+1(x)\c ^ Bi+2\x\c 
J a 
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and 

\pK1(x)\c = \p\x) - BrH(pk(x))\c ^ A\x\c, 

where A = B + \B^1\Bi+2 satisfies the inequality (1.9). • 

For arbitrary t0 and t G I and x G C(I; IRn), let us set 

a*(h,t) = mm{t0lt};a*(t0,t) = max{t0,*}> 

4),t = [<x*(to,t),a*(t0,t)] 

and 
\\x\\to,t = max{||:r(s)||: s G Itl)tt}. 

Definition l . l 4 . An operator p is called a Volterra operator with respect to 
to G I if for arbitrary t G I and x G C(I; lRn) satisfying the condition 

x(s) = 0 for s G h0,t, 

we have 
p(x)(s) = 0 for almost all s G h0,t-

L e m m a 1.1. If p: C(I\ Rn) -> L(I; IRn) is a Vbiterra operator with respect to 
t0 G I then the following inequalities hold for arbitrary x G C(I; lRn): 

(1.25) IbO*) Wll ^ */(*)IWIt0lt for almost all t G I, 

(1.26) | |p f c(x)(ť) |K ^\f\(s)da \\x\\tQ,t fort GI(fc = 1,2,...), 

where 77 is the function appearing in the condition (i), pk: C(I\ Rn) -> C(I; IRn) 
(A; = 1,2,...) are operators given by the equalities (1.6). 

P r o o f . For arbitrary t G I and £ G C(I; Rn) let us set 

xt0,t(
s) = < 

r x(a*(t0 ,t)) for s < a*(ío,0» 

x(s) for a*(to ,0 ^ 5 -̂  a*(t0 , t) , 

, x(a*(t0 ,t)) for s > а*(t0ìt). 

Then since p is a Volterra operator with respect to t0, we have 

p(x)(s) = (p(xto,t))(s) for almost all s G /*„,*. 

4See [1, 19, 23], 
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Thus using the condition (i) we find 

HP(Z)(S)II ^ v(s)\\xtQtt\\c = ri(s)\\x\\t0lt for almost all 5 G Ito,t. 

However, this estimate implies the estimate (1.25) since t e I is arbitrary. 
According to (1.6) and (1.25) 

IIŽASKOIK I /ť||í>(P/!-1(z))(s)l|d 
I Jto 

šl/^I.P^WIk.d* 
I J*o 

for t ei (k = l ,2 , . . . ) . 

Now, by induction, we get the estimates (1.26). • 

Lemma 1.1 immediately implies 

Lemma 1.2. If p is a Volterra operator with respect to to then the operator 
E — p1 is invertible and 

(1-27) (S-PV--XУ, 
+oo 

k=0 

where pk (k = 0,1,...) are operators defined by the equalities (1.6). 

Theorem 1.2\ If p is a Volterra operator with respect to to then the problem 

(0.1), (0.2) has a unique solution if and only if there exist positive integers k} m and 

a matrix A € tR+Xn such that A& is non-singular, the equality (1.9) is satisfied and 

(1.28) \pk'm(x)\c ^ A\x\c for x e C(I; KT). 

P r o o f . The sufficiency of the condition is implied by Theorem 1.2. Thus we 

need to prove the neccessity. 

Assume that the problem (0.1), (0.2) has a unique solution, that is, the problem 

(1.1), (1.2) has the trivial solution only. 

If x is an arbitrary solution of the system (1.1) then 

x(t)=c + p1(x)(t), 

where 

c = x(to). 
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Thus by virtue of the equality (1.27) we have 

x(t) = X(t)c, 

where 
oo 

X(t) = 5>'(E)(t). 
i=0 

Therefore the system of algebraic equations 

Z(K)c = 0 

has the trivial solution only, otherwise the problem (1.1), (1.2) would have a non-

trivial solution. Hence 

(1.29) det(/(X)) ?- 0. 

Set 

Xk(t) = YlP
i(E)(t). 

i=0 

Then A*; = l(Xk), lim ||K - Xk\\c = 0. This and the continuity of / yields 
k—H-oo 

(1.30) lim Afc = l(X). 
k—t+oo 

(1.29) and (1.30) imply that there are a positive integer k0 and a positive real 
number Q such that 

(1.31) det(Afc) # 0, ll^llcl/fflllA^11| < Q (k = k0, k0 + 1 , . . . ; m = 1,2,...), 

where | / | is a norm of the operator /. On the other hand, by Lemma 1.1 we have 

(1-32) \\pk(x)\\c^^\\x\\c(k = l,2,...), 

where 

Qo= r](t) dt. 
J a 

Having in mind (1.31) and (1.32), we find from (1.8) 

(1.33) \\pk^(x)\\c ^ (^ + Q^) \\x\\c (k = k0, k0 + 1 , . . . ; m = 1,2,...). 

