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1. INTRODUCTION 

Basic results on direct product decompositions of partially ordered sets were 
proved in [1]. 

For a directed set L and an element s° of L we apply the notion of the internal 
direct product decomposition 

V°:L-+IIX! 
i€l 

with the central element s° in the same sense as in [5]; cf. also Section 2 below. 

Here, X? are convex subsets of L containing the element s°; they are called internal 

direct factors of L (with the central element 5°). 

We denote by D(L, s°) the system of all direct factors of L with the central element 

s°. This system is partially ordered by the set-theoretical inclusion. Then D(L,s°) 

is a Boolean algebra. 

If s1 is another element of L, then the Boolean algebras D(L, s°) and D(L, s1) are 

isomorphic. Hence, if we consider the Boolean algebra D(L,s°) up to isomorphism, 

then it suffices to write D(L) instead of D(L, s°). 



In the case when L can be represented as a direct product of directly indecompos­

able direct factors we obtain that the Boolean algebra D(L) is atomic. The converse 

implication does not hold in general. 

Sufficient conditions for D(L) to be atomic were found in [4] in the case when L 

is a lattice. In [6] sufficient conditions were given under which a complete lattice is a 

direct product of directly indecomposable direct factors. This result was generalized 

in [4]. For related results cf. also [2], [3]. 

We denote by 

Ca—the class of all directed sets L such that the Boolean algebra D(L) is atomic; 

C0—the class of all directed sets L such that L is a direct product of directly 

indecomposable direct factors. 

If L 6 Ca and if L\ is an interval of L then Lx need not belong to Ca. 

In the present paper the following result will be proved: 

(A) Let £ be a directed set and let {Li}iei be a system of intervals of L such 

that 

(i) the system {L,}ig/ is a chain (under the partial order defined by 

the set-theoretical inclusion) and \J Li = L: 
tei 

(ii) all Li belong to £(,. 

Then L belongs to Ca. 

2. INTERNAL DIRECT FACTORS 

We start by recalling some definitions and results from [5] concerning internal 

direct product decompositions of directed sets. 

In the whole paper L denotes a directed set. For u,v £ L with u ^ » w e denote 

by [u,v] the corresponding interval of L. If X is a nonempty subset of L, then we 

consider X to be partially ordered (with the partial order inherited from L). 

Let Li (i e I) be directed sets; their direct product will be denoted by f ] L,-. If 
i s / 

ip is an isomorphism of L onto f] Li, then the relation 
»€/ 

(1) ^:L-+n> 
tei 

is called a direct product decomposition of L. 

For i € / and i f l w e denote by x (£;,</>) the component of x in Li under the 

morphisms ip. If X C L, then we put 

X{LiM = {x(Li,<p): x€X}. 
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L is called directly indecomposable if, whenever (1) is valid, then there is i(l) e / 

such that card Li = 1 for each i e I\ -fj(l)}. In such a case L is isomorphic to £;(i). 

Suppose that (1) holds. For each i £ / and x £ L we put 

[x]{Li,<pi) = {yeL: y{L),<p) = x{Ljt<p) tor each j e l \ {i}}. 

Let s° be a fixed element of L, 

L° = [S°](Li,<p). 

Given x e L, there exists a uniquely determined element xt in L? such that 

i(Li,¥?) = .Ti(Li,V). 

The mapping 

(2) ^°^UL° 
(67 

defined by 

(2') vP(*) = ( . . . , S,,...).67 

is also a direct product decomposition of L. We call (2) an internal direct product 

decomposition with the central element 5°. The direct factors L° are called internal. 

For each i £ / , L? is isomorphic to L;. 

In what follows, whenever we consider an internal direct product decomposition of 

L or of a subset of L, then we always suppose that the corresponding central element 

is s°. 

From the definition of the internal product decomposition we immediately obtain: 

2.1. Lemma. Let (2) be an internal direct product decomposition and let 

i 6 / , x 6 L. Then the following conditions are equivalent: 

(i) x e L°i; 

(ii) x{Ll<p°)=x; 

(iii) x{L°j, f°) = s° for each j e l \ {i}. 

2.2. Proposit ion. (Theorem (A) of [5].) Suppose that two internal direct 

product decompositions are given, 

ih-.L—•TTA,, fa-.L—tJlBj 
•'€/ jej 
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such that there exist i(l) € I and j(l) e J with A^) = Bj(i). Then for each x € L 

the relation 

x(Ai{l),ipi) =x(Bm,v2) 

is valid. 

Hence, if (2) is as above, then instead of x(L°,ip°) it suffices to write x(L°); for 

X C L, the meaning of X(L°) is analogous. Also, we will write 

(2') L = ]jL0 

•e; 

instead of (2). 

2.3. Lemma. Let (2') be valid and let u,v e L, u ^ s° ^ v, i e I. Then 

(2.3.1) v(L°) = max{h e L°: s° ^ t, ^ u}, 

(2.3.2) u(L?) = min{f2 e L° : s° > t2 ^ u} . 

