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LAPLACE—STIELTJES TRANSFORMS
OF VECTOR-VALUED MEASURES

ANTHONY K. WHITFORD, Bedford Park, South Austialia

1. Introduction. It is well-known that a complex-valued function f on
(0, o) can be characterized as a Laplace-Stieltjes transform in terms of the
maps Lg(f), k=1, 2, ..., defined by

W)
Li(f) (1) foL ), te (0, ).

k! ¢ ¢
Namely, there exists a complex Borel measure on [0, o) such that

(1) J@2) [ e p), Ae (0, o),

0
iff f has derivatives of all orders on (0, co) and there exists a constant J/ such
that

(2) [ L(fy@ld s, k1,2,
0
(see for example [4], VII 12a).
Let Cy denote the space of all continuous complex-valued functions on
[0, o) which vanish at infinity, equipped with the sup-norm. Then the above
condition (2) means that the maps @(f), k — 1. 2, ..., defined by

Ou(f) () | o) L(f) (¢) dE, g e Co.
0

are equibounded linear functionals on Cg; i.e. they take the closed unit ball
of Cy into a bounded set not depending upon k.

In this paper we generalize by letting f take values in a quasi-complete,
locally convex space .\, whose topology is defined by a system P cf seminorms.
Defining Lg(f) and @x(f) as above, but with values now in .X, we show that f
is the Laplace-Stieltjes transform of a vector measure iff f has derivatives
of all orders on (0, oo) and the maps @i(f) take the closed unit ball of C'o
into a weakly compact subset of .Y, not depending upon k. In addition, we show
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that the vector measure has finite variation iff f has derivatives of all orders
on (0, co) and, for each p € P, there exists a constant 3/, such that

(3) [ pEa(f) @) dt < My, k -1,2.....
0

2. Preliminary results. Let C' denote the complex number field, and B
the o-ring of all Berel subsets ot [0, c0).

In the following two lemmas, fis a complex-valued function with derivatives
of all orders on (0, c0).

Lemma 1. If for each k. = 1,2, ...,

2

[ Li(f) () dt  O(), v oo,

0

then f(o0) exists, and

(4) lim foe “L(f) () dt  f(A)  f(eo). A€ (0, o).

k>0 0

Proof. See [4], VII 11b.

Lemma 2. If there exists a constant M such that (2) holds, then lim @k(f) (¢
k>
exists, for all ¢ € Cy.
Proof. By Lemma 1, it follows that (4) holds. Therefore, if .1 denotes
the subalgebra of Cy consisting of all functions of the form

n
t»zaie'“, ceC, 2e(0,cc), 1=<3
71

IIA

n 1,2, ...

bl

it is clear that lim @ (f) (p) exists, for all p € 4.

k>0

Let e > 0 and ¢ € Cy be given. Since 4 is dense in (o, there exists a func-

e
tion y € 4 such that [¢ — y|, < " Then
3

/
P

Di(f) (9)  Di() (@) = [Du(f)le — ) + [ Pulf))  Dy(f) (v) +
+ BNy @l <lg—vlM +e3+ 1y @ M <e,
for k. j sufficiently large.

3. A characterization of the Laplace—Stieltjes transforms of vector-valued
measures. Let X" denote the dual of the quasi-complete, locally convex space X.
By the weak topology on X we mean the (X, X’) topology.
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Theorem 1. 4 function f:(0, co) > X s the Laplace-Stieltjes transform
of a regular measure on B iff f has derivatives of all orders on (0, o) and the set

(5) {Pe(f) () 9 € Co, llplly = 1, k=1,2,...}
ts relatively weakly compact; i.e. the maps Dp(f), k =1, 2, ..., are weakly equi-
compact.

Proof. Suppose firstly that the maps Dg(f), k= 1,2,..., are weakly
equicompact.