Choose a positive integer m0 ^ k0 such that 

ptn pk i 
-*7 + £77 < 7T" (* = m o , m 0 + 1,. . . ;m = m0,m0 + 1,...). 
m! k\ 2n 

Then for arbitrary fixed k ^ m0 and m ^ m0, (1.33) implies the inequality (1.28), 
where A E (RnXn is a matrix with the elements ^- and consequently, the inequality 
(1.9) is satisfied. • 
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Theorem 1.3. Let there exist a matrix function P0 G L(I, lRn X n) such that the 
differential system 

(1.34) Ml=Po{t)x{t) 

with boundary conditions (1.2) has the trivial solution only and that for an arbitrary 
solution x of the problem (1.1), (1.2), the following inequality holds: 

(1-35) / \G0(t, s)[p(x)(s) + P0(s)x(s)]\ ds ^ A\x\c, 
J a 

where G 0 is the Green matrix of the problem (1.34), (1.2) and A G R n X n is a matrix 
satisfying the condition (1.9). Then the problem (0.1), (0.2) has a unique solution. 

P r o o f . According to Theorem 1.1, we have to show that the problem (1.1), (1.2) 
has the trivial solution only provided the assumptions of Theorem 1.3 are satisfied. 

Let x be an arbitrary solution of (1.1), (1.2). Then since (1.34), (1.2) has a unique 
solution, we have 

x(t) = f G0(t,s)\p(x)(s) - P0(s)x(s)]ds. 
J a 

Thus by the inequality (1.35) we find 

\x\c ^ A\x\c. 

The last inequality implies \x\c = 0 by (1.9). • 

Corollary 1.4. Let there exist a matrix function P 0 G F(I; R n X n ) such that 

(1-36) ( f P 0 ( 0 d ^ Po(t) = Po(t) ( f P0(fl d ^ 

for almost all t and s G I and let the following inequality hold for any solution x of 
the system (1.1) with the initial condition x(to) = 0: 

1/ lexpf / P0( 
\Jt0 I \Js 

(Odń[p(x)(s)-P0(s)x(s)} ds < A\x\c íor t Є /, 

where A G (Rn X n is a matrix satisfying the condition (1.9). Then the problem (0.1), 

(0.3) has a unique solution. 
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It is sufficient to notice that by (1.36), the Cauchy matrix of the system (1.34) is 

of the form 

C0(t,s)=exp(J Po(Odí) 

Corollary 1.5. Let there exist a matrix function P0 G L(I; lRnXn) satisfying 

(1.36) and such that the matrix 

A0 = E - exp f / P0(«5)d5 

ds ^ A\x\c for t Є I, 

is non-singular and 

(1.37) / UQ" 1 exp ( [ P0(0 dA \p(x)(s) - Po(s)x(s)) 
Jt-b+a I \Js / 

(1.38) p(x)(t -b + a)= p(x)(t), P0(t-b + a)= P0(t), 

where the matrix A G U+Xn satisfies the condition (1.9). Then the problem (0.1), 

(0.4) has a unique solution. 

P r o o f . By (1.36) the non-singularity of the matrix A0 is a necessary and 

sufficient condition for non-existence of a nontrivial solution of the problem (1.34), 

(0.4). 

Let A0 be a non-singular matrix and let Go be the Green matrix of the problem 
(1.34), (1.2), where l(x) = x(b) — x(a). Then by (1.36) we have for arbitrary q e 

L(I; Un) 

f G0(t, s)q(s) ds= f A-1 exp ( / P 0 ( 0 d£ J q(s) ds for t G I, 
Ja Jt-b+a \Js J 

where q(t — b + a) = q(t). Therefore the inequality (1.37) implies the inequality 

(1.35). Consequently, all assumptions of Theorem 1.3 are satisfied. • 

1.2. Correctness theorems for the problem (0.1), (0.2). Let k be an arbi­

trary positive integer and let us consider the perturbed problem 

(1-39) ^ > = p k { x m + q k { t ) 

