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1. INTRODUCTION

Basic results on direct product decompositions of partially ordered sets were
proved in [1]. .
For a directed set L and an element s° of L we apply the notion of the internal

direct product decomposition

GO L — H Xx?
iel
with the central element s in the same sense as in [5]; cf. also Section 2 below.
Here, X? are convex subsets of L containing the element s%; they are called internal
direct factors of L (with the central element s°).

We denote by D(L, s°) the system of all direct factors of L with the central element
s0. This system is partially ordered by the set-theoretical inclusion. Then D(L, s%)
is a Boolean algebra.

If s* is another element of L, then the Boolean algebras D(L, s°) and D(L, s') are
isomorphic. Hence, if we consider the Boolean algebra D(L,s%) up to isomorphism,
then it suffices to write D(L) instead of D(L, s°).
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In the case when L can be represented as a direct product of directly indecompos-
able direct factors we obtain that the Boolean algebra D(L) is atomic. The converse
implication does not hold in general.

Sufficient conditions for D(L) to be atomic were found in [4] in the case when L
is a lattice. In [6] sufficient conditions were given under which a complete lattice is a
direct product of directly indecomposable direct factors. This result was generalized
in [4]. For related results cf. also [2], [3].

We denote by

L,—the class of all directed sets L such that the Boolean algebra D(L) is atomic;

Ly—the class of all directed sets L such that L is a direct product of directly
indecomposable direct factors.

If L € £, and if Ly is an interval of L then L; need not belong to £,.

In the present paper the following result will be proved:

(A) Let L be a directed set and let {Li}ic; be a system of intervals of L such

that
(i) the system {L;}ies is a chain (under the partial order defined by
the set-theoretical inclusion) and |J L; = L;
el

(ii) all L; belong to L.
Then L belongs to £,.

2. INTERNAL DIRECT FACTORS

We start by recalling some definitions and results from [5] concerning internal
direct product decompositions of directed sets.

In the whole paper L denotes a directed set. For u,v € L with u < v we denote
by [u,v] the corresponding interval of L. If X is a nonempty subset of L, then we
consider X to be partially ordered (with the partial order inherited from L).

Let L; (i € I) be directed sets; their direct product will be denoted by [] L;. If

el

 is an isomorphism of L onto [] L;, then the relation
icl

1) ¢: L— ] L
i€l

is called a direct product decomposition of L.
For i € I and « € L we denote by x(L;, ) the component of  in L; under the
morphisms . If X C L, then we put

X(Li, o) = {a(Li,¢): v € X}.
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L is called directly indecomposable if, Whenever (1) is valid, then there is i(1) € I
such that card L; = 1 for each i € I'\ {i(1)}. In such a case L is isomorphic to L.
Suppose that (1) holds. For cach i € I and & € L we put

[2)(Livpi) ={y € L: y(L;,¢) = a(Lj, ) foreach j & I\ {i}}.
Let s° be a fixed element of L,
L2 = [s")(Ls, ).
Given = € L, there exists a uniquely determined element @; in L? such that
(L, p) = wi(Li, o).
The mapping
@ o — ]2
i€l

defined by
2) W@ = (- ma i

is also a direct product decomposition of L. We call (2) an internal direct product
decomposition with the central element s°. The direct factors L? are called internal.
For each i € I, L? is isomorphic to L;.

In what follows, whenever we consider an internal direct procduct decomposition of
L or of a subset of L, then we always suppose that the corresponding central element
is s0.

From the definition of the internal product decomposition we immediately obtain:

2.1. Lemma. Let (2) be an internal direct product decomposition and let
i € I,x € L. Then the following conditions are equivalent:
(i) v €LY
(il) @(L,¢0) =a;
(iii) z(L9, %) = s° for each j € I'\ {i}.

2.2. Proposition. (Theorem (A) of [5].) Suppose that two internal direct
product decompositions are given,

vi: L—[T4n L —]]B

i€l jeJ
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such that there exist i(1) € I and j(1) € J with Ayyy = Bjy. Then for eachz € L
the relation

(A, ¥1) = 2(Bj), ¥2)
is valid.

