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MATEMATICKO-FYZIKALNY CASOPIS SAV, XII, 4, 1962

NOTE ON THE STOKES FORMULA
FOR 2-DIMENSIONAL INTEGRALS IN n-SPACE

JOSEF KRAL, Praha, BELOSLAV RIECAN. Bratislava

In present note some theorems of the Stokes type concerning curvilinear and
2-dimensional integrals in n-space are established.

1. Introduction. The term path (on {a, b)) is taken to mean a continuous
mapping f of <{a.b) = {t;teE;.a <t < b} into E,. the Euclidean n-space;
f will be termed closed provided f(a) = f(h). (For n = 2 we shall speak of a plane
path.) The length of f on {a.b) is defined as usual:; we say that f is rectifiable if
its length is finite. Let f be a plane path on {(a.b) and let @ = [®,, ..., D],
¥ = [¥,.....,¥,] be continuous mappings of [/] = f({a, b)) into E,. We put

n b
Jodw =3 Jo(rn)dvi/)
provided the Sticltjes integrals on the right-hand side exist. If K = {a, i) x {y, 0>
is a rectangle then fg will stand for the closed plane path describing simply the
boundary of K in positive sense.

Let now @, ¥ be continuous mappings of K into E,. General conditions are
known which, imposed on ¢ and ¥, securc the existence of an integrable
function y on K with

faody = [fy (M
Ir K

(the integral on the right-hand side is taken in the sensc of Lebesgue). The aim of
the present paper is, roughly speaking, to extend the validity of (1) to the case
where f, is replaced by a finite number of rectifiable closed plane paths with any
number of self-intersections.

If G < E, is an open set and @, ¥ are mappings of G into E,, then

y =rot(d, ¥)inG

means that (1) holds for every rectangle K = G.

Given a closed plane path f and a point z € E, — [f] we shall denote by ind (z, f)
the index of z with respect to f. (The reader may consult T. Radd’s monograph [1],
I1. 4. 34 and IV. 1. 24 for a precise definition.) Our main objective is to prove the
following theorem.
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1,1. Theorem. Let /', .... /™ be rectifiable closed plane paths and put C = \J [f4],
k=1

oz =Y ind(z; /Y (ceE,—C), G={z;zeE, —C, w(z)+0}, G,=
K=1
={z;zeE, — C,w(z) = p}. Let &, ¥ be continuous mappings of C U G into E,
and suppose that ¥ is Lipschitzian on C 0 G and y = rot (¥, V) in G.
Then

o

L Jedr=3 1y Ay - {1 @

=1 p=l G, G,
provided the Lebesgue integrals H y (p + 0) exist.

Gy
1,2. Remark. A sort of formula (2) still holds even if the Lebesgue integrals ”y
Gp
(p # 0) fail to exist (cf. theorem 11,1 below).

The right-hand side in (2) max be replaced by the series

iﬂﬂ?—ﬂr> (3)

p=1 G, G-p

provided (3) is convergent (possibly, non-absolutely). In [2], p. 595, an example
is given showing that (3) may actually diverge even in the relatively simple case
where n = 2 and ¥V is the identity map. If the integral

[ oy (4)

G

happens to exist, then. in (2), we may write simply (4) instead of ) [) (...)].
1=1 =1

1,3. Remark. From 1,1 we obtain as a corollary a thcorem of thep_Stokes type
for 2-dimensional Lipschitzian surfaces in E, bounded by a finite number of recti-
fiable curves (cf. remark 11,4 below). The reader may consult H. Whitney’s mono-
graph [3] for the role of analogous theorems dealing with k-dimensional integrals.
An extensive bibliography concerning the Stokes formula together with correspon-
ding comments on the subject is given in K. Krickeberg’s article [4].

2. Before going into the proof of our main theorem we shall establish several
auxiliary results. Let us agree to accept the following notation. H, will stand for
the r-dimensional Hausdorff measure. Given z = [z4, ..., z,4+ 1] € E,+{ and a positive
integer ie{l,r + 1> we put "= [z;,..., 2,01, Z;415 --» Zp41]. For F< E_ ., put
fi= {2i; ze F}. For every x € E, denote by N(F, x) the number (possibly zero or
infinite) of points in {z;z € F, ' = x}.