(1-40) lk(x)=cok, 

together with the original problem (0.1), (0.2). Here 
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(i) pk: C(I; (Rn) -> L(I; (Rn) is a linear operator for which there is an integrable 

function rjk: I -> (R+ such that 

\\Pk(x)(t)\\ ^ m(t)\\x\\c for t e I, x e C(I; Rn), 

(ii) /fc: C(I, IRn) -> (Rn is a linear bounded operator, 

(hi) qk GL(I;!Rn), cofc € IRn. 
For an arbitrary bounded operator g: C(I; Un) -•> L(I; (Rn), we denote by \\g\\ its 

norm and by Mg the set of absolutely continuous vector functions y: I -> (Rn that 
can be represented by 

y(t) = z(a)+ f g(z)(s)ds, 
J a 

where z: I —> (Rn is an arbitrary continuous vector function such that 

IWIc = l-

Theorem 1.4. Let the problem (0.1), (0.2) have a unique solution x, 

: te I,y Є M3 H for k -> +oo (1.41) s u p j J \pk(yKs)-p{y)(s)]ds 

and for an arbitrary absolutely continuous function y: I -> Rn iefc 

(1.42) lim ((1 + | p f c | ) / \pk(y)(s) - p(y)(s)} ds] = 0 uniformly on /. 
fc-H-oo V j 0 / 

Suppose further that 

(1.43) lim f (1 + |pfc|) / [«7fc(s) - g(s)] ds) = 0 uniformly on /, 

(1.44) 

aлd 

(1.45) 

lim lk(y) = l(y)foryeC(I;Un) 
/e->-+co 

lim cok = c0. 
k—>+oo 

TiieLi there is a positive integer k0 such that the problem (1.39), (1.40) has aiso a 

unique solution Xk for each k ^ k0 and 

(1.46) 
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To prove Theorem 1.4. we will need the following lemma 

Lemma 1.3. Let the problem (1.1), (1.2) have the trivial solution only and 

let the sequences of operators pk and lk (k = 1,2...) satisfy the conditions (1.41) 
and (1.44), respectively Then there is a positive integer fco and a positive constant 

a such that an arbitrary absolutely continuous vector function z: I -> IRn can be 

estimated by 

(1.47) ||z||c ^ aAk(z) (k = k0, h + 1, . . .), 

where 

(1.48) Afc(-) = max{||.fc(~)ll + (1 + |pfc|) | f\z'(s)-Pk(z)(s))ds\\). 
t^1 I II J a || J 

P r o o f . Let us first mention that by the Banach-Steinhaus theorem ([16], 
p. 149), the condition (1.44) yields the boundedness of the sequence \\lkl (k = 
1,2,...). Consequently, there is a positive constant (5 such that 

(1.49) ||/fc(y)|| < p\\y\\c for y € C(I; Un) (k = 1,2,...). 

Let us set 

pHy)(t)= f P(y)(s)ds, p\(y)(t)= I pk(y)(s)ds(k = l,2,...). 
J a J a 

Obviously, p1 and p\: C(I; Un) -•> C(I; (Rn) are linear bounded operators and 

(1-50) Ipi |K| |pfc|(A; = l ,2 , . . . ) . 

On the other hand, by (1.41), 

(1.51) sup{||pi(y) -pHy)\\c: V G MPk} -+ 0 for k -> +oo. 

Let us suppose to the contrary that the lemma does not hold. Then there is 
an increasing sequence of positive integers (km)m™i anc^ a sequence of absolutely 
continuous vector functions zm : I -> IRn (m = 1,2,...) such that 

(1.52) | | z m | | c > mAkin (zm) (m = 1,2,...). 

Set 
ym(t) = \\ZmWc1Zm(t) (m = 1 , 2 , . . .), 

Vm(t) = / [y'm(s) - pklH (ym)(s)] ds (m = 1, 2, . . .), 
J a 
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(1.53) yom(t) = ym(t) - vm(t), 

Wrn(t) = P\in(y0m)(t) ~ p1 (yOm)(t) + p\in (vm) (t). 

Then 

(1.54) hm\\c = l (m = l ,2 , . . . ) , 

(1-55) y0m(t) = ym(a) + p\in(ym)(t) 

and 

(V56) yom(t) = ym(o) +p1(yom)(t) + wm(t). 

On the other hand, by virtue of (1.52) and (1.50) we have 

(i-57) \\vm\\c <. (i + iPj.fjrMi~wir1A„.(~m) 

< ^ - ( l + | p f c m | ) - 1 ( m = l ) 2, . . . ) 

and 

(1.58) \\p\in(vm)\\c ^ \\PkJ\\\vm\\c < ^ (m = 1,2,...). 

It follows from (1.54) and (1.55) that 

yom e Mkin (m = 1,2,...). 

This is why (1.51) implies 

(1-59) lim \\piJyom)-pl(yom)\\c = 0. 
m—t-\-oo 

By (1.58) and (1.59) we obtain 

(1.60) lim |Kn | | c = 0. 
m—>-|-oo 

On the other hand, according to (1.53), (1.54) and (1.57) we have 

homWc ^ hm\\c + \\vm\\c ^ 2 (m = V2,...). 