Hence, if (2) is as above, then instead of z(L?,°) it suffices to write z(L?); for
X C L, the meaning of X (L?) is analogous. Also, we will write

() L=1[z?

il
instead of (2). .
2.3. Lemma. Let (2') be valid and let u,v € L, u < s° < v, i € I. Then

(2.3.1) v(L?) = max{t; € LY: s* < t; < v},

(2.3.2) w(L?) = min{t, € L?: s° > t, > u}.

Moreover, v = sup{v(L9) }ier and u = inf{(L9) }:e;.

Proof. The relation (2.3.1) was proved in [5], Lemma 3.2. The relation (2.3.2)
can be proved dually.

Further, in view of (2.3.1) we have v(L?) < v for each ¢ € I. Let t € L be such
that t > v(L?) for each i € I. Then for each ¢ € I we have

HLD) 2 (NI = v(LY),

yielding that ¢ > v. Therefore v = sup{v(L?)}ie;. The analogous relation for u can
be verified dually. ]

For A € D(L) we denote
At ={acA:azs®), A" ={accAag<s}

2.4. Lemma. Let A,B € D(L). If At C B and A~ C B. then A C B.

Proof. Suppose that A* C B, A~ C B and ¢« € A. There exist u € A~
and v € A% such that © < @ < v. Then u,v € B. Since B is convex in L we get
o € B. a
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2.5. Lemma. Let (2') be valid and let X be a convex directed subset of L,
€ X,i€l Then X(LY) =X NLY.

Proof. In view of 2.1 we have X N L? C X(L?). Let y € X(L?). Hence there
exists * € X such that y = z(L?). Since X is directed, there exist u,v € X such that
both » and s belong to the interval [u,v]. In view of 2.3 we have u(L?),v(L?) €
XN LY. Clearly w(L9) < y < v(LY). Hence y € X N LY. o

If (2') is valid, I; C I, and if for each i € I; we have {s°} € Z; C L?, then Z;
igl

ich
denotes the set

{rel:x(L?) €2 foreachiel and z(L?)=s" foreachie I\I1}.
Hence, if Z C L with s° € Z, then
Zx{s°} = 2.
Also, we obviously have
2.6. Lemma. Let (2') be valid and i € I. Then

L=18x J[ L5
JEN{i}

Suppose that two internal direct product decompositions are given,

3) L= 4.
iel

(4) L=1]B;:
jed

The decomposition (3) is said to be a refinement of (4) if for each j € J there exists
a subset 1(j) of I such that
B =] A«
i€1(j)

2.7. Proposition. Let (3) and (4) be valid. Then we have

(5) L= I 4nBy)

iel,jeJ
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and (5) is & common refinement of both (3) and (4). Namely, for each i € I and each
jelJ,

(6) A; = H(Ai N B;),
jed

Q) B; =[J(4:n B;).
iel

Proof. In view of Theorem (B) in [1] (cf. the relation (5) in the proof of (B))
we have
L= T[] By
i€l jeJ
and this decomposition is a common refinement of hoth (3) and (4).

Hence according to 2.5, the relation (5) is valid and it is a common refinement of
both (3) and (4).

Let i(1) € I. Since (5) is a refinement of (3), A;1) is an internal direct product
of some A; N B ((i,j) € I x J). Without loss of generality we can assume that
A;q) # {s°}. Thus it suffices to take into account only those (i,5) € I x J for which
A; N Bj # {s°}; the set of these (i, j) will be denoted by M.

Letie I,i#i(1) and j € J. Then Ay1y N A; = {s°}, whence according to 2.5,

Ayy(Ai N By) = Ay N (4; N B;) = {s°},
yielding that if (7,7) € M, then i = 1(1). Hence

4y € H(Ai(l) N B;).
jed
The internal direct factors A;;) N B; which are equal to {s} can be cancelled in
the above relation. Let j(1) € J and suppose that A;;y N B;,) # {s°}. By way of
contradiction, assume that

A JI AgnBy.
JeEN{M}

There exists @ € 4;1) N Bjqy with o # s%. If j € J, j # j(1), then 2.5 yields that
Bjy(Aiy N Bj) = {s°}.

whence z ¢ I (Ai(l) N Bj), which is a contradiction. Therefore

jeN{5(1)}
Ay = [JAiy n B).
jes
Hence (6) holds. The method of proving (7) is analogous. [m]
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2.8. Lemma. Let (2') be valid and let X be an interval of L, s° € X. Then
x=TJ[xnrLd.
i€l
Ifx e X andi €1, then 2(L?) = 2(LYN X).