Moreover, t> = sup{t)(L0)} i 6 / and u = inf{(L°)} i e / . 

P r o o f . The relation (2.3.1) was proved in [5], Lemma 3.2. The relation (2.3.2) 

can be proved dually. 

Further, in view of (2.3.1) we have v(L°) ^ v for each i e / . Let t e L be such 

that t^v(L°) for each i e I. Then for each i e I we have 

f(L?) £ ML°))(L°) = u(L?), 

yielding that t ^ «;. Therefore v = sup{u(L°)} i 6 / . The analogous relation for u can 

be verified dually. • 

For A e D(L) we denote 

A+ = {ae A: a ^ s0}, A~ = {ae A: a < s 0 } . 

2.4. Lemma. Let A B e £>(L). Ir"/1+ C B and A~ C B, fhen A C J5. 

P r o o f . Suppose that A+ C B, A~ C B and « e A. There exist u G A -

and » e A+ such that u ^ a ^ v. Then u,v e B. Since B is convex in L we get 

o £ B . • 

148 



2.5. Lemma. Let (2') be valid and let X be a convex directed subset of L, 

s° e X, i e I. Then X(L?) = x n L°. 

P r o o f . In view of 2.1 we have X n L° C X(L°). Let y £ X(L°). Hence there 

exists x 6 X such that y = x(L°). Since X is directed, there exist u,v £ X such that 

both x and s° belong to the interval [u,v\. In view of 2.3 we have U ( L ° ) , D ( L ° ) 6 

X n L°. Clearly u(L?) sC j / < i'(L°). Hence 9 e J n l J . • 

If (2') is valid, h C I, and if for each i € h we have {s0} 6 Z; C L°, then P] z< 
;g / i 

denotes the set 

{x e L: x(L?) 6 Z; for each i 6 / , and x(L°) = s° for each i € / \ / . } . 

Hence, if Z C L with s° € Z, then 

Z x {s0} = Z. 

Also, we obviously have 

2.6. Lemma. Let (2') be valid and i 6 / . Then 

L = L°x H L°. 
;e/\{>'} 

Suppose that two internal direct product decompositions are given, 

(3) L = p>, 
i€l 

(4) L = J[Bj. 
j s J 

The decomposition (3) is said to be a refinement of (4) if for each j € J there exists 

a subset I(j) of / such that 

B,= n > 

2.7. Proposition. Let (3) and (4) be valid. Tien we have 

(5) L= LJ (AnBj) 
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and (5) is a common refinement of both (3) and (4). Namely, for each i e / and eacii 

i e J , 

(6) .4, = r T ( ^ n B < ) ' 

jeJ 

(7) Bj = Y[(AlnBJ). 
iei 

P r o o f . In view of Theorem (B) in [1] (cf. the relation (5) in the proof of (B)) 

we have 

L= n BMi) 
i€l,jeJ 

and this decomposition is a common refinement of both (3) and (4). 

Hence according to 2.5, the relation (5) is valid and it is a common refinement of 

both (3) and (4). 

Let i ( l ) e / . Since (5) is a refinement of (3), A i(1) is an internal direct product 

of some Ai n Bj ((i,j) e I x J ) . Without loss of generality we can assume that 

^i(i) 7̂  {s 0}. Thus it suffices to take into account only those (i,j) G / x J for which 

Ai n Bj ^ {s0}; the set of these (i,j) will be denoted by M. 

Let i € / , i / i ( l ) and j e J . Then / 1 , ( 1 ) n Af = {.s0}, whence according to 2.5, 

Ai{l)(Ai n B j ) = Ai(1) n (AiHBj) = {s 0}, 

yielding that if (i, j) E M, then i = 1(1). Hence 

Ai^c^A^nBj). 
jeJ 

The internal direct factors A i (1 ) n Bj which are equal to {s0} can be cancelled in 

the above relation. Let j(l) e J and suppose that A,-(1) n £ ) ( 1 ) ^ {s 0}. By way of 

contradiction, assume that 

Ai{i)C J ] (A^nBj). 

jeAO'U)} 

There exists .r e Ai(1) n B j ( 1 ) with a; + s°. If j e J, j ^ j(l), then 2.5 yields that 

B j l l | ( ^ 1 1 ) n B ] ) = {s°}, 

whence x fi fj (^i(i) n -Bj), which is a contradiction. Therefore 
jsAO'd)} 

^(i)=n^«u>n^)-

Hence (6) holds. The method of proving (7) is analogous. • 

150 



2.8. L e m m a . Let (2') be valid and let X be an interval of L, s° G A. Then 

A = TT(AnL°). 

iei 

Ifx G X and i e I. then x(L°{) = x(L? n A) . 

P r o o f . First, let i G I be fixed. There are u.v G L sucli that A = [u,i>]. Put 

Uj = «(£?), tti = •o(L°). Hence [u.,«4] is an interval of L° and A(L°) C [«<,«<]. 