For fixed «’ € X', define the function g, : (0, o) - C by
gx(l) = <f()')> x,>: re (O: OO)

Then it is clear that g,- has derivatives of all orders on (0, co0) and, for each
k- 1,2,...,

Li(g2) (8) — {Lx(f) (1), 27>, t€ (0, 00).

Since the set (5) is relatively weakly compact, it is weakly bounded, and
so there exists a constant A/, such that

l<(pk(f) (‘I’): xl>! = J[z" 'S OO} ”(p”oo = ]’ k— ]! 2’ e

Thus, foreach k = 1,2, ...,

[ce} [ce}

(6) | 1Lx(ga) (0)] At = sup || p(t)L(ga) (¢) &)

0 llplloo =10

= sup [< T(p(t)Lk(f) (@) de, 2> = My .

lelo=1 0

Hence, by Lemma 2,

lkim Dr(g2) (¢) }jm (Di(f) (), 2>
exists, for all ¢ € Cy.

Since z’ € X’ was arbitrary, it follows that for fixed ¢ € (g, the sequence
{Dx(f) (p)}7_1 is weakly Cauchy. By the weak equicompactness of the maps
Dr(f), k= 1,2, ..., this sequence is contained in a weakly compact (hence
weakly complete) set, and is therefore weakly convergent.

Thus. for each ¢ € Cp, there is a unique @(f) (¢) € X such that

D(f) () = w-lim Dy(f) (¢).

k>0

This defines a linear map &@(f): Co— X which is clearly weakly compact.

In fact, if K is a weakly compact set containing (5), then @(f) (p) € K whenever
lplls = 1.
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Accordingly, there exists a regular measure u : B — X such that
O(f) (¢) = | oOu(d), ¢ e Co;

(see [2], Proposition 1). In particular, since for each 1€ (0, o) the function
t >e * belongs to Cy, we have

0

wlim [ e Li(f) (t) dt = fe iy (dt), Ae (0, ).
0

k> 0

Thus, since f(co) exists us a week limit, Lemma 1 implies

[ 2u (@), 2y =lim [ eMLi(gs) () dt = {f(A) — f(o0), 2,

0 k> 0

for each o' € X', so that
J(2) — f(o0) = [ e #p(dt), 2e (0, ).
0

Replacing p throughout by w — po, where o : B — X is the measure taking

the value f(o0) on sets containing {0} and zero elsewhere, we obtain (1).
Conversely, suppose that f is the Laplace-Stieltjes transform of u: B - X.
Clearly, for each k = 1, 2, ..., the derivative f®) is given by

o0

f®(A f (—s)ke~2su (ds), Ae (0, o),

and hence

(— 1)k [ k\k+ i ke
(7) L(f) ) — == (7] | (okeT i p(@). te @ o).

0

Therefore, for fixed ¢ € Cy with [l@lle < 1,and & — 1, 2, ...,

g r 1 k \k+1 ks
Di(f) () ——J <P(t)(J kT(?) ske” T p (ds)) de
0 0
-} 0 1 k . .
‘[(J(p(’)ﬂ(t) Ske‘tdt)y(ds),
0 0

by Fubini s theorem. Thus

D (f) (9) = f Ex(s)t (ds).



where

1 ke \k+1 _ks
Ek,g(8) o(t) " stec dt. se0. x).
MW
0
By a simple change of variables.
£ o ks uk 1 .
S e "au,
k() 4 w /| (b— 1)
0
so that
3 uk 1
Erols) = q)w(( J)Ve“dugl, s € [0, o0),

using the identity

2 o
et du I, =n 0,1,2,....

(8)

J n!
0

Thus, for each pe Oy with ¢|, < Land & 1,2, .... §i(f) (¢) € coR(u),
the closed absolutely convex hull of the range R(u) {u(E):FE e B} of u.
Now by [3], R(n) is relatively weakly compact, and so by Krein’s theorem
(see [3]), the set co R(u) is weakly compact.

Remark. Tn the case where X is a Banach space. a result equivalent to
Theorem 1 has been proved by S. Zaidman (see [5], Theorem 1).

