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Czechoslovak Mathemat ica l Journal, 46 (121) 1996, P r a h a 

ON THE EQUATION x$ = f(t,x) 

DARIUSS BUGAJEWSKI and DARIA WÓJTOWICZ, Poznaň 

(Received November 4, 1994) 

The purpose of this paper is to prove an Aronszajn type theorem for the equation 
(dx/dt)ap — f(t,x) with the initial conditions, by using the Denjoy integral setting. 

1. INTRODUCTION 

The theory of the Denjoy-Perron integral (see [10]) makes it to possible to integrate 
an arbitrary derivative, i.e. for this type of integral the formula 

/ 
f'(s)ds = f(b)-f(a) 

holds for every differentiable function / : [a, b] —•» R. Kurzweil [9], in 1957, and 
independently Henstock [7], in 1961, have showed that this integral can be defined 
by modifying Riemann's original definition. 

The Denjoy-Perron integral has important applications in the theory of differential 
equations. In [9] Kurzweil used this type of integral to the study of generalized 
solutions of the Cauchy problem 

(1) x1 = f(t,x), x(t0) = x0. 

Recently Schwabik [11] showed that all known conditions for the existence of a 
generalized solution of (1) (cf. [4], [6], [8]) concern the case of a Caratheodory right 
hand side perturbed by a Denjoy-Perron integrable function. 

On the other hand, in recent years papers have appeared (e.g. [3], [2]) concerning 
the problem (1) in which the usual derivative is replaced by the approximative one 
(see [10] for the definition). With this derivative the concept of the Denjoy integral 
(see [10]) is closely connected. 
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This paper is devoted to the study of the problem 

(2) (dx/dt)$ = / ( f ,T ) , 4 2 f t , ) = .Ti. / = 0 , . . . , n - 1, 

where I = [t0,t0 + a], H = {.r G IR: |rc - :r0| ^ b}. a, 6 > 0, / : I x H -> [R, and 

(d:T/dl)fJp denotes the n-th approximative derivative of x. 

As a generalized solution of (2), defined on an interval J C I, we understand a 

function x: J -> U such that x(t) G B for t G J, x{dp~i] is an ACG function (cf. [10]), 

(dx/dt){dp] = f(t,x(t)) for a.e. l G J and a;$(*o) = :n. * = 0, . . . , n - 1. 

Equivalently, a function T: J —> U is a generalized solution of (2) if x(t) G B for 

l G J and 

(3) x(t) = ^ ^ ^ - x l + (D)f dt(D)f dt...(D)l f(t,x(t))dt 
i-Q %- Jt{) J l ( ) J / „ 

/1-t i l lK 'S 

for every t G J, where the sign a(F>) / " stands for the Denjoy integral . 

In what follows we show that the set of all generalized solutions of (2) is R$. i.e. 

it is homeomorphic to the intersection of compact absolute retracts . 

2. A N A R O N S Z A J N T Y P E TIIKORKM 

Let / : I X j B - > I R b e a function such that 

(i) t —> f(t,x) is a measurable function for every x G I?, 

(ii) x —> f(t,x) is a continuous function for a.e. t G I, 

(in) there exist two Denjoy (shortly: D) integrable functions m: I —> IR, AI: I —> U 

such tha t 

m(t) <C f(t,x) ^ M(t) for every (/,.r) G I x B. 

Now, we prove the following 

T h e o r e m . Under the above assumptions there exists an interval J C I such the 

set of all generalized solutions of (2), defined on J, is I?(I-. 

P r o o f . Our proof is based on the well known Vidossich theorem [12, Corol­

lary 1.2]. 

First, we show tha t (3) is equivalent to the integral equation 

(4) x(t) = £ ^ ^ + r-TTv ( D ) f{f " •s)"^'(s"j'('s)) ds' * G L 

i=o l' ' / ; '' -*1" 
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Let n = 2. For simplicity, denoting the variables of the integration by two different 

letters we can write (3) in the form 

*(t) = E ^ T ^ > + (D)f dt (D)f f(s,x(s)) ds, t G J. 
i=0

 l- J*«. Jto 

In view of [5, Th. 57, p. 69] we obtain 

v(t) = J2 <LlpyXi + (D)f ds (D)f f(s,x(s)) dt 
i=o l' Jt» Js 

= J2 {±Lrl*i + (D)ftf(sMs)) ds (D)f dt 
i=o l' Jt* Js 

= J2 ^T^-Xi + (D)[\t ~ *)f{*Ms)) ds, t G /. 
i=o l' Jt" 

Assume now that for n — 1 the following formula is valid: 

