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Matematický časopis 22 (1972), No. 2 

LAPLACE—STIELTJES TRANSFORMS 
OF VECTOR-VALUED MEASURES 

ANTHONY K. WHITFORD, Bedford Park, South Austialia 

1. Introduction. I t is well-known that a complex-valued func fion / on 
(0, oo) can be characterized as a Laplace-Stieltjes transform in terms of the 
maps Ljc(f), Jc — I, 2, . . ., defined by 

L'(f)m « ( « ) H . ) - 'e<o-co>-
Xamely, there exists a complex Borel measure on [0, oo) such that 

GO 

(1) m J'e "/.(d*), Ae(0, oo), 
0 

iff/ has derivatives of all orders on (0, oo) and there exists a constant 21 such 
that 

GO 

(2) / Lk(f)(t)\dl £ M, k 1 ,2 , . . . ; 
0 

(see for example [4], V I I 12a). 
Let Co denote the space of all continuous complex-valued function** on 

[0, oo) which vanish at infinit}% equipped with the sup-norm. Then the abo\e 
condition (2) means that the maps <£&(/), k — 1. 2, . . . . defined by 

oo 

0*(/)(y) \<f(t)Lic(f)(t)dt, cpeCo. 
6 

are equibounded linear functional on Co; i.e. the}^ take the closed unit bait 
of Co into a bounded set not depending upon Jc. 

In this paper we generalize by letting / take values in a quasi-complete, 
locally convex space X, whose topology is defined by a system P of seminorms. 
Defining Ljc(f) and &k(f) as above, but with values now in X, we show that / 
is the Laplace-Stieltjes transform of a vector measure iff/ has derivatives 
of all orders on (0, oo) and the maps &}c(f) take the closed unit ball of Co 
into a weakly compact subset of X, not depending upon Jc. In addition, AV e show 

156 



that the vector measure has finite variation iff/ has derivatives of all orders 
on (0, oo) and, for each p e P, there exists a constant Mp such that 

oo 

(3) j p(Lk(f) (t)) at ^Mp, k - 1 , 2 

2. Preliminary results. Let C denote the complex number field, and B 
the cr-ring of all Borel subsets ol [0, oo). 

In the following two lemmas, / i s a complex-valued function with derivatives 
of all orders on (0, oo). 

Lemma 1. If for each k = 1 ,2 , . . . , 

]jLk(f)(t)dt 0(v), v->oo, 
d 

thoif(co) exists, and 

oo 

(4) Mm J e **Lk(f) (t) dt f(X) / (oo) . X e (0, oo). 
Z-->oo 0 

Proof . See [4], V I I l i b . 

Lemma 2. If there exists a constant M such that (2) holds, then lim 0&(/) (9° 
A*-»oo 

exists, for all cp G Co-
Proof. By Lemma 1, it follows that (4) holds. Therefore, if A denotes 

the subalgebra of Co consisting of all functions of the form 

n 

t->^0LiC-u, ateC, A<e(0, oc), I < i <> n 1 ,2 , . . . , 
i 1 

it is clear that lim (I)k(f) (y>) exists, for all w G A. 
Z-H-00 

Let f > 0 and cp e Co be given. Since A is dense in Co, there exists a func-
8 

tion w G A such that \w — ™|l < . Then 
3M 

<-W) (<P) W ) (<P) -S \&k(f)(<p - W) + mf)M 0j(f) (w)\ + 

+ &j(f) (y <P)\<\<P- vlUtf + e/3 + \w cp ^M < s, 

for k. j sufficiently large. 

3. A characterization of the Laplace—Stieltjes transforms of vector-valued 
measures. Let X' denote the dual of the quasi-complete, locally convex space X. 
By the weak topology on X we mean the a(X, X') topology. 
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Theorem 1. A function f : (0, oo) -> X is the Laplace-Stieltjes transform 
of a reg^dar measure on B iff f has derivatives of all orders on (0, oo) and the set 

(5) {<!>*(/) (<p) : 9 6 Co, \\?L _S 1, * = 1, 2, .. .} 

is relatively weakly compact; i.e. the maps 0k(f), k = 1, 2, . . . , are weakly equi-
compact. 

Proof . Suppose firstly that the maps @k(f), k= 1,2, . . . , are weakly 
equicompact. 
. For fixed x' e X', define the function gx- : (0, oo) -> G by 

flfc-W = </(A), *'>, Ae(0 , oo). 