2,1. Lemma. Let F be an analytic set in E, . Then N (F. x) is Lebesgue measurable
with respect to x on E, and
H(F) = [ N(F, x) dx.
E.
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Proof. Write F,, for the set of all - = [z,.....z,,,]efF with k.2 "< z, <
< (k + 1)2 " Every F,, is analytic and, consequently, F,';k is Lebesgue measurable.
Clearly. H,(F.) < H.(F,,). Denoting by y,, the characteristic function of Fi onE,

we obtain Y . (x) A N(F.x) (n > o) and
k=—o

IN(F ) dy = lim [ ( ‘Z Za0)dy = lim Y H(FL) <

L, noo B,k no>s k= -

<lim Y H(F) = H(F).

Moy k= oy

3. Some background material. D will be used to denote the set of all infinitely
differentiable functions with compact support on £,, ;. Let A be the system of all

r

Lebesgue measurable sets 4 < E, ., with

‘ Copiz
+o > || Afl; = sup jpi)‘ z, peD. max | ¢(z)| < 1.
© -
A measurable set A4 belongs to A, if and only if such a finite signed Borel measure P!
exists over the boundary 4 of A4 that

0p(z
peD = J‘q) dPf = J‘L(fi(i d-.

i A
) r+1
A, is equal to the variation of P{ on A4 whenever 4 € A . Further put A= N A,.

i=1
A is the system of all measurable 4 < E,,, for which the following is true: Such
a vector-valued measure P* = [P{. ... P/ ] exists over A that

rt+1

JodPt (=S [r,dPf) = [ div () d-
A

A i=1 4

for every vector-valued function v = [vy,...,0,4,] with v, eD, | £i=r+ I

Writing V' for the set of all v =1[v,,....0,,,] with veD (1 £i<7r+ 1),

r+1
lv(z)| = (Z viz(z)ﬁ < lon E,, ., we have for a measurable set 4 < E,

i=1

+o > | A =sup [ divo(z)dz, veV',
" A

if and only if Ae A .| A| coincides with the total variation of the vector-valued
measure P* on A whenever 4 € A . A and A are Boolcan algebrae.

A, includes all measurable sets A4 with | N (4, x) dx < +oco. In particular, every
E,

A < E,,, with H(A) < 4+ oo belongs to A and | A| < H,(A).
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3,1. Remark. The systems A and A, were, from different points of view, intro-
duced by E. De Giorgi and J. Mafik. Their properties were studied by several
authors. Interested reader is referred to [S] for a bibliography on the subject.

4. A setin E, ., which can be represented as a union of a finite number of compact
(r + I)-dimensional intervals which are allowed to have a void interior will be
called a figure. A. A°. A and diam A will stand for the closure. the interior, the
boundary and the diameter of A (< E,. ) respectively. L will denote the Lebesgue
measure in £, .

4,1. Lemma.* Let A < E,., be a bounded set. A°+ 0, H{A) < +co. Then
there exists a sequence of figures A, (k = 1,2, ...) such that sup H(A,) < + oo and
k

A Agyy (k=1.2,.0. A, = A"*x
k

Proof. For every positive integer p there exists a sequence {K;,}7_, of open
. . ST , . 1
(r + 1)-dimensional cubes such that A = J K;,. diam K;, < ~[7 (y=1,2, ...) and
i=1

< 1 + cH(A), (5)

ir

Y diam” K
j

where ¢ > 0 is a constant independent of p. Rearranging the sequence {Kj,};~.
if necessary, we can fix a j(p) such that

Jjp)
A< UK, AnK;, 0 whenever  je {1, j(p)d.
i=1
) i(p) J(p1)
Denote by p, the least p with 4 — |J K;, # 0 and put 4, = 4 — | K;,,. Clearly,
i=t i=1
A, < A" and A, is a figure. Suppose now that figures 4, = ... = A, have already
i(p)
been constructed. Denote by p, . the least p for which |J K;, has a positive distance
=1
Jprc+1) !
from A4, and put A,,, =4~ U K, ., . Repeating this procedurc infinitely
i=1

many times we arrive at a sequence of figures 4, 7 A° (k — o0). Taking (5) into
account we see that H,(A) <) H,(l'(j,,k) < 2(r + 1)) diam” K;, <2(r+1)x
k J

P

x [l 4+ ¢H,(A)] for every k. Thus the proof is complete.