(D)f dt(D)f dt...(D)f f{s,x(s))ds 

J t{) J to J to 
N v " 

((i — l ) - t imes 

= — L - (D)í (t - sГ-2f(s,x(s)) ds, t Є /. 
(n - 2)1 Jt 

Fix t G I. It can be easily seen that the function 

( (w-s)n~'\ tQ ^s^w, 

(s,w) -+<S>[l(s,w) = < we [t0,t], 

\ 0, w ^ s ^ t, 

satisfies the inequality 

t 

\J{$?)4P(w) ioiSL.e.we[t0,t], 
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t 

where V(^D denotes the variation of $™ on [l0,t] and P is the Lebesgue integrable 
to 

function on [to,i\. Hence, again by [5, Th. 57, p. 69], we have 

(D)f dt(D)f dt...(D)f f(s,x(s))ds 
J t() J t() J to 

= —^— (D)f At (D)f(t - s)n-2f(s,x(s)) As 
\ n Z>- J to J to 

= - ^ - j j - (D)J* f(s,x(s)) ds (D)j\t - S ) - 2 d. 

= T^TTi {D)f\t - s)n-lf(s.x(s)) ds. 

Thus (3) and (4) are equivalent for n and, consequently, using mathematical induc­
tion we conclude that this equivalence is valid for each u ^ 2. 

Choose a positive number d in such a way that d ^ a, 

^{D)j\t-sT-iM(s)*ss\ 

аnd 

ь ^(t-toУ . ь 
9 ^ L — — æ i ^ 9 

г=l 

for l0 ^ l ^ to + d. 
Define 

F(z)(t) = £ ^ ^ + T-^TTT (D)f(t - s)^f(s,z(s)) ds, 
i=0 l ; ' Jt» 

teJ,zeB, where B = {z e C(J, R): \z(t)-x0\ ^b,te J} and C(J, R) denotes the 
space of all continuous functions J -> R with the topology of uniform convergence. 

The inequalities 

x0 ~ b < xo + T iJ-Lr^'-i + T-^-r-f (D)f'(t - .s)""1 m(s) ds < F(z)(t) 
. , *! (»i- l ) ! j<„ 

^ *o + E ^ r ^ + T^TTT (D) / (' " s)"_1M(s) ds < *„ + b, f-' 7,! (n - 1)! j,(l 
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F(z)(П) - F(z)(t2) 

= E ̂ Sг--"'+ (~~-~~ ( D ) £ ( ť l - s ) n _ 1 / ( s ' 2 ( s ) ) d s 

7 1 - 1 

= £ 7 ľ î ( í i ~ ř o ) i ~ ( ť 2 ~ ř o ) i ] 

í=0 

+ т-^- тт (~)Г[(*i - s)""1 - (í2 - s ) - 1 ] / ^ , ф ) ) ds 
[n — i). j ł { t 

+ (Ţľ4т~ ( D ) / ' ' ( ŕ l - s ) n _ 1 / ( s ' 2 ( s » d s ' 

n - 1 
T 

г 
7 = 0 

^-[(h-toУ-^-toУ] 

~7 + тг^үyт (-^/'Ъi - s ) n _ 1 - (*2 - ^)"-1]"!^) cb 

+ ^_t-p-(I>)/ (^-sr- 'mis jds 

n - 1 

1 I*1 

« F(.-)((,) - F(--)«2) < £ £ [« . - W - ('2 - to)'] 
i=0 

+ T-^Try (D)[t2[(h - 5)"-1 - (*2 - *)"->/(*) els 
V 1 ! > / • J/() 

+ , 1^(D)I \ty - s ) n - - A f ( s ) d s , Mi.*2 GJ, *i > l 2 , - 6 . B , 
( ™ - l ) ! Jt2 

imply that F(B) C B and the family is equiuniformly continuous. 

Now, we verify that F is continuous. Let ZQ G B and let (zm) be a sequence 
such that zin G I3 for m G N and ~m —i> :Jn &s '>> —> co. Fix t £ J. Put <DiT(5) — 
(*-.s-) , l-7(s^m(5)),^?(5) = (^-5) ' l -7(5,-o(5)) for s G [0,*]. Obviously (Dr(s) -> 
V??(s) for a.e. 5 G [0,l] as 777, —» 00. By the well known Dominated Convergence 
Theorem, we infer that lim F(zni)(t) = F(z)(t). Since F(B) is equiuniformly 

?n—• o o 

continuous, we deduce that the mapping F is continuous. 
In view of the above it is clear that F satisfies the conditions of Vidossich's theorem 

and therefore the set S is IT<$. • 
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