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ON A GENERALIZATION OF PERMUTABLE
E QUIVALENCE RELATIONS

HILDA DRASKOVICOVA

Bratislava,

The concept of permutability of two equivalence relations is of great impor-
tance in many fields. There are situations where a more general concept of
permutability dealing with more than two equivalence relations is needed
(e. g. direct representations of algebras [9], [10], subdirect representations
of algebras [15], or independence of equational classes [6]). Such concepts
are introduced e. g. in [9] (,,completely permutable’* equivalence relations)
and [10] (,,associable* equivalence relations).

Lattice — theoretical consequences of pairwise permutability of equivalence
relations were studied by several authors (see e. g. [3], [7], [14]). One of the
most familiar examples is Dedekind’s theorem on the modularity of con-
gruence lattice of a group. The aim of the present note is to study some lattice
— theoretical properties of systems of equivalence relations derived from
a system of associable equivalence velations [10] and because in some cases
a generalization of the concept of equivalence relations is useful, such as
symmetric and transitive relation (ST-relation) (see e. g. [3] and [8]), the
definitions and theorems of the present paper are given for ST-relations
and specialized to equivalence relations. The mentioned results in [3], [7],
[14] are obtained as corollaries. Some results of [7] concerning pairwise permut-
ability of equivalence relations are completed (Theorem 2.12, Remark 2.17).
P... Dwinger [16] proved that the congruence lattice of an algebra with pair-
wise permutable congruence relations is completely modular. In theorem 2.8
we get a goneralization of this assertion. It seems that J. Hashimoto’'s
concept of permutability isless convenient to obtain the lattice — theoretical
consequences treated in this paper (even not for equivalence relations, see
Remark 2.6).
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1. Notations, Definitions and Some Propositions

In the whole paper M will denote a non-empty set. The empty set is denoted
by 0. Given two binary relations 4, B, AB will denote their product (cf.
[1, VII, §3]).

Definition 1.1. ‘We say that two binary relations Ay, A2 are permutable if
A14, = AzAl .

A partition in a set M is a system of non-empty disjoint subsets of 3.
Symmetric and transitive relations shall be shortly called ST-relations. There
is a one-one correspondence between ST-relations in a set M and partitions
in the set M. The symbol D(4,) will denote a domain of the ST-relation 4,,
that is {&: z € M, there exist y € M such that x4,y}. The symbol O will denote
the empty ST-relation in M (i. e., xOy does not hold for any =, y € M) . D(0) =
= @. ST-relations in M with the empty relation form a ¢omplete lattice with
respect to a partial ordering =<, defined as follows: 4; = A; denotes x4y =

= 2A2y. O. Borivka [2, § 13] has shown that there exists a partion \/ 4,,
yel

which is a lattice — theoretical join of partitions 4,, for an arbitrary system
{4y :y el'} of partitions in M. The same holds also for ST-relations. We
shall use the symbols A, V, A,V (and N, V) for lattice — theoretical opera-
tions (and set-theoretical operations). By a block of an ST-relation A4, it
is meant a set A} < D(d4,) such that there exists an element y such that
A} = {x: x4,y}. We shall define some ST-relations by quoting their blocks.
E. g, C: {1, 2}, {3} will denote the ST-relation whose blocks are {1, 2}, {3}.
Blocks of ST-relation 4, will be denoted by A%.

Lemma 1.1. [2, § 13]. Let Ay be an ST-relation for any y e I'. x(\] Ay)y <

yel'
<> there exists a finite sequence u, iz, ..., t, € I' such that x4, A, ... 4.y.

Definition 1.2. A system {4, : y € I'} of ST-relations in a set M will be called
associable if it has the following property: Let {xv :y € I'} be a system of elements
of M such that x*(\f Ay)xf for any «a, p €I. Then one of the next properties is

yel
satisfied :
(1.1) There exists x € M such that ¥ Ayx for any y €I
(1.2) There exists a € I' such that all elements x? lie in one block AL of the
ST-relation A and for any y € I either AL N D(A4,) = O or AL is a block of
the relation A, .
The following Lemma is obvious.