Then it is clear that gy has derivatives of all orders on (0, oo) and, for each 

k - 1 ,2 , . . . , 

USa*) (!) - <Lk(f) (t), x'y, 16 (o, oo). 

Since the set (5) is relatively weakly compact, it is weakly bounded, and 
so there exists a constant Mx- such tha t 

\<&*(f)(<r),*'>\ -S J-V, ^ e 0 , IML ^ U - i , 2 

Thus, for each k = 1, 2, . . . , 

00 00 

(6) J ILtfo,-) («)| dt = sup |J <p(t)Lk(gx-) (t) d/| 
o Woo s i o 

sup |<J ?(<)£*(/) (ť)dí,.r'>| :S iV*. 
řlloo^l 0 

Hence, by Lemma 2, 

lim 0k(gx-) (<p) lim <#*(/) (99), x') 
&->oo &->oo 

exists, for all cp e Co. 
Since #' e X' was arbitrary, it follows that for fixed cp e Co, the sequence 

{0k(f) (<p)}k-i - s weakly Cauchy. By the weak equicompactness of the maps 
0k(f), k = 1, 2, . . . , this sequence is contained in a weakly compact (hence 
weakly complete) set, and is therefore weakly convergent. 

Thus, for each cp e Co, there is a unique 0(f) (cp) e X such that 

&(f)(9>) = w-lim0k(f)((p). 
7c->oo 

This defines a linear map 0(f) : Co -> X which is clearly weakly compact. 
In fact, if K is a weakly compact set containing (5), then 0(f) (cp) e K whenever 

IHL =s i-
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Accordingly, there exists a regular measure ju : B -> X such that 
00 

&(f)(<p)= f <p(t)f*W)> <PtCo> 
6 

(see [2], Proposition 1). In particular, since for each X e (0, oo) the function 
t -> e M belongs to Oo, we have 

w-lim J e-MLk(f) (t) dt = J e Up (dt), I e (0, oo). 
£-»oo 0 0 

Thus, since /(oo) exists y s a week limit, Lemma 1 implies 

00 00 

J e *, . (d<), *'> = hm J e-ULk(gx-) (t) dt = </(!) - / ( o o ) , x'>, 
0 fc-»oo 0 

for each x' e X'', so tha t 
00 

f(X) - /(oo) = J e > (dO, A e (0, oo). 
0 

Replacing \x throughout by // — juo, where /uo '. B -> X is the measure taking 
the value/(oo) on sets containing {0} and zero elsewhere, we obtain (1). 

Conversely, suppose that / is the Laplace-Stieltjes transform of /u : B -> I . 
Clearly, for each k = 1,2, ..., the derivat ive/^) is given by 

and hence 

(V Lk(f) (t) 

fЩX) == | (-*)*e-*7* (dí), Я _ (0, oo), 
o 

00 

(_!)* /iyн " 
fc! \ ř 

(—-)*e" Í /г (d_). í є (0, oo) 

Therefore, for fixed cp e C0 with Halloo < l> a n ( i k — V 2, . . ., 

Ф * ( / ) («?) ç>(0 
i / í fc\*+i *« 

o o 
00 00 

i ky+i h \ 
«ř(l)77 , «*c ' d/ Wi (<_) 

&! \ t 
0 0 

by Fubini 's theorem. Thus 

Фк(f)(<P) = í &,ф(в)^(dв), 
o 

159 



where 

h,v(s) 

By a simple change uf variables. 

h,v(s 

1 / k V 4 1 Å-s 
cp(t) S^ Є~ t d í . 5Є [0. OO). 

Ы\ гi* -
cp\ \ e u åu, 

u (k — 1 

so tha t 

&,*>(*) 

using the identitv 

,k 1 

(8) 
J.t 

(Љ J ) ! 

e~» đг< 1, 

e îł dгг ^ 1 , s є [0, co), 

0, 1,2, ... 

Thus, for each cp e C0 with 99^ <; V and k V 2, . . . . $*(/) (<T) e coR(tu), 
the closed absolutely convex hull of the range Jl(fi) {^(E) : F1 e L>} of /̂ . 
Now by [3J, fi(fi) is relatively weakly compact, and so by Krein's theorem 
(see [3]), the set co B(,u) is \veakl}T compact. 

R e m a r k . In the case where X is a Banach space, a result equivalent to 
Theorem 1 has been proved by S. Z a i d m a n (see [5], Theorem 1). 