Therefore there exists an integrable function 7: I —> [R+ such that the following 

inequalities hold almost everywhere on I: 

l|p(j/Om)(0ll<7W (m = l ,2 , . . . ) . 
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Consequently, 

(1.61) llp^yomXO -pHyomJWH ^ J 7 ( 0 df for a < s < * O (m = 1,2,...). 

By (1.60) and (1.61), the representation (1.56) obviously implies the equicontinuity 
of the sequence (yom)m=i- Hence by the Arcela-Ascoli lemma we can assume without 
loss of generality that the sequence (y0m)m=i uniformly converges. Let us set 

lim yom(t)=yo(t). 
771—> + 00 

Then by (1.53), (1.54), (1.56) and (1.60), we obtain 

(1.62) lim | | y m - y b | | c = 0 , 
7H—• + 00 

||yo|| = l , yo (0=yo(a )+p 1 (y o ) (0 -

Consequently, yo is a nontrivial solution of the system (1.1). 
By (1.49) and (1.52) 

l|ifc,«(vo)ll < hm(vm - yo)|| + IKfcm(ym)|| 

^/Jllyo-ymll + lkmll^ll^^m)!! 

^ /3 | | yo -ym| | c + - (m = l ,2 , . . . ) . 
m 

Using (1.44) and (1.62), we find 

/(yo) = o, 

that is, y0 is a solution of the problem (1.1), (1-2). But this is not possible since 
the problem (1.1), (1.2) has no nontrivial solution. This contradiction completes the 
proof of the lemma. • 

P r o o f of T h e o r e m 1.4. Let k0 be the positive integer appearing in Lemma 
1.3. By this lemma, the homogeneous problem 

—^- = pk(x)(t), 

h(x) = 0 

possesses the trivial solution only for each k ^ ko- By Theorem 1.1 this fact guar­
antees the existence of a unique solution of the problem (1.39), (1.40). 

To complete the proof, it remains to show that the equality (1.46) holds, where x 
and Xk are solutions of the problems (0.1), (0.2) and (1.39), (1.40), respectively. 
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Define 

zk(t)=xk(t)-x(t). 

Then for each k ^ fc0, we have 

^•=Pk(zk)(t)+qk(t), 

lk(Zk) = CA;, 

where 

Qk(t) = P*(a;)(í) - p(i)(í) + qk(t) - q(t), 

Cfc = cofc - c0 + /(ж) - lk(x). 

By virtue of the conditions (1.42)-(1.45) 

4 = (1 + Ibfcffl) max | / qk(s) ds : t G I I -> 0 for k -> +oo, 

lim a = 0. 
/c—>-foo 

On the other hand, by Lemma 1.3, there is a positive constant a such that 

Hyibllc ^ adICfcll + h) (k = ko, ko + 1,.. •)• 

Thus 

lim ||2/A.||c = 0, 
k—>-foo 

and therefore the equality (1.46) holds. • 

Corollary 1.6. Let the problem (0.1), (0.2) have a unique solution and let 

(1.63) lim / \pk(y)(s) - p(y)(s)]ds = 0 uniformly on I 
fc-H-oo Ja 

for any absolutely continuous y: I —> Rn. Assume further that 

(1.64) lim / [qk(s) — q(s)] ds = 0 uniformly on I, 

lim Zfc(y) = l(y) for y e C(I; (Rn), lim cok = CQ 
k—>-foo /c—»-foo 

and that there is an integrable function rj: I -> (R+ sizcii that the foiiowing inequali­

ties hold almost everywhere on I for arbitrary y G C(I;Un): 

(1-65) l|Pk(v)(OII*S»?WIMIc (fc = l ,2, . . . ) . 
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Then the conclusion of Theorem 1.4 holds. 

P r o o f . Without loss of generality, we can suppose 

(1.66) l|p(v)(0ll<».(t)llvllc. 

Prom (1.65) we get 

IHIK / v(t)dt (fc = i,2,...). 
J a 

This is why the conditions (1.42) and (1.43) follow from (1.63) and (1.64). 
By Theorem 1.4, it is now sufficient to verify the condition (1.41) to complete the 

proof of the corollary. Let us suppose to the contrary that the condition (1.41) does 
not hold. Then there are e0 > 0, a sequence of positive integers (fcm)^^ and a 
sequence of vector functions 

(1.67) ymeMPkrn (ra = l ,2 , . . . ) 

such that 

fll /"* 111 
(1-68) max< / \pk1ll(ym)(s) - p(ym)(s) ds\\ > > e0. 

t^1 I || J a II J 

Prom (1.67) and (1.65) we get 

ym(t) = Zm(d) + / Pkin(Zm)(s)ds (in = 1, 2, . . .), 
J a 

where zm € C(I; Un), \\zm\\c = 1, 

Iltfm||c<l+ / V(s)ds 
J a 

and 

(1.69) \\ym(t) - ym(s)\\ ^ f v(0 d£ iora^s^t^b. 