4,2, Lemma. Let A < E.y be a bounded set and suppose that there exist A, € A
(k =1,2,..) such that A, = A, lim L(A — A)) =0, limsup | 4, || = ¢ < + 0.

ko k= o0

* Cf. also [13], lemma 19, 26. p. 154.
** This will be expressed symbolically in the form A4, 7 A° (k ~ o).



Then | A || £ cand
fedP* = lim | vdP™ (6)

A k= oo 4,
for every continuous (1 + 1)-dimensional vector-valued function v on A.*
- - 1
Proof. We have for reV

[ dive(z)dz = lim [ divez)dz = lim | o dP™ <

4 k= A k- v _4"\_
< limsup || A, || = ¢. Consequently, | 4 || £ c.
k- 1
Noticing that
| fedP' — {¢ dP'| < e, | | vdP™ — [ 5dP™ | < ec
A A A Ax

whenever . ¢ are continuous vector-valued funtions on 4 with max | v(z) — v(z) | ¢,
€ ;1
we sec at once that it is sufficient to prove (6) for ¢ = [v,.,....0,4,] with v, eD
(t £i<r+ 1)only. For such a ¢
. . . . A
fedPt = [ dive(z)dz = lim | divez)dz = lim | odP?
A A

A k=7 A k= o :4'I<

5. The scalar product of vectors u, v € E, will be denoted by u. v. Given M < F,
we shall denote by C.”’ (M) the system of all continuous mappings of M into E,.
If M happens to be open, then C\"(M) will stand for the system of all ¢ =
= [®,....,P,]e C” (M) whose components & (1 <i = n) have continuous first
order partial derivatives in M. We shall write simply C'" instead of C{"’(E,) and
¢ will beused to denote the identity map of £, onto itsell. V(a, b) is the system of all
rectifiable plane paths on {a, b), Vy(a, b) is the subsystem of all fe V(a, b) with
(a) = f(h) (i. c. of all clo sed paths in V(a, b)).

5,1. Lemma. Let f € V(a, b), ¥ € C)([f]), @ € C"(0), where O is some neighbourhood
of [f]in E,. Define the mapping y = [y,. x5] of [f] into E, by
= = )
0X cy
Then y e CY([f]) and
fwde = | ;d.
! r

* This assertion was communicated to us by prof. J. Mafik. compare also [13], lemma 19, 21,
pp. 150—151.
L2 oP 0P ob
** Wewrite — = | —21 . | for @(x = =[P @], = hasa
ox cx T 0x ( ) [ LR "]’ y ;
similar meaning.
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Proof. Letf = [f,,/.land put ff) = a + k(b —aym~"', z}' = () (k = 0. ....m
m = 1,2,...). It is easily seen that ®(f) is rectifiable on <{a, by and

a((pzm

D(z) — P(zy) = ). [/1(5) = A= 0] +

+ ﬂp(('jz;m—l)_ () — St )]+ LA —f(l;c"—l)] : 0:""’

>
where max | o,,| = 0 as m — oo. Hence
k

m

fwdo =lim ¥ ¥ [0() - oG- =

m-w k=1

R CONECIEYC N R P2

6. In section 3 we have recalled some basic properties of the systems A, and A
of subsets in E, , . Since no simplification could have been acquired by specialization
to r = 1, we described the general situation for any r = 1. However, the special
casc r = | is the only one we shall deal with in the sequel. Let us agree that, from
now on, the systems A_and A will be considered with respect to E, only. (Thus every
set of A, A to be met below is a subset in E,.) Further denote by A the subsystem
of all A e A whose boundary A is compact.