Proof. First, let ¢ € I be fixed. There are u.v € L such that X = [u,v]. Put
wi = u(LP), v; = v(L?). Hence [ui,v;] is an interval of L? and X(L?) C [u:,vi)-
Let t € [u;,v;]. There exists = € L such that z(L?) = t and z(L§) = s° for each
j € I\ {i}. Since s € X we obtain that z € X and then ¢ € X(L?). Therefore
[us, v = X(L?).

We clearly have X C ] X(LY). Let = € [] X(L9). Then 2(L?) € [u;,v;] for each

i€l iel
i€ I, whence z € [u,v]. Thus X = [] X(L?). Now it suffices to apply 2.5 and we
el
obtain that X = J] (X nLY).
i€l

The last statement of the lemma is an immediate consequence of the above con-

struction. (Namely, for each x € X, ¢°(u) is as in (2') and then ¢°(z) € J[ X(L?).)
iel
)

3. AUXILIARY RESULTS

In this section we deal with the partially ordered set D(L) consisting of all internal
direct factors of L. Then {s°} and L are the least element and the greatest element
of D(L), respectively.

We call D(L) atomic if for each A € D(L) with A # {s°} there exists an atom A;
of D(L) such that 4; C A.

If A,B € D(L) and if inf{A4, B} or sup{A, B} does exist in D(L), then we denote
these elements by A A B or by 4 V B, respectively.

3.1. Lemma. Let L= A; x By, L= Ay x By, Ay = Ay. Then By = Bs.
Proof. We have A, N B, = {s%} = As N Bs. Hence from 2.7 we obtain
By = (By N Az) x (BN By) = {s°} x (B1 N By) = By N Bo,
thus By C B,. Analogously we get B, C By. a

3.2. Lemma. Let A€ D(L). Then there exists a unique A' € D(L) such that
L=AxA4"
Proof. In view of 2.6, such A’ does exist. Then 3.1 implies that 4’ is uniquely

determined. ]
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3.3. Lemma. Let A, B,C,A;,B; € D(L). Suppose that A, = AxC, By =
BxC, A1 € B;. Then A< B.

Proof. Letae€ AT. Hencea € A; and a(C) = {so}. At the same time, a € By
and thus in view of 2.3 we have

a = sup{a(B),a(C)} = sup{a(B),s°}.

From a > s° we get a(B) > s°(B) = s°. Thus a = a(B) and hence a € B. We have
shown that A* C B. Analogously we can verify that A~ C B. Then according to
2.4 we have A C B. [m]

3.4. Lemma. Let A,B € D(L). Then ANB=ANDB. .

Proof. According to 3.2 we have
L=AxA', L=BxDB.
Thus in view of 2.7,
(8) L=(ANB)x (ANB') x (A'NnB) x (A'n B").

Hence by applying 2.6 we obtain that A N B belongs to D(L). If C € D(L) and
C <A C<B,then C< ANB, whence ANB=A4NB. [m]

3.5. Lemma. Let A,B € D(L). Then

AVB=(ANB)x (ANB') x (A NB).

Proof. In view of (8) and 2.6,
(ANB) x (AN B') x (4' N B) € L(D);
denote this element of L(D) by P. We have
A=(ANB)x(ANB"), B=(BnA)x(BnA"),

whence A < P and B < P. Let Q € D(L), @ > A and Q > B. Then from (8) and
2.7 we obtain

Q=(QNANB)x(QNANB)x (QNA'NB)x(QNA NB')
=(ANB)x (ANB)x (ANB)x(QNA'NB)=Px(QNANB),

thus Q > P. Therefore AV B =P. [m]

152



3.6. Corollary. The partially ordered set L(D) is a lattice with the least
element {s°} and the greatest element L.

3.7. Lemma. For each 4 € L(D), A’ is a complement of 4 in L(D).

Proof. F¥rom L = A x A’ we obtain A N A" = {s%}, Lence in view of 3.4,
AN A ={s°}. Further, in view of 3.5,

AVA =(ANA)x (ANA")x (ANA)={s°) x Ax A’ = L.