Consequently, the sequence (ym)m=i is uniformly bounded and equicontinuous. Thus 
without loss of generality, we can consider it to be uniformly convergent. Set 

lim yш(ť) = y(ť). 
m—ív-j-oo 
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Then by (1.69) we have 

\\y{t) - y(s)\\ ^ f r){0 d£ for a ^ s ^ t ^ b. 
JS 

Consequently, the function y: I -» IRn is absolutely continuous. 

According to (1.63), (1.65) and (1.66) we have 

I / Ь>km (ym)(s) - p(ym)(s)] ás -.tєЛţhJ ф) dsj \\ym - y\\c 

+ m a x Л j \pkm(v){s) -p(y)(s)]ds 

\ II Ja 

max 

: t £ I > -> 0 for t ->> +oo, 

and this contradicts (1.68). The proof of the corollary is now complete. • 

A result similar to Corollary 1.6 is given in the paper by R. Tsitskishvili [20]. 

2. PROBLEM (0.5), (0.6) 

2.1. Existence and uniqueness theorems. According to the note done in the 
introduction, the problem (0.5), (0.6) can be rewritten to the form (0.1), (0.2), where 
the operator p and the vector function q are given by the equalities (0.10) and (0.11) 
and the function To is given by the equality (0.9). That is why Theorem 1.1 for the 
problem (0.5), (0.6) assumes the following form. 

Theorem 2.1. The problem (0.5), (0.6) has a unique solution if and only if the 

corresponding homogeneous problem 

(2.1) ^ = X / ( r W ) ^ ( r o W ) 

(2.2) l(x) = 0 

has the trivial solution only. 

According to the Riesz theorem (see [16], p. 184) there exists a unique matrix 
function A: I -> R n x n such that the elements of A have bounded variation on I, 

(2.3) A(b) = 0 

and for arbitrary x G C(I; (Rn), the following representation is true: 

(2.4) l(x) = f dA(t)x(t). 
J a 
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Obviously, (2.3) and (2.4) yield that if x: I -> IRn is absolutely continuous then 

(2.5) l(x) = -A(a)x(a) - í A(t)x'(t)dt. 
Ja 

Let to be an arbitrary but fixed point from the interval I. For an arbitrary matrix 
function V e L(I; RnXn) set 

[V(t)U = QAV(t)}r,i = xI(T(t))V(t), 

[V(t)]Tti+1 = [V(t)]T,l r [V(s)]r,i ds (i = 1,2,.. .), 
J t0 

where r0 is the function given by (0.9). Then by (0.10), (1.6)-(1.8), and (2.5) we 
have 

fc-l г rb 

(2.6) 

and 

where 

(2.7) 

and 

(2.8) 

A* = -A(a) - 2 [ / Hs)[P(s)]T,i ds - A(a) í °[P(s)]T,. ds 
i=0 '-•!" !° 

|pfc-m(x)|c s? Afc,m|a;|c for x e C(L R"), 

^,m = i4m + (E + J2 Ai ) \A^\ 
^ i = 0 <! 

X (£\\P(s)\]T,kds+ ^ \A(S)\[\P(s)\]T,kds} 

A{ = maxj / [|P(s)|]Tjtds : t e l \ (i = 0,. . . ,m). 

Therefore the following statements follow from Theorems 1.2, 1.2' and Corollary 1.2. 

Theorem 2.2.5 Assume that there exist positive integers k and m such that 

(2.9) det(Ajb) T-- 0 

and 

(2.10) r(Ak,m) < 1, 

' For T(t) = t an analogous result was obta ined by T. Kiguradze ([13], L e m m a 2.7). 
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where A& and Ak,m are matrices given by the equalities (2.6)-(2.S). Then the problem 

(0.5), (0.6) has a unique solution. 

Theorem 2.2'. If the inequality 

(r(t)-t)(t-to)^0 

holds almost everywhere on I. then the problem (0.5), (0.6) has a unique solution 

if and only if there are positive integers k and m such that the inequalities (2.9) 

and (2.10) are satisfied, where Ak and Ak,m are matrices defined by the equalities 

(2.6)-(2.8). 

Corollary 2.1. If the inequality 

(2.11) r(Am) < 1, 

is satisfied with 

Ага — шах { /[lI^lkmds -.tei\ 

for some positive integer m, then the problem (0.5), (0.7) has a unique solution. 