Lemma 1.2. 4 system {41, Az} of two ST-relations is associable if and only
if A1 and A4y are permutable.
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Remark 1.1. In the case that {4d,:yel} is a system of equivalence
relations on M the Definition 1.2 is in accord with the Definition of M. Koli-
biar [10].

Remark 1.2. The empty relation O is permutable with any ST-relation.

Definition 1.3. We call a set S of ST-relations on M completely permutable if
and only if any subset {A,} < S satisfies the following condition :
(1.3) If 2MC; V Cy) a7, where Cy = N\ Ay, there exists x € M such that

v#£A
x? Ayx.
Remark 1.3. J. Hashimoto [9] similarly defined the completely per-
mutable system of equivalence relations.

Lemma 1.3. [5, Lemma 2.1]. The mapping h: A,— D(Ay) is a lattice homo-
morphism from the lattice of ST -relations in a set M onto the lattice of all subsets
of the set M (onto 2M ).

Theorem 1.1. [4, Theorem 4.3]. Let A, B be ST-relations in M. A necessary
and sufficient condition for the correspondence DB\ D(4A =D = 4 A\ D),
C>ANC (AV B2 C 2z B) to define an isomorphism of the intervals [B,
A\ BI[A A B, A] is: Any block V of the relation A \/ B either contains no
block of the relation A or contains such a block A of the relation A, that any
block A2 (of the relation 4), A2 & A1, A2 < V, is contained in some block of
the relation B.

Lemma 2.1. Let A, B be ST-relations in M and let A < B. Then AB = BA
if and only if the following condition is satisfied:

(2.1) If for a block B! of the relation B, Bt N\ D(4) + @, then B! < D(4).

Proof. Let AB = BA, ye B' N D(4) and let x € B! — D(4) + @. Then
xBAy, but xABy does not hold which is a contradiction. Conversely, let
A = B and the condition (2.1) be fulfilled. Then xABy <> 2By and « € D(A) <
< xBy and ye D(A) < xBAy.

Corollary 2.1. Any two comparable equivalence relations are permutable.
The symbol A,|M; denotes the restriction of A4, to the set M.

Lemma 2.2. 4 system {4y :y eI'} of ST-relations in M is associable if and
only if a subset My = M exists such that the following conditions are satisfied:
1. {A)| My :y eI} is an associable system of equivalence relations on M;.

2. If for a block A} of a relation A,, AL N (M — M) + O holds, then A} <
c M — Ml,
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3. If for some blocks A}, A} of relations Ay, As (y,sel), Al e M — M,

Al M — My, AN A;+ O hold then Al = 45.

Proof. Let a system {4,:yel} be associable. Let M; = N {D(4y):
1y €I'}. Then 1. obviously holds. Now we show 2. Let A} be a block of 4y
and let ae AN (M — M), be AL N M. Set a7 = b and 2? =a for all
derl, 6 + y. Then either there exists x € M such that adsx for all § + y,
or there exists a € I" such that a, b € AL and A} is a block of each relation Ax
(because b € A1 N D(A,)). In both cases we get a € D(4,) for all » € I', which
is a contradiction. Hence 2. holds. Now let A},, A} be blocks of 4,, As; con-
tained in M — My and let be AL N A}, ac A}. Set a* = a for all » + 7,
x¥ = b. Then there exists « € I" such that a, b € AL and A} is a block of the
relation As. Hence a€ AL = A}. It implies A < A; and symmetrically
4} < Ai. Hence 3. holds. Conversely, let 1., 2., 3. hold and let {z¥:y eI}
be such a system of elements of 2 that a*( \/ Ay)xf for any «, § € I'. From 2.

yel
it follows thateachblockof \/ A4, is contained either in M; or in M — M;.

yel
Hence all x¥ are contained either in M; or in M — M;. In the first case the

condition (1.1) of Definition 1.2 is fulfilled, in the second case (1.2) of Defi-
nition 1.2 is fulfilled.