6,1. Definition. Let 4 € A, ® e C\", ¥ e C{V(A).
We put
P(A, &, ¥) = [y dP,
A
where v = [—y,. %] and y,. y, are defined by (7).
6,2. Lemma. Let fe€ V(a, b), A = £, and suppose that
{z;ind (z; /) = 1} = A, {ziind (z:f) = 0} — A.
Then A e A and
PA, @ W) = [ddY
s

oP Ofb—e ch

whenever &, W, e
0x dy

Proof. Since 4 = [f] and f is rectifiable, we have H,(A) < + oo. Consequently,
A e A. Using Green's formula (cf. [6]) and lemma 5,1 we obtain

. . /o 0
P(A, &, ¥) = | 7 dP* = vy = — T2 90\ -
( ) j'X(P J]dwx JJ‘< e Oy ¥ di Y do.
A A A f I
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Finally. integration by parts for Stieltjes integrals yields — [ ¥ d® = | @ dy.
7

I
-
. P IP .
6,3. Remark. In 6,2, the assumption ——, —, ¥ e C" could be generalized
dx 0y

to ¥ e COA), & e CV. As lemma 6.2 shows. P(A, @, ¥) can be considered as an
analogue of [ @ d¥. Indeed, if / is a positively oriented rectifiable simple closed curve

!
bounding A. then these two quantities coincide with each other.
6,4. Lemma. Let Ac A and let @, VW e C". Then
« P(A. D, W) = —P(A, ¥, D).

Proof. Since P(A4,...) = —P(E, — A, ...)., we may assume that A4 is bounded.
Let us recall that for he C{"" and a solenoidal vector-valued function ve C$" the

formula
[ hedP* = [ grad /. ¢ (8)
A A

is true (cf. [7], theorem 48, p. 554). Applying (8) to h =¥ . v = [—-(:p:"—, (_:I:L:l

(i =1....,n). we obtain

In a similar way
bl 178 S, 178
P(A. W, ®) Z _L?,,f,,,l,_f. + ‘,fl,,' _ ‘;l,' .
P ox Oy cy o Ox
A

whence our lemma follows at once.
7. Given a M < E, and a mapping & of M into E, we put for any N M

I @y = sup|@(z)].

zeN
We say that @ is Lipschitzian on N with constant 2 provided | ®(u) — @(v) | <
< /lu — v]| whenever u, ve N.

7,1. Definition. Let A€ A, ¥ e C'°/(4). We define

(A, W) = sup P(A, D, V),

¢
@ ranging over the class of all ® e €'V with | @ |, < |

7,2. Lemma. Let Ac A, W = [V, ..., ¥,]leC" and suppose that

::("’HII:'(Z \’
o ox |

0P(2)
oy

|I/\

/,

|
fg,{ (i=1,..,n)

286



whenever = € A. Then, for every ® e C\",

| PA- @) | S 220 @ ;. ] Al ©9)
In particular,
(A, V) SAy2|4]. (10)
Y 0 .
Proof. Writing v = [——(l) -‘—-7-——, (l)»iﬁl—] we obtain by 6,4 and 6,1
dy 0x
| PA WY = [ PA Y. DY = |[edP | <ol ;.0 41

A
Clearly, [ o4 = 2320 & |4

7,3. Lemma. Let h be a function which is Lipschitzian on E, with constant A. Then
there exists a sequence of functions h, € C\V (k = 1,2, ...) such that h, — h uniformly
on Ey as k — oo and

Proof. This lemma is well known.

7,4. Proposition. Let A € Aand let W be a mapping of A into E, . which is Lipschitzian
on A with constant }. Then (10) is valid.

Proof. We may assume that ¥ = [¥,, ..., ¥,], wherc ¥ (1 < i < n) are Lipschitz-
ian on £, with constant 2 (cf. [8], lemma 1, p. 341). According to 7.2 we have a
sequence W4 e €Y' (k = 1.2....) such that Y% > ¥ (k — o) uniformly on E, and

o i

— S E——
X ; Y B
of 72, [P(A. b, W) | = 2 2| @ |l;. |l A foran arbitrary @ € C\V, Making k — oo
we obtain (9) (cf. the definition 6,1). Hence (10) easily follows.

IIA

- = . k k k . k . :
< 20 Pat YR = [ L W) Clearly, Y e €V and. in view

8,1. Lemma. Let A€ A and suppose that W e C,‘,O)(,Zt), 2(A, W) < oo. Then, for
every @ e C,
[P(A. DY) S | D li. (A, P).

