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Matematicky €asopis 22 (1972), No. 2

NOTES ON AN APPROXIMATE DERIVATIVE

LADISLAV MISIK, Bratislava

D. Preiss has recently proved the following theorem ([4]):

Theorem 1. (D. Preiss) Any approximate derivative on an interval is in
the first Baire class.

In this theorem he considered not only finite approximate derivatives.

In the first part of this article some notes relating to Z. Zahorski’s article
([7]) are given. In the second part a proof of Preiss’ theorem is given which
is a modification of the proof for approximate derivatives given by L. E. Sny-
der ([5]).

1.

If we consider only finite approximate derivatives, then the assertion —
any approximate derivative is tn the first Baire class — has been known for
a very long time. In 1938 the following theorem was presented: Any approxi-
mate derivative of an approximate continuous function s in the first Baire class
([6]). Approximate derivatives which also can obtain co and —oo as their
values are considered there. (. Tolstov proved his assertion by the help
of the well known Baire’s theorem on functions in the first Baire class.

In 1948 Z. Zahorski ([7], pp. 321—323) gave two examples of functions
and as he asserts they have an approximate derivative not in the first Baire
class. Unfortunately his assertion is not true. In his examples the functions
fail to have an approximate derivative at the points of an uncountable set.
We give here the proof of this assertion.

First we recall the definition of these two functions on the interval <0, 1 .
Let C be the Cantor set and (a;, b;) be any component of the set {0, 1> — C.
Let b; — a; = 3—». Now, Zahorski defines the function f* on (0, 1> as follows:
f*(x) = 0 at the left endpoints of the components of <0, 1> — C, f*(x) =1
at other points of C and f*(x) = — 1 for a; < « < a; + 372, f¥*(x) = (x —
— a; — 3720) 232 — 1 for a; +3 M <rx<a;+ 232 and f¥x)=1
for a; 4 2.3-2» < 2 < b;. He obtains the function f from the function f*
by modifying the graph of f* in the neighbourhood of the points a; 4 32
and @; + 2.3-27, He substitutes here the graph of f* by an arc of the circle
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with the radius 3-2». The substitution will be made in such a way that the
derivative of f exists at all points of (a;, b;). He defines the second function
F as follows: F(x) = 1 — 3~ for all left endpoints of the components of
{0,1> — C, F(x) =1 for all other points of the Cantor set C and F(x) =
— Af2x) + Bf(x) + C — |/(x — a;)(@ — by)® for all e (a;,b;), where A =
—1—272. 3 4 |/ —27 3w {21 32, B—121.37 and C —
—1—21 37— 4.

Let {(a;, b;)}2; be the sequence of all components of the set {0,1> — C
In his first example Z. Zahorski asserts ([7], p. 322) that fa'p(x) = 0 for
all such z € C' in which f(¢) = 1. That is not true. We shall prove that f,;(x) = 0
for such a point z e C ( f.;;,(x) means a left approximate derivative of f in z).

For x = b; where 1 = 1, 2, 3, ... we have obviously f,-(z) = 0. Let z e C
be a two-sided limit point of C. There exists an increasing sequence {b}y ,
u)
converging to x. Then the following hclds: f( — /@ =0,b, =u<
U—x,

<z} 2 U {a + 3(b;i — )2, by) 1 b;, <a; < x}. Therefore we conclude:

(x — b;,)™1 | {’lb : fo) — /&) =0, b, =u<a} = (@ — b)) {a + 3(b; —
u—x

(l) ) bzk_ai<x}] x—b —JZ{(bi~ai)(l—3(bi——ai)):bik§
<@ <a}>(x—by) 1D {(bi —a)(l — 3@ — by)) : by, =
— 3(z — by).

It is therefore evident that f,;(x) = 0.

Now, let {(a,, b;,)}r., and {az}y ; be two sequences with the following
properties:

a) For k=1,2,3, ... (a, b;) is a component of the set (0,1 — C of
the length 3™,

b) For k=1, 2,3, ... x; is a two-sided limit point of C,

¢) For k=1, 2,3,...the following holds z; < w11 < a;,, < b;

Le+r

< a;, and

a; 2"}:'

k

From the properties of the Cantor set C it follows that we can construct

such sequences by induction. The existence of lim x; is obvious. We denote
k>

this limit by ». Then % is a two-sided limit point of C. Therefore f(u) =

@ 4| denotes the outer Lebesgue measure of the set A.
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Now, we shall prove that f:l‘f (*) = — oo0. We obtain it in the following way:
—_ u 1 1
Let £ =1,2,3,.... Then we have f(y& < —37m ] - for
y—u k
ye<a, a; -+ 3" >, because f(y) < 0,y — u <a;, — u + 377" <a;, —

i I I N 1\
—apn 3™ < (14— 37 and — < 372 (1 4 .
k Yy —u k

From that we get:

(g, + 372 — ) 1

— 1\
{y: () — f(w) < 3% (1 + k) U <<y < a

y—u
) ! 3-2m~ &
4ogml) = .
3-2mc 1 + 1 k + L
k
It is obvious from this that f;;(u) — — 0.