Theorem 2.1. Let {A,:c€I"} be an associable system of ST-relations in M
and A < I'. Then the system {4, :y e A} is associable, too. In particular any
two ST-relations A,, As (y,0€l') are permutable.

Proof. Let {z?:yeA} be a system of elements such that x:(\/ 4,)z?

veAa
for any ¢, e 4. Let A € A be an arbitrary selected element. We set a¢t = x4

for veI' — A. x7(\/ A)a’ holds for any 5, vel (because \ 4, £V 4)).
cerl’ yed tel

If (1.1) of Definition 1.2 holds then by the assumption there exists x € M
such that a*4,x for any ¢ € I" and thus the condition (1.1) also holds for the
system {A4,:yeA}. Let the system {x¥:y eI} satisfy the condition (1.2).

Then 2% € A, and, since z*( \/ A,)x*, x* € D(A,,) for some 4; € A. It follows
yea

that A} is a block of 4; and consequently, we can suppose « €. Now it
is obvious that (1.2) is satisfied for the system {z?:y € 4}. Consequently the
system {4,:y €A} is associable.

The next assertion follows by using Lemma 1.2.
Corollary 2.2. Let {A,:t eI} be an associable system of equivalence relations
tn M (see Remark 1.1) and A < I'. Then also the system {4, :y € A} is asso-

ciable. In particular any two equivalence relations Ay, As (y, d € I') are permu-
table.
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Corollary 2.3. Let {4, : 1€ I'} be an associable system of ST-relations in M.
If for some block Al of a relation Ay it holds AL N D(Ap) + O («, BT, then
Al < D(4p).

Proof. Let ac AL N A; + 0 and A} ¢ D(4p), i. e. there exists be A4,
such that b ¢ D(Ag). Then bA, Aga holds but b4z Awa does not hold, contrary
to Theorem 2.1.

Remark 2.1. Let {4,: eI} be such a system of ST-relations in M that
any two elements of the system are permutable. The system {4,::el}
need not be associable, not even if it is a system of equivalence relations,
as the next example shows: M = {1, 2,3,4}; A: {1,2}, {3,4}; B: {1, 4},
{2,3}; C: {1,3}, {2,4}. AB = BA, AC = CA, BC = OB hold. The system
A, B, C is not associable because to.the elements x4 = 1, 2B = 2, 2€ = 3
there does not exist an element x fulfilling condition (1.1) of Definition 1.2
and condition (1.2) of Definition 1.2 is not satisfied, too.

Theorem 2.2. Let A be an ST-relation permutable with any ST-relation B,
teI'. Then A is also permutable with the ST-relation \/ B,.

serl’
Proof. Let us denote \/ B, = B. Let xABy. Then there exists z such
el
that x4z and 2By hold. By Lemma 1.1, z4z and there exist «w, ¢, ..., tn €I’

such that zB, ... B,y. Then z4B, ...By. It follows 2B A ... B.y.
By successive application of permutability we get B, ... B, Ay. It follows
that there exists an element ¢ such that B, ... B,t and {4y hold. By Lemma
1.1, 2Bt and tAy hold. Thus xBAy and we have proved 4B < BA. By the
assertion 3.5 [11] we get 4B = BA4.

Remark 2.2. An analogous statement for two equivalence relations has
been proved in the papers [7, §3, Th. 1, p. 76], {14, Chap. 1, § 8, p. 591].

Remark 2.3. Theorem 2.2 does not hold for A B, not even for a meet
el

of two equivalence relations as an example in [11, § 2] shows.