[}

Consider the mapping ¢: D(L) — D(L) defined by ¢(A) = A’ for each A €
D(L).

3.8. Lemma. The mapping ¢ is a dual isomorphism of D(L) onto D(L).

Proof. If A € D(L), then ¢(p(A)) = A, hence ¢ is a bijection. Let A,B €
D(L), A < B. In view of 2.7,

B'=(B'nA)x(B'nA").

Since
{s°Y < B'nA< B NB={s"

we get B'NA = {s°} and thus B’ = B'N A’ yielding that B’ < A’. Conversely, from
B' < A' we obtain that B=B" > A" = A. [m]

3.9. Lemma. Let A,B € L(D) be such that B is a complement of A in L(D).
Then B=A'.

Proof. According to the assumption we have
AANB={s"}, AvB=L.
Hence in view of 3.8 we obtain
AvB =L AAB={s}.

Thus
ANB=ANB = {s°.

The relation (8) is valid and hence
(9) L=(ANB)x (A'NB).
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Let a € A*. Then in view of 2.3 we have
a(A'NB) ="
Put a(AN B’) = z. According to (9) and 2.3,
a = sup{z, s°}.

Clearly z > s°, whence a = z. Thus A* C AN B’. Dually we obtain that A~ C
AN B'. Thus according to 2.4, A C AN B’ yielding that A C B’. Analogously we
establish the validity of the relation B’ C A. Hence A = B and thus A’ = B. a

From 3.9 and 3.2 we infer

3.10. Lemma. Each element of D(L) has a unique complement.

Now let A4, B be elements of D(L), AAB=P, AVB=Q. From L =P’ x P and
from 2.7 we obtain
Q=(QnP)yxP

Put QN P' = Q,. Hence Q@ = Q; x P. Analogously we have
A=A xP, B=B;xP,

where A4, = ANP’ and B; = BN P'. Thus in view of 3.3 we get 4, < Q1, By < Q1;
also

AIABi=ANB=(ANP)N(BNP)=(ANB)NP =PNP = {s°}.
Further we have
Q=AVB=(ANB) x (ANB') x (A'NB) = P x (4N B') x (4'N B)
and Q, C Q, @ NP = {s°}. Therefore

Qr=(PNQ1)x(ANB'NQ) x (A'NBNQ)
=(ANB'NQ:) X (A'NBNQ)).
Let us consider the elements A'N BN Q; and A} N B,y of D(L).
Let = € A{ N By. Then z € By, whence z € @, and v € B. Therefore z(P) = s°

From L = A x A" = 4; x P x A’ we obtain that A{ = P x 4’ Thus z € A’ and so
A,NB CANBNQ,.
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Further, let y € AANBNQ,. Thusy € BCQ =@, x Pandsoin viewofy € Q1
we get y(P) = {s°} yielding that y € B;. Next we have y € A’ C A}. Therefore
A'NBNQ, C A NB;.

Summarizing, we obtained the relation

A'NBNQ@, =A\NB,.
Analogously we can prove
ANB' N@Q, = A NB;.

Hence
Q1= (A41NB1)x (AN B]) x (4| NB,) =4, VB,
Thus we have verified the following result.

3.11. Lemma. Let A, B, P,Q, A; and By be as above. Then A, is a complement
of By in the lattice D(Py).

3.12. Lemma. Let A,P,Q be as above, C € D(L), P C<Q, A#C. If
C =C; x P, then A; #Cy.

Proof. If C; = Ay, then A = A; x P implies that C = A, which is a contra-
diction. O

3.13. Lemma. Let A,P,Q € D(L), P < A < Q. Then A has exactly one
complement in the interval [P, Q] of D(L).

Proof. Thisis a consequence of 3.10, 3.11 and 3.12. m]

3.14. Proposition. The partially ordered set D(L) is a Boolean algebra.

Proof. It is well-known that 3.13 implies the distributivity of D(L). Hence 3.6
and 3.13 suffice to complete the proof. [m]
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4. CONSTRUCTION OF PARTIALLY ORDERED $ETS Ck

In this section we suppose that the assumptions of (A) are satisfied. The case
L = {«°} being trivial we can assume without loss of generality that card L > 1 and
cardL; > 1 foreach i € I.