Corollary 2.2. Let r be absolutely continuous and monotone and suppose that 

there exists a matrix A G UnXn such that 

(2.12) r(A) < * 
2(b-a) 

and the inequality 

X / (r(«)) |P(0|^A|r '(0| 1 / 2 

holds almost everywhere on I. Then the problem (0.5), (0.7) has a unique solution. 

The examples given in Section 1 show that the strict inequalities in Corollaries 2.1 

and 2.2 cannot be replaced by nonstrict ones. 

Corollary 2.3. Assume that 

det(Bo) ^ 0 

and 

r{B + \B»l\B*)<l, 

364 



where 

Bo= f Xl(r(s))P(s)ds, B= f Xl(r(s))\P(s)\ds. 
J a J a 

Then the problem (0.5), (0.8) has a unique solution. 

Theorem 2.3. Let there exist a matrix function P0 G L(I; (RnXn) such that the 

differential system 

(2.13) ^l=PQ(t)x(t) 

with the boundary conditions (2.2) has the trivial solution only and 

(2.14) / \G0(t,s)\Q(s)ds^AforteI, 
J a 

where 

rMt) 

it() 

i rMt) 
(2.15) Q(t) = \Xl(r(t))P(t)-Po(t)\ + \Po(t)\\ \P(s)\ds 

Jta 

G0 is the Green matrix of the problem (2.13), (2.2) and A e IRnXn is a matrix 

satisfying the inequality 

(2.16) r(A) < 1. 

Then the problem (0.5), (0.6) has a unique solution. 

P r o o f . Let x be a solution of the problem (1.1), (1.2), where p is the operator 

defined by the equality (0.10). Then using (2.15), we have 

\P(X)(S) - P0(S)X(S)\ = \[Xl(T(t)P(t) - Po(t)]x(T0(t)) 

;Mt) 
+ . x'(s)ds\ 

= \[Xj(T(t))P(t)-Po(t))x(T0(t)) 

rMt) 
+ Po(t) J XI(T(S))P(S)X(T0(S)) ds\ ̂  Q(t)\x\c, 

According to this estimate, (2.14) implies the inequality (1.35). Therefore, all as­
sumptions of Theorem 1.3 are satisfied. D 
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Corollary 2.4. Assume that there exists a matrix function P0 G L(I; lRnXn) 

such that the equality 

(2-17) (J P0(0 d?) P0(t) = P0(t) (J P0(O d*) 

is satisfied for almost all s and t G I and that 

rt 

(2.18) | ^ | e x p ( ^ Po(Odí) o(s)ds ^ Л for í Є L 

where Q is the matrix function defined by (2.15) and A G (RnX is a matrix satisfying 

the condition (2.16). Then the problem (0.5), (0.7) has a unique solution. 

Corollary 2.5. Assume that there is a matrix function P0 G L(I; (R n x n ) such 

that the equality (2.17) is satisfied for almost all s and t G I. Let the matrix 

(2.19) A0 = E-exp( f P0(s)ds 

be non-singular and 

(2.20) f Ao"1 exp ( f P0(0 dn Q(s) ds < A for t G I, 
Jt-b+a \Js J 

where Q is the matrix defined by (2.15). Suppose further that 

(2.21) P0(t -b + a) = P0(t), Q(t-b + a) = Q(t) 

and that A G lRn X n is a matrix satisfying the condition (2.16). Then the problem 

(0.5), (0.8) has a unique solution. 

2.2. Correctness theorems. Let k be an arbitrary positive integer and, together 

with the problem (0.5), (0.6), let us consider the perturbed problem 

(2.22) 
dxjt) 

dí 
= Pk(t)x(тk(t)) + qok{t), 

(2.23) lk(x) = C0fc, x(t) =uk(ť), t£ I, 

where Pk G F(I; (RnXn), qok G L(I\ IRn), cok G (Rn, T/,: I -> R is measurable, uk: 

U -> IRn is continuous and bounded, and //c: C(I; [R'1) -> (Rn is a linear bounded 

operator. 
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Theorem 2.4. Let the problem (0.5), (0.6) have a unique solution x, 

(2.24) lim f [i + i-iyxjiTkisMPkWds 
/c-++oo Ja 

= I [i + (-1){XI(T(S))]P(S) ds uniformly on I (i = 0,1), 
Ja 

(2.25) lim / q0k(s)ds= / q(s) ds uniformly on I, 
fc->+°°Ja Ja 

(2.26) esssup{|Tfc(t) - r(t)\: t G I} -•> 0 for k -•> -f-oo, 

(2.27) lim t/fc(t) = u(t) uniformly on R, 
/c—)-+oo 

(2.28) lim lk(y) = l(y) for y 6 C(I;Un), lim cofc = CQ. 
/e—>-+oo /e—»+oo 

Let further n: I -> R+ be an integrable function such that 

(2.29) | |P f c(t) | |^n(t)(fc = l ,2 , . . . ) 

is satisfied almost everywhere on I. Then there is a positive integer ko such that for 
each k ^ k0, the problem (2.22), (2.23) has aiso a unique solution Xk and 

(2.30) lim | |x--r f c | | c = 0. 
/c-»+oo 

The following lemma will be useful for proving Theorem 2.4. 