Theorem 2.3. Let {4,::eI'} be an associable system of ST-relations in M.
Let {B,: €I} be such a system of ST-relations that D(B,) = D(A,) and A, <
< B, = V A, hold for any ve€I'. Then the system {B,:vel'} is associable.

e’
Proof. Let {a*:ceI'} be a system of elements of M such that for any 2,
xel' z/(\/ B)x* holds. \/ B, = \/ 4, holds and thus z*(\/ 4,)z*. By

tel cel’ tel’ tel’

assumption, (1.1) or (1.2) of Definition 1.2 holds. If (1.1) holds, then there
exists x € M such that x*4;x and thus x*B;x holds for any A eI It follows
that condition (1.1) is fulfilled for the system {B,::eI'}, too. Now let con-
dition (1.2) of Definition 1.2 be satisfied, i. e. there exists « € I" such that all
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elements ¥ lie in one block A’ of the relation A, and for any y e I' either
Al " D(A4,) = 0 holds or Al is a block of the relation 4,. We assert: A is
a block of the relation B,. Since A, < By, there exists B! such that AL < B!.
If Al & B!, then since D(A4,) = D(A4g), there must exist A2 £ Al such

that AL U A2 < B!. Because B, < \/ A, therc exists a block 4 of a rela-
eI’

tion As (0 €I'), incident with both blocks A, A2, contrary to condition
(1.2). Thus A! is a block of the relation B,. In the case that A} is a block of rela-
tion 4, we have to show that it is a block of the relation B, , too. Let us denote
Ay = A}. If A} < B, then, since 4, < B, and D(A4,) = D(B,), thete
must exist A2 # A} such that 4} U A2 < B.. Since B, < \/ 4,, a block

e’

Aj of a relation A; exists (Ael’, 2 & p) which is incident with both blccks
Ay, A2. Then AL N D(41) + O and Al is not a block of relation A; contrary
to condition (1.2) of Definition 1.2. Tt follows that the block A, = 4, is
a blcck of relation B,. In this case the system {B,:.e I} fulfils condition
(1.2) of Definition 1.2, too. It follows that the system {B, : « € I'} is associable.

Remark 2.4. The condition D(4,) = D(B,) for any ¢l cannot be left
out as the next example shows: A4;: {1}, 42:{2, 3}, B1: {1}, {2}. 41V 42 =
= B1 = A4, . 2B1423 holds but 3B14:2 does not hold, consequently Bi4s +
+ AsB;. It follows that the system {Bi, 42} is not associable, although the
system {A;, 4s} is.

Corollary 2.4. Let A, B, C be ST-relations in I and let AB = B4, A £
= C= AV B, D(C)=D(A). Then B and C are permutable.

Corollary 2.5. Let {A,:c¢€l'} be a system of equivalence relations on M.

Let {B,: eI} be such a system of equivalence relations that 4, < B, < \J 4,
el

hold for any e I'. Then the system {B,:c€l'} is associable.

Remark 2.5. An analogous statement to the Corollary 2.4 for equivalence
relations (in this case condition D(C) = D(4) is automatically fulfilled) is
proved in papers [3, §5.3], [7, Th. III., p. 77].

Remark 2.6. The assertion of the Theorem 2.3 does not hold if we replace
,,associable by ,,completely permutable® (see Definition 1.3) even in the
case of equivalence relations as the following example shows: M = {1, 2, 3,
4,5,6}; 4di1: {1,2,3}, {4,5, 6}; 42: {1,2,4,5}, {3, 6}; ds: {1}, {2}, {3}, {4},
{5}, {6}. 41V A2V A43: {1, 2, 3, 4, 5, 6}. The system {4;, A2, A3} is comple-
tely permutable, because every two elements of this system are permutable
and C1 = Az = Cz, O3 = A1 A A2: {1, 2}, {3}, {4, 5}, {6} and 2i(C; \/ Cj)a/
implies a1 = 22, 23Cs2!, x2Cs23. It sufficies to choose x = 3. Let us take the
system {41, As, A3}, where A;: {1}, {2, 5}, {3}, {4}, {6}. It is evident that
the assumptions of the (modified) Theorem 2.3 are satisfied. 0 = 4, A A3 =
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Ay, 0y = A, N Ay = A,, Cy = A, \ 4, = C,. Let us take ! = 2, 22 = 5,
a3 = 4. Then 2(0; \V C3)5, 5(Cy \/ C3)4, 2(Cy\/ Cz)4 hold but there does
not exist an element x € M such that 24z, 54,», 44;x would hold. It follows
that the system {A4,, 4,, A;} is not completely permutable.

