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Matematický časopis 19 (1969), N o . 3 

ON THE PROJECTIVE TENSOR PRODUCT 
OF VECTOR-VALUED MEASURES II 

M I L O S L A V D U C H O f t , Brat i s lava 

1. Let X and Y be locally convex spaces. Let (S, Sf) and (T, ST) be measur­
able spaces (Sf and ST being sigma rings [1]), and let /j, : Sf -> X and v : ST -> Y 
be sigma additive vector-valued measures. As shown in [10], there need not 
exist, in general, a projective tensor product of the vector measures ja 
and r, i .e. a sigma additive vector measure X : Sf ®<- ST -> X ® Y such t h a t 
X(E x F) = JU(E) ® V(F)9 EeSr.F eST. 

Those locally convex spaces X, for which for any locally convex space Y 
and any vector measure /u : Sf -> K and v : ^~ -> Y such a measure A exists, 
we called in [4] admissible factors and we have found some such locally convex 
spaces. For example, every nuclear space is an admissible factor [3] and every 
Banach space with an absolute basis is an admissible factor [4]. 

In this paper we give some conditions imposed on either a vector measure 
jit or v under which there exists a projective tensor product of these vector 
measures. For example, the finiteness of the variation of either /u or v is such 
a condition. 

2. Let a locally convex topology on X be generated by a family of semi-norms 
{I l«}«6̂ - Similarly {| \fi}fieB for Y. 

The projective tensor product of X and Y is a locally convex space X ® Y, 
the topology of which is generated by a family of semi-norms y = a ® /3, 
a e i , p e B: 

n n 

\z\v = inf ( 2 \xi\oi \yt\p : 2 = 2 x< ® *̂} 

with the property that \x ® y\y = \x\a \y\p for all x e X, y e Y [cf. 2, 8, 11, 13]. 
The locally convex space X ® Y can be imbedded in a complete locally 
convex space which is unique (to within isomorphism) and is denoted by 
X (|) Y (cf. [13], p. 94). 

In the sequel we shall make use of the following 

Theorem 1. Let T be a set, ST a sigma ring of subsets of T, and v : ST -> Y 
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a vector measure. Then for every ft e B there exists a finite nonnegative measure v@ 
such that 

lim \v(F)\p = 0 
v<K-F)-X) 

and 

Vfi(F) <: sup \v(H)\p for F in 3~. 
HQF 

This theorem is proved in [5] and [6] in the case where T G J and Y is 
a Banach space. An elementary proof was given in [7]. The condition T e J 
can be dropped due to the fact (proved in [9]) that there exists a set T0 in S7~ 
such that \v{JF)\$ = 0 for every set F in ST disjoint from To (cf. also [15]). 

In some cases vector measures have the finite variation (cf. [16]). Recall 
tha t if 3% is a ring of sets and JU : £% -> X is a vector measure, the variation of JU 
is the set function |/*|a defined by the relation 

n 

\lA\0L(E) = m^\iJL(Ei)\OL,Eeat, xeA, 
i=l 

where the supremum is taken for all finite disjoint families {Et} c: 3% such that 

\JEt = E. 
i 

The semivariation of ju with respect to Y is the set function |! |̂|* defined by 
the equality 

\\/A\y(E) = suV\2MEi)®yi\v, Ee®,y = oL®p, 
i = \ 

where the supremum is taken over all finite families {Et} of disjoint sets of 3$, 
\JEt=E and all families {yf} of Y such that \y{\0 ^ 1 (cf. [16], I. IV. 1). 
i 

Definition. Let JU : 6? -> X be a vector measure. We say that ju is dominated 
with respect to Y by a nonnegative finite measure mv on S? if and only if 

MlJ'(-E) -> 0 if my(E) -+0, EeST, y = x®p. (cf. [18]). 

Theorem 2. Let /u : S? -> X and v : ST -> Y be vector measures. Let /u be 
dominated with respect to Y by my, y = at® fi, oc e A, fi e B. 

Then there exists the projective tensor product X = /u ® v : Sf ®a &~ -> X ® Y 
of the vector measures JU and v. 

Proof . If a set G is of the form 

(1) 0 = \JEi xFi9 
i-i 

where the union is disjoint and Et e Sf, Ft e^~, i = 1, ..., k, then in view 
of the additivity condition we define the function X by the equality 

229 



(2) HG)=2f*M)®v(F{). 
i = l 

I t is easy to see that the function X is unambigously defined by the last equality 
on the ring Sf 0 ST of sets of the form (1) and tha t it is additive on SP 0 ^~. 