4. Case where the vector-valued measures have finite variation. If the system 
of seminorms P defines the topology of X, a measure pt : B > X has finite 
variation iff for e a c h ^ eP there exists a positive measure vp such that p(pt(E)) < 
2 vp(E), for all E e B. 

Lemma 3. A linear map lF : Co -^ X can be represented in the form 

00 

¥ » j <p(t)/*(dt), cpeCo, 
0 

for some regular Borel meas^lre /u tvith finite variation iff for each p e P there 

exists a constant Mv s^lch that 

n 

Cpl * Cf2 , . . . <fn G CO, 2 I?* = 1 

i 1 
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implies 

2pQP(q>t)) £MP. 

Proof . In the case where X is a Banach space, the result follows from [1], 
I I I 19.3, Theorems 2 and 3. For our more general space, the proof is essentially 
the same, and is therefore omitted. 

Theorem 2. A function / : ( 0 , oo ) ->X is the Laplace-Stieltjes transform 
of a regular measure with finite variation on B iff f has derivatives of all orders on 
(0, oo) and (3) holds for each p e P. 

Proof . Suppose (3) holds for each p e P. Then, if x' e X' is given a n d ^ -
is defined as in Theorem 1, it follows that (6) holds for some constant Mx>. 
Therefore, by Lemma 1, 

00 

lim J e-MLk(gx>) (t) dt = gx>(X) — gv(oo), X e (0, oo), 
£-*» 0 

so tha f , since/(oo) exists (strong limit) and x' e X' was arbitrary, 

00 

f{l) - /(oo) = w - l i m J" er»Lt(f) (t) dt, Xe (0, oo). 
&->oo o 

Similarly, if A denotes the subalgebra of (70 defined in Lemma 2, 
w — lim 0k(f) (xp) exists, for all \p e A. Denote it by 0(f) (ip). Since, 

£-»oo 

for each p e P, 

oo 

P( j W)Lk(f) (t) dt) ^ Mp \\V\L, k = l,2,..., 
0 

it is clear that 

Pmf)(V>)) £Mp\\y>\L, yeA. 

Since A is dense in C0 and X is quasi-complete, the uniformly continuous 
map 0(f) : A -> X defined above has a unique continuous extension (say <P'(f)) 
to CQ . Furthermore, one can easily show that 

(9) 0'(f) (<p) = w - lim 0k(f) (<p), <peC0. 
&-> oo 

n 

Now let 991, 992, . . . <pn e C0 be given, with 2 \<Pi\ = 1- Then, using (3), it 

follows that for each p e P, 
n n oo 

2 P(&t(f) M) ^ 2 / p(<Pt(t)Lt(f) (t)) dt = 
1=1 i = l 0 
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J ( 2 Wi(t)\)P(Lu(f) (I)) dt á Mp, k - 1, 2, ... . 

Also, using (9) for each <pl; i = 1,2,, ...n, it is clear that 

P(4>'(f) M) ^ lim supp(<Pk(f) (<Pt)), peP. 
Jc - > oo 

Tlius, for each p e P , 

2 *>(<*>'(/) (?>.)) ^ lim sup 2 3>(<P*(/) (?«)) _s Mp, 
i-1 k -=>oo * - l 

so that , by Lemma 3, there exists a regular measure JLC : B -^ X with finite 
variation such that 

Ф'(1)(<Р) = ] <р(1)ц{йЦ, уеС0. 

Proceeding exactly as in Theorem 1, we can now obtain (1). 
Conversely, suppose that (1) holds, for some measure ja with finite variation 

and dominating positive measures vv,p e P . Then, as in Theorem 1, we have (7), 
and hence, for each p e P and k = 1,2, J , . . . , 

p(Lk(f) (t)) ž 
1 (k\k+1 

Jfc! \ t 
sk e t vp(ds), t є (0, oo) 

Thus, for each p e P and k = 1,2,..., 

p(Lk(f) (t)) oV s <?Jc 

Õ Õ 

1 ík\k+1 k± 
t e~ t dt | vv (ds) = 

k\ \ t 
Vp (ds) = Mv, 

say, using Fubini's theorem and (8). 
R e m a r k . A result similar to Theorem 2 has been proved for Banach spaces 

by S. Zaidman (see [5], Theorem 2), where a certain ,,weak compactness'c 

condition is imposed on the function / i n addition to our condition (3). Except 
for the case of a weakly sequentially complete Banach space, Zaidman was. 
unable to remove this additional condition. 
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