Theorem 2.4. Let {A,:c€I'} be an associable system of ST-relations in M.
Laa I'=Tuls, N"NITy=0, I + O and let B be such an ST-relation that
B < A, holds for any €Iy and D(B) < D(A4x) for any » € I's. Then the system
{Ai:veln} U{B YV Ay:xels} is associable.

Proof. If xels then A4, < BY Ax < V A..D(Ax) < D(4. V B) =

cel’
D(B) U D(Ax) = D(Ay) (Lemma 1.3). Thus D(4x) == DBV Ax) and
consequently the assumptions of Theorem 2.3 for the considered system are
fulfilled.

Corollary 2.6. Let A, B, C be ST-relations in M. Let AB = BA, C £ A
and D(C) = D(B) hold. Then A and C \/ B are permutable.

Remark 2.7. An analogous statement to Corollary 2.6 for equivalence
relations (here the condition D(C) < D(B) is automatically satisfied) was
proved by O. Boruvka [3, §5.3].

Corollary 2.7. Let {A4,: . eI} be an asscciable system of equivalence relations
on M. Lt I' =11 U Is, 1 NI = 0, It + O and let B be such an equivalence
relation on M that B < A, holds for any ¢eI'1. Then the system {A4,: eI} U
U{BV Ax:x eIy} of equivalence relations is associable.

Theorem 2.5. Let {4,: €1} be an associable system of ST-relations in M.
Laa I'=INuls, "NITy=0, 1N + 0, I's + 0 and let By, By be such ST-
relations that By = A, for any tel1, By < A, for any x€l'>s and D(B;) <

< D(Ay), D(Bz) = D(A,) for any » € I's and any ¢ € I'y. Then the system {B: \/
V Aiieel} U {By \V Ax:x€ls} is associable.

Proof. It suffices to use the Theorem 2.4 twica.

Corollary 2.8. Let A, B, A’, B’ be ST-relations in M, AB = BA, A" £ A,
B" £ B, D(A’) < D(B), D(B’) < D(A). Then A\ B and A" \/ B are per-
mutable.

Remark 2.8. The assumption about the domains of the considered ST-
relations in Theorem 2.5 and Corollary 2.8 can be omitted if all these ST-rela-

tions are equivalence relations. In this case Corollary 2.8 is symmetric to the
Ore’s assertion (see Remark 2.10).

Theorem 2.6. Let {4,: €I} be an associable system of ST-relations in M.
Lt ' =T"uls, NNTy=0, It + O and let B be such an ST-relation in
M that A, £ B holds for any t€I. Then the system {A,: 1€} U {B A A4x:
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: % € I's} s associable. In particular it kolds if all A, (1€ I') are equivalence rela-
tions.

Proof. Let {av:y €I’} be such a system of elements of M that for all
y,0el

(2.2)27(V 4,V V (B A\ A,))x?® holds.

ter’; el

It follows

(2.3) 27( \/ Az)xd holds for all y, § e T,
| Ael’

(2.4) xvBx? holds for all y, 6 eI
With respect to (2.3) and to the fact that the system {4, : ¢ € I'} is associable,
one of the conditions (1.1), (1.2) of Definition 1.2 is fulfilled. If condition (1.1)
is satisfied then it suffices to show z*Bx for any x e I';. But this follows di-
rectly: Since I't $ 0, there exists § € I'1. Then x%A4 sz, thus x°Bx which follows
by using (2.4), 2*Bx for any x» € I';. Now let condition (1.2) be satisfied. Let B!
be a block of the relation B containing x¢ (by (2.4) such a block exists). By (2.4)
x* € B! holds for all A eI, thus all elements 2* beleng to the bleck B! N Al
of the 1elation B A\ Ay. (If « € [ then obviously BlN Al = A!.) Now we shall
verify condition (1.2) for the system {d,:teN}U{B A 4x:xel3}. If
y € Il this is trivial. Let y € I'; and Al N D(4, A\ B) + 9. It follows Al N
N D(A4,) + 0. Then A} is a block of the relation 4,, thus Bl N A is a block
of the relation B A 4,, too. Consequently, the considered system is associable.