Proof. Givene > Oand @ e C\"" wecanfixa d e C\" suchthat | & ||, < ¢+ | D[,
and @ = @ in some ncighbourhood of 4 (cf. lemma 5 in [7]). According to the
definition 7,1 we have | P(A, ¢, V)| = | P(A, P, =@ g, -a(A, ¥) <
S+ | Pli).a(A. V). Since ¢ was an arbitrary positive number, the proof is
complete.

8,2. Remark. Let A€ A, Ve C2A). «(4, ¥) < +0. Fix &e CA) and
suppose that @* e C\V (k = 1,2, ...),

lim | & — @*|; = 0. (1
f= o
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It follows easily from 8.1 that the limit lim P(4, ®*, W) exists and is independent

k— o0
of the choice of the sequence {@*}_ fulfilling (11). We are thus justified to introduce
the following definition:

8,3. Definition. Let A € A, ¥ € C{2(A), «(A4, ¥) < +o0. For any & € C)(4) put

P(A, ®, V) = lim P(A, &, ¥),

k—>o0
where {@*}7, is a sequence of mappings in C." fulfilling (11).

9. The symbols f', ..., f".C, w, G,, G will have the same meaning as in the
theorem 1,1. Further put U, = {z; ze E, — C, w(z) 2 I}.

9,1. Lemma.

7‘; | U || < + o0, ‘Z |G, Il < +o0. (12)

1 p

In particular, U,. G, € A for every integer p and, by proposition 7,4,
Y AU YY) < o0, Y, (G, ¥)< +o0 (13)
Il=—u p=—x
for every Lipschitzian mapping ¥ of C into E,.
Proof. Since Y [ U |, <Y [ N(U,»dy, YI1G, |, <Y [ N(G,, ) dy, it
I 14 p I

I E,
is sufficient to prove that the functions

ZN.‘(U1~.V)« ZN.‘(G,”.V) (i=1,2)
] P

are integrable (with respect to the variable y) on E,. Clearly, we may consider the
casc i = 2 only. Let us keep the notation introduced in [2], section 15, pp. 589 —591.
From investigations described there we obtain for every ye £y, — M

NZ(UI’ y) é Z |Sy(Ul> “j)|> Z Z lsy( Ul5 ”j)| __S: ‘//(y)
j=1 1 j=1
Noticing that M has measure zero and ¥ is integrable on £, we see that integrability
of Y N,(U,,y) is checked. Similarly, investigations described in [2], p. 592, imply
1
the inequality

Y NG, ») S 20(y) (yeE, — M)

showing that Y N,(G,, ) is integrable on E,.
P
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9,2. Theorem. Let ® € C{°(C) and let ¥ be a Lipschitzian mapping of C into E,.
Then

é‘l fjkq’dyl - ,i {,,é, [P(G,, &, %) — P(G_,, @, ¥)]}. (14)

Proof. We shall first prove

Z [od¥ = Z [P(U, &, %)+ P(U,_,, ®, ¥)], {15)
k=1 fk
PU, &, %)+ PU,_;,®,¥) =Y [PG,, ®,¥) — PG_,, &, V)], (l6)

p=l

whence (14) follows at once. In view of (13) we may assume that @ € C{" (cf. also 8,2).
Define y = [x;. x»] by (7). We obtain from 5,1

Y [odY = Z [xd (18)
k=1 fk k=1 fk

Keeping the notation introduced in [2], section 17, we derive from theorem 15 and
remark 17 in [2]

Z Ide: Z [PO(UI’ x)+P0(U1—l’ X)] (lsbis)
k=1 fk =1
In a similar way we obtain from investigations on p. 592 in [2]
Po(Up x) + Po(Uy— 1, x) = Y. [Po(Gps 1) — Po(G_ 5 0] (16°")
p=l