We must prove that X can be extended to a sigma additive function on the 
sigma ring Sf 0<- ST generated by the ring Sf 0 £7~ with values in X ® Y. 
I t is known (see e. g. [9], § 4) that such an extension (if it exists) is only one. 
To prove an existence if suffices to show that there exists a nonnegative 
bounded measure Xy, y = a 0 /3, on Sf 0 &~ such that 

lim \X(G)\y = 0, GeSf®3r, 
;.v(O)-*o 

because then X is evidently sigma additive and can be extended to a sigma 
additive function on Sf ®G ST ([9], Theorem 4.2). 

By the Theorem on exhaustion of a measure ([17], 17 (3)) there exists 
a set SQ in Sf such that my(E) = 0, hence \\ju\\y(E) = 0, for every set E in Sf 
disjoint from $o . Using Saks' lemma ([5], IV . 9. 7) it can be proved that there 
exists such a Ky < oo that ||/^||*($o) ^ Ky < oo and from the monotony 
of \\p\\f it follows that \\JU\\^(H) ^ \\p\\*(S0) ^ Ky < oo for every H a S0, 
H eSf. Further there exists a Kp, 0 < K$ < oo such that K$ = sup |i>(F)|B <oo 

F*-f 

([5], IV. 10.2). 
Let e and d be such two positive numbers that my(E) < d, E e £P imply 

\\ju\\^(E) < e and v0{F) < d, F e ^ imply \v(F)\fi < e (Theorem 1). We wish 
to prove that there exists a Ky, 0 < Ky < oo, such that for every set of the 
form (1) with Ei mutually disjoint the inequality 

implies 

where 

In fact, put 

Then 

k 

mv X vp(\J Ei X Fi) < ó2 

i = l 

k 

\X(\JEÍ xFi)\y<eKy, 
i = l 

X(\JEi xFi) = 2ti(Ei)®v(Fi). 
i=l i=l 

k 

u 
i = l 

D = {seS: v0{((j Et X Ft).) < d}. 

A- * 

<J- > (my X vff) (\J Et xFt)= J v0(( M í i X Fi)s) dmv(s) ^ 
= 1 KjEi i=l 
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^ / M(Ů E* x Fi)') dmv(s) = dmv(Ú Ei~D)> 
KJEÍ-D i = l 

hence 

and therefore 

We may suppose that 

mv(\J Ei -D)<d 
i = l 

HY(\JEi-D)<s. 

Vß(Ft)<Ò, i = l,...,p, 

hence 

and 

Now 

. / * . . . • H F l ) ] ø 1 \v(Ft)\ß<є, ì .e . < 1, 

Vf,(Fi)^d, i=p+ l,...,k, 

D = Ei U ... U Ep. 

k k k 

|A(U Ft X Ft)\y = | J l(Ei X Fi)\v = I 2 p(Et) 0 r^iJIy 
г=l г=l 

2м#.) ® v(^)|y + i 2 Л ) ® УІЫУ 
г = l ѓ=2?+l 

У 
i= l 

мя.) ® 
f ^ o 

£ + fi(Ei) ® 
*(-?.) 

ѓ=P+l 

Kß й 

\\Y([J Et)e + MY( U Ft)K0 = 
i=p+l 

= \\fi\\Y(D)e + \\fi\\r( U Ei - />)#„ < Z > + sK0 = sKv, 
i = l 

where Ky = K* -f K^ < oo. 

I t is easy to see t h a t X is sigma additive on the ring Sf ® ST and can be 
extended to a sigma additive function (again denoted by) A : Sf (g)a SF -> X ® Y 
([9], Theorem 4.2, cf. also [15]). 

Corollary. 7/ /̂  has the finite variation then there exists a projective tensor 
product of the vector measures [i : Sf -> X and v \S7~ -> Y. 

231 



In this case the finite variation of// acts the part of ray, since 
k k 

\W;(E) = sup I2M-?.)® ytW = S U P 2 H-£.)l« = \/*\*(E). 
i=l i=\ 

Theorem 3. If /u, : Sf -> X and v : ST -> Y are vector measures with a finite 
variation \ju\a and \v\p, respectively, then there exists the projective tensor product 
2. = ft ® v : £? 0(y 2T -> X <g) Y of the vector measures /u and v, and 

(3) |jM<§> 1 ^ = A*U X M/i, oceA, fieB. 