Corollary 2.9. Let A, B, C be 8T-relations in M. Let AB = BA andlet A < C
hold. Then A and B A C are permutable.

Remark 2.9. An analogous statement to the Corollary 2.9 for equivalence
relations is proved in papers [3, § 5.3], [7, Th. TI., p. 76], and [14, Chap. I.
§ 8].

Theorem 2.7. Let {A,:te€I'} be an associable system of ST-relations in M.
La I'=Tuly, NNnlo=0,11+ 0, I's + 0. Let By, Bs be such ST-rela-
tions that A, £ Bi holds for any «e I'y and Ay < Bs holds for any x € I's. Then
the system {By \ Ayx:x€l2} U {Bs \ A.:veT} is associable. In particular
this holds if all A, (t€I') are equivalence relations on M.

Proof. It suffices to use Theorem 2.6 twice.

Corollary 2.10. Let A, B, Ay, By be ST-relations in M. Let AB = BA, A £ A,
B £ By hold. Then A1 A B and By \ A are permuiable.

Remark 2.10. An analogous statement to this Corollary for equivalence
relations is in [14, Chap. I, §S8].

Theorem 2.8. Let 4, B, (for 1eI') be ST-relations in M. Let any two ele-
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ments of the system {4,: eI} be permutable and let
(2.5) A, = By hold for any ¢ £ 2.
Then (\ A) A A\ B. =V (4. A\ By). In particular this holds if A,, B, (teT)

tel’ eI’ tel
are equivalence relations on M.
Proof. (V 4) A A\ B.=V (4, A B) holds for the elements fulfilling
tel” cel’ el
(2.5) in an arbitrary complete lattice. We shall show the converse inequality.

Let z[(V 4:) A A By bold. Then z(V 4.)y and xBy for any ¢ e I'. This

tel’ tell tel’
means that there exists a finite sequence 20,21, ..., 2, 20 = 2, 2, = y and
to any i€{0, 1, ..., n} there exists (i) €I’ such that 2; 4,szi+1. Because

of the permutability we can suppose «(¢) + «(j) for ¢ + j. Let ¢ € {0, 1, ..., n}.
Then z; A,uzi41. If 2 % j then Ay = By, consequently 2;Byiyzj1 holds
for all j # . Then z; Biyyx and 2z;11Biayy. Bubt By, thus z; Bizi+1. From
this and from z;4,4yzi+1 it follows 2;(A.sy A Buiy)zi+1- Hence 2[ F(A, A B)ly.

Corollary 2.11 [16]. Let U be an algebra such that each two congruence relations
of A are permutable. Then the lattice of all congruence relations of W is completely
modular (%. e. satisfies the assertion of Theorem 2.8). In particular the lattice
of all normal subgroups of a group is completely modular.l)

Corollary 2.12. Let A,, B, (te ') be ST-relations in M. Let the system {4, :
: 1€ I'} be associable and let A; < B, hold for any ¢ + ». Then (\} 4) A A\ Bi=

cel’ el

=V (4. A\ B.). This holds in particular if A,, B, (t€I') are equivalence rela-

tell’
tions on M.

Corollary 2.13. Let A, B, C be ST-relations in M. Let AB = BA and A < C
hold. Then B is modular with respect to C and A 1. e. C N(AV B)y=4V
V (C A B).

Remark 2.11. An analogous statement to the Corollary 2.13 for equiva-
lence relations is proved in the papers [3, § 5.4], [7, Th. VII., p. 81], and
[14, Chap. I, § 8]. The converse statement to Corollary 2.13 [i. e. that the
implication 4 = C=C A (A V B)= A4 V (C A\ B) follows AB = BA] does
not hold, not even for equivalence relations as the example in [3, § 5.4] shows.