Comparing the definition 6,1 of the present note with the remark 17 in [2] we see
that
Po(U, p) = — [y dPY = —=P(U,, 9, ¥),
U,
Py(G,, 1) = —P(G,, P, V).
Thus (15°%). (16°™) and (18) imply (15), (16).
10,1. Lemma. Let A  E, be a bounded set, A, = A (k = 1,2, ...) and suppose that

lim L(A — A4,) = 0, limsup || 4, || < +c0.
ko k-
Let ¥ be a Lipschitzian mapping of A into E,.
Then
a(A, V) < + oo, limsup a(4,, ¥) < + o0 (19)

k= x

and, for every @ e CV(A),
lim P(A,, &, V) = P(4, D, ¥). (20)

k— o0
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Proof. By lemma 4,2, (20) is true for any @ € C\" (cf. 6,1). In view of 7.4 we
obtain (19). Hence it folows easily that (20) can be extended, by continuity, to any
e COA).

10,2. Definition. Let 4 = E, be a bounded set, L(4) = 0. Let y be a function
defined almost everywhere on A such that the Lebesgue integral jj'y is available
K

for every rectangle K = A°. (Consequently, [fy exists for cvery two-dimensional
B

figure B < A° as well.) If
lim [{y @n

k—> o Ag

exists for every sequence of figures 4, 7 A° (k — oo) with
sup H,(4,) < + o, (22)
k
then the limit (21) is independent of the choice of figures 4, — A° fulfilling (22) and
its value will be denoted by L(A, y).
10,3. Remark. Of course, L(4,y) = [[y whenever y happens to be Lebesgue
A

integrable on A, so that L(A4, y) may be considered as an cxtension of the Lebesgue
integral. For more general study of analogous extensions the reader may consult [9].

The articles [10], [11] reviewed in Ref. jour. 1959 which seem to deal with similar
problems were not available to us.

10,4. Proposition. Let A c E, be a bounded set, H,(A) < + . Let @ e C\°(A4)
and suppose that ¥ is a Lipschitzian mapping of A into E,.
If v = rot (@, W) in A", then

P(A, D, V) = L(A, y).
This proposition follows casily from 10,1 and 10.2.
11. As an easy consequence of 9,2 and 10,4 we obtain the following theorcem.

i1,1. Theorem. Let us keep all the assumptions and notation of the theorem 1,1. Then
S fadw = Y (Y [LG,. 1)~ LG_,.0]}. (23)
k=1 fk (=1 p=l
11,2. Remark. Theorcm 1,1 is merely a corollary of 11,1.
11,3. Remark. The right hand side in (23) may be replaced by pPILG,. y) —
p=1
— L(G - ,, )] if this serics happens to converge.
11,4. Remark. Let ¥ = [V, ..., ¥,] be a Lipschitzian mapping of G into E,
and let I' = [y, ..., I',] be a Lipschitzian mapping of V = Y(G) into E,. Suppose
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that M < V, LY~ (M)

0 and that Y 7(u°) (4, — u,) is the differential of I'" with
k=1

respect to V at any u® = [u?, ..., ulle V — M. Put &(z) = I'(V(2)),

| o¥(z)  0¥(2)

wz) = i [2i(¥(2) — w(¥(2)] | o ‘ o
Pt 1 oWi(z)  OV(2)
I ox 7 0y

as far as the symbols involved are meaningful. Then y = rot (@, ¥) in G.
This follows at once from theorem 12 in [12].
This assertion can be combined with 11,1.
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3AMETKA K TEOPEME CTOKECA AJ1d ABYMEPHbBIX UHTEIPAJIOB
B n-MEPHOM NMPOCTPAHCTBE

Hoced Kpan, benocnas Puevyan

BoiBo bl

Ecnu f — uenpepbisHoe 0TOOpaxeHnue oTpeska «a, b B mIockocTb E,, TO cuMBOIOM Wa, b, f)
0003HAYUM [UTHHY NYTH f, OMPEneTeHHy 0 OObIKHOBEHHbIM 00pa3zoM. Eciu wa, b, f) < + oo, TO MBI
OynemM rosopuTth, 4t0 f€ V(a, b). [Moacuctemy Bcex f€ V(a, b) ynosnersopstoiunx yciosuio f(a)