Now, we see the existence of points in C in which f,  does not exist. Denote
by D the set of all points at which an approximate derivative does not exist.
We shall show that D is an uncountable set. Suppose D is a countable set.

Let D = {&, &, &3, ...}. Wo pick out an interval (a; , b;) of the length 3 "
and a two-sided limit point x; < a; of C. Let & be the first point from the
soquence {£1, &2, &3, ...} belonging to the interval (a1, a;). Let a2 be a two-
sided limit point of C with the property @; — x2 << 3 *. Then we pick out
an interval (a;,b;) of the length 3 " for which @ <a; <a;. Let &
be the first point from the sequence {&1, &2, &3, ...} belonging to the interval

rg,a;). We choose from (max (& ,a; — % 372m), a;) a two-sided limit
point 23 of €. Now, we again pick out an interval (a; , b;) of the length 3 "
for which x3 < a;, < a;,. It is now obvious that in such a way we can con-
struct three sequences {(a:, by)}r 1, {¥}r 1 and {r};, which satisfy the
conditions a) — ¢) and the following one:
d)for k =1,2,3,... and 1 < j <1 & is nct contained in {x;, a;).
Let w = lim a. Then u ¢ D and f,, (u) does not exist.

k—>o

In the second of Zahorski’s examples, as in the first one, we can prove that
F, (x) = 0 for every such point of C' which is not a left endpoint of some
component of <0, 1> — C (F,;(x) means the upper left approximate derivative
of F in z). The definition of I implies the existence of such an I that F(u) <]
holds for all e <a; + 1 3722, a; + 3727) and ¢ = I, where 3 * is the length
of (a;, b;). Now, we can construct, as in the case of the first Zahorski’s example,
two sequences {(a;,b; )}, and {a;};, satisfying the conditions a)—e).
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Then F(u) =1 for v =limag. For o =1 and ye < a;, + } 372, a;, +

k—> oo
> F(y) — F(u) 1k . 5
4+ 3% > it holds ———m— < — . 37", Therefore (a; + 3 ="
y—u 2 k+1
Fy) — Flu) I k .
—u) 1 |ly: —_— < — — .3 = —— fori, = I. There-
y—u 2 k+1 k41

fore F;;;(u) > 0 cannot obviously hold (F ;;(u) means the lower right appro-
ximate derivative of F' in u).

In a similar way as in the case of the first Zahorski function, we can prove
that the set of all points in which an approximate derivative does not exist
is an uncountable set.

The paper [7] refers to the known Khintchine theorem — every finite approxi-
mate derivative f;:p satisfying f.(x) = ¢'(x) for some function ¢ is a derivative —
and states that it is true for infinite approximate derivatives. This statement

is not true. In [2] it is proved that Khintchine theorem is also true for infinite
approximate derivatives.

Lo

L. E. Snyder uses his theorem on an approximate Stolz angle boundary
function ([5], p. 417) to prove the theorem — the finite approximate derivative
fap 8 in the first Baire class. He considers only real finite functions; we shall
prove his theorem for the case when the approximate Stolz angle boundary
function also obtains oo and — co.

Lemma 1. Let f be a real (not necessary finite) function defined on a perfect
set P which is not continuous on P. Then there exists some segment @ of P and
two numbers o and f, o < such that Q < {x:2€Q, flx) <o} N{r:re
€Q, fx) = B}

Proof. We can suppose that —1 < f(x) < 1 for all x € P. From the assump-
tion regarding the function f we can conclude the existence of such an integer

k> 0 and such a segment @, of P that the set @y is a subset of {x:z e P,

o(x) > e where d(x) is the oscillation of f in z. But the following holds

QocV{{xr:x e, flx) =pin{r:ze@Q, fx) =q}: —1<p<qg=1, pand
q are rational numbers}. Therefore there exists a segment @ and two numbers «
and B, a <f such that Q c {x:2€Q, f) S} N{x:2€Q, flx) > B}-

Let 1V be the open upper half-plane. The symbol l(x, @) denotes the half-
line from the point (z, 0) whose angle of inclination is @. Let S; be the Stolz

111



angle with the vertex (x, 0) which consists of the angular sector between

3n
) (x,z—) and l(x,—;). The symbol R denotes the real line.