Corollary 2.14. Let A, B, C, D be ST-relations in M. Let AB = BA, A £ C,
D(C) = D(4), B = D and D(D)= D(B) hold. Then A1 = AV (C A\ B) =
=CNANAVB) and Bi=B\V (A AND)=D A (AYV B) are permutable.

1) The concept of ,,complete modularity‘‘ is due to A. G. Kuros [13]. The last assertion
on the lattice of normal subgroups is given in [12, Chap. XI., § 44].
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Proof. It suffices to use Corollary 2.8 by setting 4’'=4 A D, B' =
=CAB.DD A A)=DD)Nn D) =DB)ND4) =« DB) (Lemma 1.3)
and similarly D(C A B) < D(4).

Remark 2.12. An analogous statement to this Corollary for equivalence
relations (the conditions D(C) = D(4), D(D) = D(B) are automatically
fulfilled) is in [3, § 5.4].

Theorem 2.9. Let A, B, C be ST-relations in M, AB = BA, C £ A\ B,
D(C) =« D(A)NnDB) and C= 4V C)A\NBYVC). Then CA = AC and
CB = BC hold.

Proof. Since AB=BA, A <4V C= A4V B and D(C) = D(A4) hold,
by Lemma 1.3 D(4 \V C) = D(4) Y D(C) = D(A4); then by Corollary 2.4
AV C and B are permutable. Combining this with B < B \/ C we get, using
Corollary 2.9, that C = (4 V C) A (B V/ C) and B are permutable. C4 = AC
can be proved symmetrically.

Remark 2.13. The fellowing example shows that even for equivalence
relations the following statement, being the converse of Theorem 2.9, does
not hold: Let 4, B, C be equivalence relations on M, AB = BA,C = 4 \V B,
CA = AC, CB = BC. Then C = (4 V C) A (B V C). This statement does
not hold even if we suppose A A B = C. Example: M = {1,2,3,4}; 4:
(1,2}, {3,4); B: (1,4}, {2,3}; C: {1,3), {2,4}; A A B: (1}, {2}, {3}, {4:
AVB=BYVC: {1,2,3,4}; CA=AC, CB=BC, but, C + (4 V C) A
A (BYV C) because 1(4 \V C) A (BV C)2 holds but 102 does not hold.

Corollary 2.15. Let A, B, C be ST-relations in M, AB = BA, C be between A
and Bli.e. ( ANC)V (BANC)=C=(AV CO)A BV O)],DEC)< DA)N
N D(B). Then CA = AC and CB = BC hold.

Lemma 2.3. Let A, B, C be such ST-relations in M that CB = BC and A )
ANB=C= A hold. Then C=A4A A (C \ B).
Proof. By Corollary 2.13, A AN (C\V B)=CV (4 A\ B)=C.

Lemma 2.4. Let A, B, C be ST-relations in M such that AB = BA and
AANBZC=ZA4 hold. Then: BC=CB<«C=A4 A\ C" for some C' such
that B < C' <= A\ B. The above-mentioned assumptions imply that C' =
= B\ C holds.

Proof. The assumptions BC = CB, C £ 4 imply by Corollary 2.13 4 A
ANBYVC)=CV (A ANB)=C.Conversely,let C=A4 NC',B<C' = AV B.
By Corollary 2.13, it follows ¢’ =C" A (A V B)= BV (C' N Ay= BV C.
By Corollary 2.9, C = 4 A ¢’ and B are permutable.

Remark 2.14. The implication ,,<~=** for the equivalence relations is proved
in [7, Tb. VII,, p. 78].
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Theorem 2.10. Let A, B be ST-relations in M such that AB = BA. Then
the mapping ¢ : C'—> A N\ C' is an isomorphism from the interval [B, A \/ B]
onto some sublattice P of the interval [A N\ B, A]. The sublattice P consists of
exactly those ST-relations of [A N\ B, A] which are permutable with B.