4. Case where the vector-valued measures have finite variation. If the system
of seminorms P defines the topology of X, a measure pu: I3 > X has finite
variation iff for each p € P there exists a positive measure v; such that p(u(£)) <
< vp(K), for all £ € B.

Lemma 3. A linear map ¥ : Co — X can be represented in the form

@) [ eu @), g¢eCo,
0

Sor some regular Borel measure u with finile variation iff for each p e I’ there
exists a constant My such that

1. @2, - pn€Co, > lgs £1
a
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implies
n
> pg) < Wy,
i=
Proof. In the case where X is a Banach space, the result follows from [1],
III 19.3, Theorems 2 and 3. For our more general space, the proof is essentially
the same, and is therefore omitted.
Theorem 2. 4 function f:(0, ) > X s the Laplace-Stieltjes transform
of a reqular measure with finite variation on B iff f has derivatives of all orders on

(0, o0) and (3) holds for each p € P.
Proof. Suppose (3) holds for each p € P. Then, if 2’ € X’ is given and g,
is defined as in Theorem 1, it follows that (6) holds for some constant M.

Therefore, by Lemma 1,

tim [ e Le(ge) (1) dt = go() — go(0), 2 € (0, o),

k> 0
so that, since f(co) exists (stroag limit) snd «’ € X’ was arbitrary,

o)

f(2) — f(0) = w—lim | e#Ly(f) (t)dt, A€ (0, o).

k-

Similarly, if A4 denotes the subalgebra of Cy defined in Lemma 2,
w — lim @4(f) (p) exists, for all p € 4. Denote it by @(f) (y). Since,
k—>o0

for each p € P,

P pOL) O ) 5 Myl k= 1,2,...,
0

it is clear that
P(@(f) @) £ Mp |9, ype4.

Since 4 is dense in Cy and X is quasi-complete, the uniformly continuous
ap D(f) : A - X defined above has a unique continuous extension (say @'(f))

to Cy. Furthermore, one can easily show that

(9) D'(f) (¢) = w — lim Di(f) (¢), @€ Co.

k> o
n .
Now let @1, @2, ... gn € Co be given, with > |g;| < 1. Then, using (3), it
i1

follows that for each p e P,

P(Pi(f) (¢1)) < i fop @ilt) Li(f )dt
0

i=1

B

.,

=1
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M=

lpONp(Le(f) (b)) df < Mp, k- 1,2,....

1

o
0

Also, using (9) for each ¢;, @ = 1, 2, ... n, it is clear that

o

PP (f) (#2) = lim sup p(Pe(f) (¢2), pe P.

k>
Thus, for each p € P,

n

S p@(f) (pi) < limsup S p@u(f) (p0) < I,

i-1 k> -1

so that, by Lemma 3, there exists a regular measure u: B —~ X with finite
variation such that

00

' (f) (¢) = [ @l)u (@), e Co.
6
Proceeding exactly as in Theorem 1, we can now obtain (1).
Conversely, suppose that (1) holds, for some measure x with finite variation

and dominating positive measures v,, p € P. Then, as in Theorem 1, we have (7).
and hence, for each pe Pand k =1, 2, .

ey

0

k ) S
p(Li(f) (1) = % (%) N J e vp(ds), te (0, ).
' 0

Thus, for each pe Pand k=1, 2, ...,

0

ﬂ‘) [ee] k 1 N 0
Jp(Lk(f) () dr < J sk (J %(?) ! e v dt) vp (ds) = J' vp (ds) = MMy,
)

0 0 0

say, using Fubini’s theorem and (8).

Remark. A result similar to Theorem 2 has been proved for Banach spaces
by S. Zaidman (see [5], Theorem 2), where a certain ,,weak compactness‘’
condition is imposed on the function f in addition to our condition (3). Except

for the case of a weakly sequentially complete Banach space, Zaidman was
unable to remove this additional condition.
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