= f(b), 0603HAYMM CUMBOAOM VO(}}, b). Ecmm fe Va, ) u @ = [@, ..., D ), ¥P=[¥,....V,]
HenpepbIBHbIE 0TOOpaxeHust MHOXecTBa f({a.b)) B NpOCTPaHCTBO E, . TO MoJaraeM 1o onpencsicH1to

n b
'/‘d) d¥ == X ./‘(Di(f(f)) d‘[’i(f(t)) B MPEIJIONEHUH, YTO CYLLECTBYIOT COOTBETCTBYIOLLIME UHTETPAIbI
I i=1la
Crusnib theca, CloBOM ,,uHTEpBAT’ MBI OyNeM MOAPA3yMEBATH ABYMEPHbBIH KOMIAKTHBIA HHTEPBAJI.
Eciu K — uHTepBan, 1o 0603Ha4umM fx otobpaxeHue u3 Vy(a, b), KOTOpoe OACT napaMeTpHyecKoe
npeacrasieHie KOHTYpa K (OMMCbIBAEMOTO B MMOJOXKUTEIbHOM HAMPABICHUU [PU U3MEHEHMU Tapa-
MeTpa oT a 10 b). IlycTh Tenepb G — OTKPbITOE MHOXeCTBO B E, 1 nnycTb @, ¥ — HenpepbiBHblE OTO-
6paxenust MHoxecTBa G B mpocTpaHcTBO E,. [1ycTh, nanee, y — dyHKuMs onpeaeneHHast MOYTH
Bcrony Ha G u uHTerpupyemas no Jlebery Ha kaxxnom unrepsasic K C G. Byaem roBoputs, uTo y = rot
(D, ¥)na G, ecan s kaxaoro untepsana K C G cipaseainso pasedctso [Pd¥ = ffy Muoxe-
Ik K

CTBO, KOTOPOE SIBJISIETCS COEAMHEHHEM KOHEHHOro 4uciia UHTepBasioB Oynem Ha3biBaTh Gurypoi.
CumBonom H,, L obo3nayum nuHeitHyto Mepy Xayciaopdha u asymephyto mepy Jlebera coorseT-

CTBEHHO. [lycTb A — OrpaHuyYeHHOE MHOXKECTBO B E,, A — €ro rpanuua. A° - A — A. TycTs,

nanee. L(A) -0 u nyctb 3y — dyHKLMS, OonpeacieHHast MOYTH BCIOY Ha A W MHTErpupyemMas Ha
kaxznom untepsaie K C A°. Ecnu ans kax 1ol nocnenosatensHoctd ouryp £, C A%, ynosnersopsio-

uieil TpeGosanmio sup H(F,) < -~ cywecrsyer npeaen lim [ fy, To oroT npenen we 3asucut ot
k-»» Fj
nocnenosaresbHOCTH {F 1= 1 v Mbl cro obo3nadum uepes L(A.p): pasymeeres L(A,y) = [ [»
A

CCnu Y UHTErpupyemas Ha A.
n
Teopema. TMycth fie Vola;. /7,») (1> f-~m), C : Uf"(/:ai, hio). s z e k£ — C onoxum
J=1 '

m
o(z) Y ind(z, f7), rae ind (z, f/) o6o3HayacT NOPSAOK TOYKM z OTHOCHTCHABLHO nytu f7. Mycrb
j=1
Gp {z; ze E,—C,0(z) ~ pj, G-~ U Gp 1 nycrb Ha C U G onpejicsicHbl HEIMPEPbLIBHLIC OTOOpa-
p+0
npudem Y yposnersopsier ycnosuto Jlunumua. Ecaw v o rot

skeunst D, W B npocTpaucTso £,

(D, W) na G, TOria CyuleCTBYIOT HecoBeTBeHbie nuTerpanb L( Gn‘ ) (p - 0) u umeer MecTo hop-

Mya
m s
Y [edv =Y 1Y [LG,.7) — LG, (*)
j=1/] =1 pzl
,
[Mpasyio vacre paBeHCTBA (*) MOKHO 3aMCHWUTHL HA Z/}[L((:’I,,:') - LG n.;')] COOTB. Ha ./'./'m;’.
p=1 G

CCJIU 1TOCHTC/IHUE CUMBOJIbI UMCIOT CMBICIT.
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