Proof. Let us take C;, C,e[B, AV B]. A AN (O3 A Cy) = (4 A\ C) A
A (4 A Cy). Let us denote C; = A A C; for i = 1, 2. From the facts C; = B
and AB = BA we get by Lemma 2.4, C; = B \/ C,for i =1,2. Then 4 A
ACLVC)=ANBYVCVC)=A4NA[BY (C.V ()] By Corollary 2.9
BC; = (B for ¢ =1, 2. By Theorem 2.2, B(Ch V Cq) = (C1 \V C2)B. Using
Corollary 2.13, weget A A [BV (C1 V C2)] = (A AB) V [4 A (C1V Cs)] =
—ANCIVC)=0C1VCa=(4dAC)V (4 A C,). Now we show that @
is injective. Let Oy, C,e[B, A\ B], O] # C,. Let us take C; = A A C;
for i=1,2. If C1 = C;, then C; =BV Ci =B\ C, = C,, contrary to
the assumption. The remaining assertion about the sublattice P follows from
Lemma 2.4.

Remark 2.15. An analogous statement for equivalence relations is
in the paper [7, §5, p. 82].

Remark 2.16. In paper [7] the following Theorem is proved (Theorem V,
p- 78): A necessary and sufficient condition that any equivalence relation
Cel[A A B, A] be permutable with the equivalence relation B is that 4
and B be ,,semi-consécutive’. (The equivalence relations A4, B are called
semi-consécutive if any block of the relation 4 A B is either block of the
relation A4 or B.) If we introduce an analogous concept of semi-consécutivity
for ST-relations in M then the mentioned Theorem need not hold, as the
following example shows: M = {1,2,3,4,5,6,7,8}, B: {1,2}, {5,6,7,8},
A:{1,2,3,4}, {5,6}; A A\ B: {1, 2}, {5, 6}. Let us consider the ST-relation
C: {1, 2, 3}, {5, 6}. The assumptions of the said Theorem are fulfilled, but
OB + BC, because 3CB1 holds and 3BC1 does not hold.

Theorem 2.11. Let A, B be ST-relations in M. The necessary and sufficient
condition that all ST-relations C € [A N\ B, A] be permutable with B is: AB =
— BA and any block V of the relatton A \/ B either contains no block of the
relation A or contains such a block A of the relation A that any block A2 (of the
relation A), A% 4= A, A2 < V, is contained in some block of the relation B.

°

Proof. The assertion follows from Theorem 2.10 and Theorem 1.1.

Theorem 2.12. Let A, B be permutable ST-relations in M and let the system
{Cy:yel'} of 8T-relations in M have the property: A AN B = C, £ A holds
for any y eI" and any C, is permutable with B. Then \/ C, and A C are

yell yel'

permutable with B, thus the set of all ST-relations of the interval [A A B, A]
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which are permutable with B forms a complete lattice which is a closed sublattice
(¢f. [1]) of the interval [A N\ B, A].
Proof. By Theorem 2.2, (\ C))B = B(V Cy)). Now let aB(/\ Cy)b

yel'

Then there exists an element % such that aBu and u( A Cy)b, thus uCyb

yeP

for any y e I Then aBCyb for any y e I' and with respect to BC, = C,B
for any y € I, there exist elements s, such that:

(0) aCysy holds for any y e I"

(00) s,Bb holds for any y e I'.
Thus s,Bs, for any y, x €I'. Obviously ads, for any y € I', thus s,4s, for
any v, » €. Hence s,(B A\ A)s, for any y, x € I', which follows s,Cys, for
any y, x € I. Combining this with (0) we get aCys, for any y, x €I, thus
a( A\ Cy)sx. Combining this with (00) we get a( A Cy)Bb. We have proved

yel’ yel
B(ACy) = (ACy)B and by the statement 3.5 [11], B(A C)) = ( A C,)B
yel’ yvel' yel' yel'
follows.

Remark 2.17. In paper [7, Th. VI, p. 79] it is shown that the set of
equivalence relations from [4 A B, A] which are permutable with the equi-
valence relation B forms a sublattice of the interval [4 A B, 4].
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