For each i(1) € I there exists an internal direct product decomposition

(10) Lin= I A4iw;
JEJ(i1))

such that each Ayy; is directly indecomposable and card 4;(); > 1. From 2.7 it
follows that such an internal direct product decomposition is uniquely determined.

In view of condition (i) in (A) we can suppose that the set I is linearl); ordered
and that whenever i(1),i(2) € I, i(1) <i(2), then L;qy C Lyz).

4.1. Lemma. Let i(1),i(2) € I, i(1) < i(2), j(1) € J(i(1)). Then there exists a
uniquely determined j(2) € J(i(2)) such that

Ao € A
Proof. We have

(10" Ligp= ] Aiy»
JEJ(I(2))
Liqy C Ligzy-

Hence L;q) is an interval of L2y and thus according to 2.8,

Ligy = H (Lig) N Ayay;)-
JEJ(i(2))

Then, since A;(y); is a directly indecomposable internal direct factor of Li(1) we infer
that there exists j(2) € J(i(2)) such that

Aini) € Lig) N Az
This yields that whenever j € J(3(2)) and j # j(2), then
Aimyi N Ai; = {8}
Hence the index j(2) is uniquely determined. m]
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If i(1) < i(2) and if 5{1),J(2) are as above, then we denote

Pinyiz) (1) = §(2)-
For i(1) = i(2) we put
Pignyi (1) = j(1).

4.2. Lemma. Let i(1),i(2),i(3) € I, i(1) < i(2) < i(3), (1) € J((1)) and
J(2) = @i(1)i2y(§(1)). Then

Pi(1)i(3) (3 (1)) = wizyica) (3(2))-
Proof. Denote ¢i2)i3)(j(2)) = 5(3). Then
Aiiy € Ay € Ais)ien

whence ©i(1)i3) (§(1)) = 5(3)- O
Let i(1) € I and j(1) € J(i(1)). We put

Binsmy= U A@ser
i(2),5(2)
where i(2) runs over the set {i(2) € I':4(2) » i(1)} and for each such i(2) we have
3(2) = @iy (1 (1)-
Let us remark that if i(1) € I and j(1),j/(1) are distinct elements of J(i(1)), then
Biyj) and Bz can be equal. Further, if i(1) < i(2) and j(2) = iyi2) (1),
then according to 4.2 we have

Biy;0) = Biyi)-

Let Cy be the system of all directed sets Bj)j(1)» where i(1) runs over the set I,
and for each i(1) € I, j(1) runs over the set Ji(1)- ’
Let i(1) € I and k € K. Consider the relation (10) and denote

Ty = 1 € JGE(): A € Ceb
Ty = TGO\ Ty
Ly = H Ai(1yj

jEJ"’[l)

Loy= I 4w
&
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Then
(10") Liay = Ly x Ligy-
Also, from the definition of C;, we obtain

4.3. Lemma. Leti(1),i(2) € I, i(1) < i(2). Then LY, is an interval of L,
and Lf(l) is an interval of L?(Z). Moreover,

= |J Ly

1)el

We put

]

cr= U Ly
i(1)el

4.4. Lemma. Let i(1),i(2) € I, i(1) <i(2), € L;iqn)- Then

x(Lyyy) = .'E(L?(2]),

T(L?(l)) = -’C(L?(z))-
Proof. This is a consequence of (10”), 4.3 and 2.8. =]
Let « € L. There exists i(1) € I such that & € L. Denote

Tt = ~77(L?(1))a zb = ir(Lg(l})-

In view of 4.4, the mapping ¢: L — L x L defined by

P(z) = (z%,2")

is correctly defined.
Clearly 2 € Cf and b e Cr.