Lemma 2.1. Assume that H and Hk G L(I; R n x n ) , V and Vk G L+°°(I; Rn) 
(* = 1,2,...), 

(2.31) lim / Hk(s)ds= / H(s)ds uniformly on I, 
/e-++oo Ja Ja 

(2.32) esssup{||I4(t) - V(t)\\: t G I} -> 0 for fc -> +oo 

and that there exists an integrable function rj: I —> Rn such that 

(2.33) | |H , ( t) | |<77(t)(k = l ,2 , . . . ) 

hoids almost everywhere on I. Then 

(2.34) lim / Hk(s)Vk(s) ds = f H(s)V(s) ds uniformly on I. 
/c-++ooJa Ja 
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J i1(t)\\V(s)-V0(s)\\ds<e-. 

Gk(t)= f [Hk(s)-H(s)]ds. 

J a 

lim ||Gfc||c = 0. 
/e-*-|-oo 

P r o o f . Let us first note that (2.31) and (2.33) yield 

(2.35) \\H(t)\\ <. r)(t) 

almost everywhere on I. 
Let e > 0 be an arbitrary number. Since V is essentially bounded, there is a 

continuously differentiable vector function VQ : I -> Un such that 

rb 

(2.36) 

Let us set 

Then by (2.31) 

Hence 

f [Hk(s)-H(s)]V0(s)ds 
J a 

= Gk(t)V0(t) - / Gk(s)Vo(s) ds -> 0 for fc -> +00 uniformly on I. 
J a 

Consequently, there is a positive integer fco such that 

II f* e 
(2.37) / [Hk(s)-H(s)]V0(s)ds < - iort£l,k^k0. 

II J a ** 
On the other hand, by virtue of (2.32) we can assume without loss of generality, that 

(2.38) J r,(s)\\Vk(s)-V(s)\\ds<- fovk^h. 

By virtue of the conditions (2.33) and (2.35)-(2.38), the equality 

f [Hk(s)Vk(s) - H(s)V(s)]ds = f Hk(s)(Vk(s)-V(s))ds 
J a J a 

+ f [Hk(s) - H(s)]V0(s)ds + f [Hk(s) - H(s)](V(s) - V0(s))ds 
J a J a 

implies 

/ [Hk(s)Vk(s)-H(s)V(s)]ds\\ <, [ r,(s) 
J a J a 

Vk(s)-V(s)\\ds 

f [Hk(s)-H(s)]V0(s)ds\+2 ( ri(s)\\V(s) - V0(s)\\ds<e for k>ho,t el. 
J a II J a 

Consequently, the relation (2.34) is verified. C 
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P r o o f of T h e o r e m 2.4. By remarks given in the introduction, the problems 

(0.5), (0.6) and (2.28), (2.29) can be rewritten to the form (0.1), (0.2) and (1.39), 

(1.40), respectively, where 

(Tk(t) forr f c(*)€[a,6], 

(2.39) Tok(t) = < a for Tk(t) < a, 

[b for Tk(t)>b, 

(2.40) Pk(x)(t) = Pk(t)Xl(rk(t))x(Tok(t)), 

(2.41) qk(t) = (l-Xl(Tk(t))Pk(t)uk(Tk(t)) + qok(t) 

and To,p and q are defined by equalities (0.9)-(0.11). 
In virtue of Lemma 2.1 and the conditions (2.24)-(2.27), (2.29), the equalities 

(0.11) and (2.41) yield the condition (1.64). On the other hand, the inequalities 
(1.65) follow from (2.29) and (2.40). Therefore, for completing the proof of Theorem 
2.4, it remains to show by Corollary 1.6 that the condition (1.63) is satisfied for an 
arbitrary absolutely continuous vector function y: I —> Un. 