Theorem (L. E. Snyder) Suppose @ : W — R a function and for each x € R
there i1s a set By < W such that

(1) (z, 0) s @ point of density of Ex relative to Sy and

(i1) f(x) = lim @(u, v) exists finite or infinite as (u, v) — (x, 0) relative to
the set By for each x € H.

Then the boundary function f of ©@ determined by the family of sets {Ez},crn
is n the first Baire class.

Proof. Let P be a perfect set, P # 0. Let the function f/P (this function
is the restriction of f to P) have no point of continuity. It follows from Lemma 1
that there exists some segment ¢ of P and two numbers « and § which satisfy
«<p, Q< Af and Q < Ay, where A = {x:2€Q, f(x) > p} and Ay =
= {z:2€Q, f(r) < o). It is easy to see that we can choose @ such that @ <

7
c{x:xeP, |E%] >—8-]S;‘| for all n < k},where S, = {(u, v): (u, v) € Sz,

1
v < —} and B} = 8; N E;.
n

Let x €Q. Let r = k and ¢ > 0. Since 448 is dense in @ there exists in 48 N Q

1
an element y satisfying the inequality | — y| <<—. Then we have E, >
r

7 7 1 1
- r r — r : 3 r r - . r
> . IS, and |E;| > . IS;1. It is obvious that [S; N S)| > 4 ISy .

But this implies that E7N E; # @. Therefore there exists a sequence {(u,
vn)}noy of points in E; satisfying the inequality @(uy,, vn) = f — ¢ for all n.
Hence it follows: f(z) = B — e. Therefore f(z) = B.

In a similar way we prove that f(z) < « for all x € Q. But this is a contra-
diction.

We note that Snyder’s Corollary 1 ([5], p.- 419) and the author’s Theorem 1
([3], p. 188) remain valid also for functions which can obtain infinite values as
well.

To prove the Preiss theorem on an approximate derivative by Snyder’s
method ([5], p. 421) we should add to Snyder’s proof of lim @(x,, r,)

>0

= o0 (lim D(xy, ra) = — ©), where {(xy,74)}; ; is a sequence of points in
Nn—>c0
E;, with (x, 0) as limit, if f,;p(xo) = 0 (fs(x0) = —0). We shall use the

symbols introduced by L. E. Snyder in the proof of his Theorem 3 ([5], p.
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1 v v
121), e. g. D(u, v) = —(f(u—{—g) —f(u— ;)), B3, is a set, the density of
v

1
which at o is 1 and lim ——— (f(z) — f(20)) = fop(%0) for x e Bz, and Ej,
>3y X — X0

isaset { (x,7):(x,r)e W,z — %§x§x0+—;—,x— ;andx+ ; € By, -
Let f,,(x0) = o and {(xx, ra)}; | be a sequence of points of Ky, with (2o, 0)
as limit. Since the points x, + %n and x, — T—z-n are in B, and x, - 7:—> Zo
and x, — %—) 2o (2) we have:

lim = 00
2->00 Tn

Tn + — — o
and

Tn
Jlan — =) — f@o)

. 2
lim = o0
N->0 ’rn

Uy — — X9

Thence we get:

Tn Tn Tn
lim ®(wa, ra) = lim —_—

n->0 N->00 Tn n->0 Tn

2
X -4 = 0.
Tn "n Tn
Tn +— — %o X9 — Ty + —
2 2
In the case f;p(xo) = —oo the proof of lim @(x,, r,) = — o0 is similar.
n—->o

7 7
(2) It is obvious that x, 4 2 aez0and 20 g+ — = 0.
2



C. Goffman and C.J. Neugebauer have also proved ([1]) that the finite
approximate derivative is in the first Baire class. They set A(I, k) = {(z, ) :

x A, k)] 1
x,yel, =— >k | and F({I) = sup {k:——— > — for
] 2
evory interval I and real number k. Further they have proved that f, (2o) —
= lim F(I,), where xoe N {I,:n =1, 2, 3, ...} and |I,! - 0, if the approxi-

mate derivative f,,(zo) exists and is finite. The equality would not hold, if
fap(®o) = oo. For instance: let f(x) = sign . Then fap(0) = f'(0) = o0. Let
1

I, = ——,——) and & any positive number less than 1. Then A(I,,¢) <
n n

1\2 1
c{@,y):x,yely, xy <0} |A(ly,e)| = 2 (— =;|I"]2 holds for any n.
n

Therefore F(I,) < 0 for any n and f,,(0) % lim F(I,).

Nn->00
For these reasons we cannot complete the proof of C. Goffman and C. J. Neu-
gebauer for the cases f,, () = oo and fap(@) = —oo and give in this way the
proof of Preiss’s theorem.
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