4.5. Lemma. Let 2,y € L. Then « € y if and only if z* < y® and z* < y*.

Proof. There exists i(1) € I such that both z and y belong to L;). Let z < y
Then in view of the definition of the mapping % we have 2¢ < y* and z* < y°
Conversely, suppose that z* < y* and z° < 3. Thus (10”) yields that = < y. O
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4.6. Lemma. Letz € Cy, 2y € Cf. There exists ¢ € L such that p(@) =
(21, 22).

Proof. Thereisi(l) € I with 21,20 € Liy. Then z; € L

Sy and z2 € L.
Now it suffices to apply (10”). 0

Also, from the definition of +» we immediately obtain

4.7. Lemma. Letx € L. Then
(i) v € Cp & P(2) = (2,59,
(i) = € Cr & ¥(z) = (%, 2).

From 4.5, 4.6 and 4.7 we infer

4.8. Lemma. The mapping ) defines an internal direct product decomposition

L=CyxCy.

4.9. Lemma. Let A € D(L), i(1) € I, j(1) € JGE(1), AN Aiuyj) # {5°)-
Then Bj);a) € A.

Proof. Since Ay)jq) is directly indecomposable, from A N A;q);iy # {50} we
obtain AN Aiqy;0) = Aiqyjay. thus Aiayjay € A

Let i(2) > i(1). Denote @y(1);()((1)) = j(2). Hence by the same reasoning as we
have applied to Ay1)j(1) We get Ajz)j2) € A. Therefore Byy;) C 4. a

4.10. Lemma. Let k€ K. Then C}, is directly indecomposable.

Proof. By way of contradiction, suppose that Cy is divectly decomposable.
Hence it can be represented in the form

Ci=AxB, A#{s}#B.

There is i(1) € I and j(1) € J(i(1)) such that Cx = Bi1)j)- Hence Ainyiqy is an
interval of Ci. This yields

Ay = (A N A) X (i) N B).
Since A;1y;(1) is directly indecomposable, without loss of generality we can suppose
that
A = Ao N A

Thus in view of 4.9 we obtain the relation Cx = Bj);) C 4. whence B = {0},
which is a contradiction.



4.11. Lemma. Let {s°} # A € D(L). Then the following conditions are
equivalent:
(i) A is an atom of D(L).
(ii) A is directly indecomposable.

The proof is the same as in [4], Lemma 2.1.

4.12. Lemma. Let A € D(L), A # {s°}. Then there exist i(1) € I and
(1) € J(i(1)) such that AN Ay # {0},

Proof. There exists x € 4 with 2 # s°. Further, there exists i(1) € I such
that 2 € L;). Consider the relation (10). There is j(1) € J(i(1)) such that

(A1) # s°-

Hence AN Ayy);0) = A(Aiyi) # {s°) a

Proof of (A). It suffices to apply 4.8-4.12.

5. EXAMPLES

Let £, and £y be as in Section 1.
From 4.11 and 2.7 it easily follows that £ is a subclass of L.

5.1. Example. Let L be the system of all finite subsets of an infinite set M;
this system is partially ordered by the set-theoretical inclusion. Then L belongs to
L, but it does not belong to £,,.

In particular, let M be the set of all positive integers, s° = . For each n € M

put v, = {1,2,...,n}, Ln = [s°,v,]. Then L, € £ foreachn € M, |J L. =L,
n€M

hence L satisfies the assumptions of (A). Nevertheless, L ¢ £,.

52. Example. There exists an infinite Boolean algebra X such that X has
no atom. Let L = X U {y} be such that y ¢ X and y is the greatest element of L.
Further let s° be the least element of X. Then D(L) = {{s°}, L}, whence L € Ls-
On the other hand, X is an interval of L and for each z € X, the interval [s°, z]
belongs to D(X), hence the partially ordered set D(X) is isomorphic to X. Therefore
D(L) fails to be atomic, i.e., X does not belong to L.
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53. Example. The assertion of Lemma 2.8 cannot be extended to the case
when X is a convex subset of L with s° € X. Indeed, let M be an infinite set and
let L be the Boolean algebra of all subsets of M; put s° = @. For each m € M let

m = {0,{m}}. Then L = H L., Let X be the system consisting of all finite

M

subsets of M. This system is (hrected convex in L and for each m € M we have
XN Ly =L, However, X # [[ Lm

1]

meM
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