In view of (0.9), (2.24), (2.26), (2.29) and (2.39), the matrix and vector functions 

Hk(t) = Xl(Tk(t))Pk(t), H(t) = Xj(T(t))P(t), 

Vk(t)=Y(Tok(t)l V(t) = Y(To(t)) 

satisfy the conditions (2.31)-(2.33). Now according to Lemma 2.1, the condition 
(2.34) holds. The condition (2.34) is equivalent to the condition (1.63) by (0.10) and 
(2.40). • 

Theo rem 2.5. Assume that the problem (0.5), (0.6) has a unique solution, 

(2.42) lim \Qk I [Pk(s)-P(s)]ds] =0 uniformly on I, 
/c->+oo V Ja / 

(2.43) lim f Qk / [qok(s) - qo(s)] ds) =0 uniformly on 7, 
/c->+oo \ Ja / 

(2.44) lim (Q2
k[uk(t) - u(t)]) = 0 uniformly on R, 

k—j-foo 

where 

gk = l+ í ||Pfc(ť)||dí, 
Ja 
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and suppose that the conditions (2.28) are fulfilled. Let further the function T: 

I -> R be continuous and monotone, let the components of the vector function u 

have hounded variations and 

(2.45) Tk(t)=r(t) (A: = 1,2,...). 

Then the conclusion of Theorem 2.4 holds. 

P r o o f . By (2.45), the problems (0.5), (0.6) and (2.22), (2.23) are equivalent 

to the problems (0.1), (0.2) and (1.39), (1.40), respectively, where To, p and q are 

defined by equations (0.9)-(0.11), 

(2-46) pk(x)(t) = Pk(t)Xl(r(t))x(T0(t)), 

(2.47) qk(t) = (1 - Xl(r(t))Pk(t)uk(T(t)) + qok(t). 

By Theorem 1.4, to complete the proof it suffices to verify that the sequences pk 

and qk (k = 1,2,...) satisfy the conditions (1.41)-(1.43). 

Let us first note that 

(2.48) l + | p * | < 0 f e (A; = 1,2,...). 

On the other hand, the monotonicity and continuity of r and the condition (2.42) 

imply 

(2.49) lim (Qk\\Qik\\c) = 0 (i = 0,l), 
AC—>--|-00 

where 

Qik(t)= / [ i + ( - l ) i X / ( r ( « ) ) [ P i . ( в ) - P ( s ) ] d S (І = 0,1). 
J а 

In view of (0.10) and (2.46), for an arbitrary absolutely continuous y: I —•> Rn we 

have 

(2.50) f \pk(y)(s) - p(y)(s)] ds= [ Q'ok(s)y(ro(s)) ds 
J a J a 

= Qok(t)y(T0(t)) + f Qok(s)dy(T0(s)). 
J a 

If y G MVk then 

y(t) = z(a)+ [ Xl(r(s))Pk(s)z(To(s))ds, 
J a 
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where 

Therefore 

(2.51) 

and 

zeC(I;Mn),\\z\\c^l. 

| | y | | c < l + / \\Pk(s)\\ds = Qk 
J a 

t | | d y ( s ) K / \\Pk(s)\\ds < Qk. 
J a J a 

The last inequality together with the monotonicity of To yields 

(2.52) I / dy(T0(s))ds\ ^ ( \\dy(s)\\ < gk. 
I J a I J a 

By (2.51) and (2.52), (2.50) implies 

II /"' 
/ \Pk(y)(s) -p(y)(s)]ds 

II Ja 
^гefcllQofcЦcforíЄLyЄM, Pk-

Therefore, according to (2.49), the condition (1.41) holds. 

Let y: I -> Rn be an arbitrary absolutely continuous function. Set 

0o = I M I c + / 6 | | d y ( T O ( S ) ) | | . 
J a 

Then by (2.50), we obtain 

II fl 

/ M y ) 0 0 -p(y)(s)]ds 

II «1a 

^ЄollQofcЦcfoгíЄL 

According to (2.48) and (2.49) this estimate implies the condition (1.42). 

According to (0.11) and (2.47), 

/ [qk(s)-q(s)]ds= f (l-Xl(r(s))Pk(s)[uk(T(s))-u(T(s))]ds 
J a J a 

+ / Q'lk(s)u(T(S))ds. 
J a 

However, 

/ Q'lk(s)u(т(s))ds = Qlk(t)u(т(t))- / Qlk(s)du(т(s)). 
J a J a 
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Therefore 

where 

/ [ k(s) -q(s)]ds 
J a 

^ Qk\\uk -u\\c + gWQikWc, 

Q=h\\C+ [ \\du(T(s))\\. 
J a 

In view of (2.44), (2.48) and (2.49), we conclude that the condition (1.43) is 
fulfilled. • 

The assertion of Theorem 2.5 implies the theorems of Z. Opial given in [17] for 
the case T(t) = t. 
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