Proof. The existence of a vector measure A = /u ® r follows from the 

Corollary. To prove the equality (3), take disjoint sets Gn = [J Ff x Kf in 
* I 

£f 0 <J~, rc = 1, ..., I. Then we have 

2 \KGn)\y = ^\Il^^)®v(F^)\v <, 
n=l n=l i=l 

= 2 i IM-S?)I« l"W)l/» = i I l/*l«(-5T) M*(*7) = 2 li»« x |r „(£„) = 
71 = 1 i = l W = l 1 = 1 71 = 1 

= H« x HudJGi.)-
w = l 

It follows that for any G e SP' 0 2T we have \k\<x(G) ^ |^|a x \v p(G), hence 
for O in Sf®a$~. 

On the other hand, for any E X F in ^ 0 ^" and for any £ > 0 there 
exist disjoint sets {Et}, \J Et = E, {Fj}, \J Fj = F such that we have 

i j 

H« X \v\0{E XF)= \M\aE)\v\0(F) = 

^ (2HEt)\a + e) (2HF,)\0 + e) = 
i j 

= 2 2H B <) ® "(*V)lr + *(2>(-?0l« + 2MFi)\<,) + «2; 
i > i j 

e > 0 being arbitrary we have 

M« X \v\fi(E XF) ^ |^0v|y(K X F). 
Therefore 

Wa x kl^K xF) = \p® v\y(E X F) 
It follows that 

H« X |r|Mo) = \p ® v\v(G^ 

for any G in ^ ®ff «f7\ The proof is completed. 
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R e m a r k . We have seen tha t if ju has a finite variation so \i is dominated 
l>y \/u\a with respect to any Y. If we take X = ^(1), the Banach space of all 
unconditionally (in this case also absolutely) summable numerical functions 
[&, i E I] defined on an indexed set I, where the norm is ||[f$, i e I]\\ = 2I&I 

iel 

{[2], I I . 2. (1) or [12], 1.1), we can find a vector measure \i : SP-> I1 (I) which 
does not have the finite variation, nevertheless /u is dominated by a nonnegative 
finite measure. In this case for every E e Sf we have [i(E) = [£t(E), iel], 
lience &, iel form a bounded family of uniformly sigma additive scalar 

k 
\k measures. Let {Er}
k
r=1 <= Sf be disjoint sets and E = [ J Er. I t follows from 

r = l 

([12], 7. 2. 2, cf. also [2], IV. 2. 5) tha t for yr in Y, r = 1, . . . , k, \yr\p ^ 1, 

k k k k 

| 2 [£.(#-), I] ® 2/rU = 2 \^HEr)yr\p ^ 2 2 I *« (^)l ^ 2 2 I^K-^r) = 
r - 1 iel r=l iel r=l iel r=l 

= I\mE). 
iel 

Por every iel there exists a finite nonnegative measure mt on -5^ such that 
mt(E) ^ \St(E)\ ^ M(E), and |^|(F/)->0 for mt(E) -> 0. 

Let a c / be an arbitrary finite subset. Take the finite sum for E in Sf\ 

?,mt(E) ^ 2 1^(^)1 -^ 2 1^(^)1 < * < °°-
iea iea iel 

Define the set function mp CAI Sf by the relation: 

mfi(E) = 2 ™>t(E) = sup ( 2 mt(E) : o <= 1} ^ K. 
iel iea 

The function m$ is a finite nonnegative measure ([1], 1.10) with this property: 
If mp(E) -> 0, then mt(E) -> 0 uniformly in i, i. e. \£t\(E) -> 0 also uniformly 
in i, henceforth also ^\£i\(E) -+ 0 for an arbitrary a <= / , and thus also 

iea 

2 l M ^ ) - * 0 - Since for every p in B \\fi\\J(E) ^ 2l&KJ-')» it follows tha t 
iel tel 

\\fi\\J(E) -> 0, if mp(E) -> 0. Thus every /x is dominated by an mp. 
Let now SP be a sigma algebra of all subsets of the set of natural numbers. 

Let X = I1 (I) be infinite-dimensional and {cn}^=1 be any sequence of positive 
00 

numbers such that 2 cl < °° \tnen "there exists in X = I1 (I) a sequence {^}^=1 
w=l 

such that \\xn\\ = cn and ^xn is unordered convergent ([2], IV. 1. 2). 
n=l 

Let us define p({n}) = xn. Then \\ju>({n})\\ = cn ^ M({w}). If we choose 
00 

{cw}n=i i n s u c n a w a y t n a t 2 c^ = ° ° ' t n e v a r i a t i o n o f P cannot be finite. 
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