Let t e [«{,«{]. There exists z e L such that z(L°) = « and z(L°) = s° for each 

i G 7 \ {i}. Since s° e A we obtain that z G X and then t e A(L°) . Therefore 

\ui,vi} = X(L°i). 
We clearly have A C f l X(Lf). Let ; G F] ^ ( L ° ) - T h e n *(£?) G [u; ,^] for each 

is / i s / 
i G I, whence z G [«,«]• Thus A = n X(L°). Now it suffices to apply 2.5 and we 

ie/ 
obtain that A = T T ( A n L 0 ) . 

iei 
The last statement of the lemma is an immediate consequence of the above con­

struction. (Namely, for each x G X, ifi°(u) is as in (2') and then tp°(x) G n X(L°)-) 
iei 

D 

3. AUXILIARY RESULTS 

In this section we deal with the partially ordered set D(L) consisting of all internal 

direct factors of L. Then {s0} and L are the least element and the greatest element 

of D(L), respectively. 

We call D(L) atomic if for each A G D(L) with A ^ {.s0} there exists an atom A\ 

of D(L) such that A\ C A. 

If A, B G D(L) and if inf {A, B) or sup{A, B} does exist in D(L), then we denote 

these elements by A A B or by A V B, respectively. 

3 .1 . L e m m a . Let L = A\ x B\, L = A2 x B2, A\ = A2. Then B\ = B2. 

P r o o f . We have A\ n Bt = {.s0} = A2 n B2. Hence from 2.7 we obtain 

B\ = (B\ n A2) x (B\ n B2) = {s°} x (B\ n B2) = B\ n B2, 

thus i?i C i?2. Analogously we get B2 C. B\. D 

3.2. L e m m a . Let /I G L>(L). Then there exists a unique A' G D(L) such that 

P r o o f . In view of 2.6, such A' does exist. Then 3.1 implies that A' is uniquely 

determined. D 
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3.3 . Lemma. Let A,B,C,Ax,Bi e D(L). Suppose that Ax = A x C, B\ = 

B x C, Ax ^ S i . Then A^B. 

P r o o f . Let a e A+. Hence a e A\ and a(C) = {s°}. At the same time, a e L?i 

and thus in view of 2.3 we have 

a = sup{a(S), a(C)} = sup{a(B),s0}. 

From a ^ s° we get a(B) ^ s°(B) = s°. Thus a = a(B) and hence a e B. We have 

shown that A+ C B . Analogously we can verify that A~ C B. Then according to 

2.4 we have A C B. • 

3.4. Lemma. Let A, B e D(L). Then A A B = An B. 

P r o o f . According to 3.2 we have 

L = AxA', L = BxB'. 

Thus in view of 2.7, 

(8) L = (A n B) x (A n B') x (A' n B) x (A' n B'). 

Hence by applying 2.6 we obtain that AnB belongs to D(L). If C e D(L) and 

C s$ A,C ^ B, then C ^ i n B , whence AAB = AnB. D 

3.5. Lemma. Let A,B e D(L). Then 

AvB = (AnB)x(AnB')x(A'n B). 

P r o o f . In view of (8) and 2.6, 

(AnB) x (An B') x (A' n B) e L(D): 

denote this element of L(D) by P. We have 

A = (AnB)x(AnB'), B = (BnA)x(BnA'), 

whence A ^ P and B ^ P. Let Q e D(L), Q^ A and Q ^ B. Then from (8) and 

2.7 we obtain 

Q = (QnAnB) x (QnAnB') x (QnA'nB) x (Qn A'nB') 

= (A n B) x (A n B') x (A' n B) x (Q n A' n B') = P x (Q n A' n B'), 

thus Q > P. Therefore A V B = P. D 
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3.6. Corollary. The partially ordered set L(D) is a lattice with the least 

element {s0} and the greatest element L. 

3.7. Lemma. For each A e L(D), A' is a complement of A in L(D). 

P r o o f . From L = A x A' we obtain A n A' = {s0}, hence in view of 3.4, 

A A A' =. {s0}. Further, in view of 3.5, 

A V A' = (A n A') x (A n A") x (A' n A') = {s0} xAxA' = L. 

• 
Consider the mapping <p: D(L) —» D(L) defined by <p(A) = A' for each A £ 

D(L). 

3.8. Lemma. The mapping <p is a dual isomorphism of D(L) onto D(L). 

P r o o f . If A e D(L), then ip((p(A)) = A, hence ip is a bijection. Let A,B e 

D(L), A^B. In view of 2.7, 

B' = (B'nA) x (B' nA'). 

Since 

{s0} 4B'nA^B'nB = {s0} 

we get B' n A = {s0} and thus B' = B' n A ' yielding that B' ^ A'. Conversely, from 

B' ^ A' we obtain that B = B" ^ A" = A. • 

3.9. Lemma. Let A,B £ L(D) be such that B is a complement of A in L(D). 

Then B = A'. 

P r o o f . According to the assumption we have 

AAB = {S0}, AVB = L. 

Hence in view of 3.8 we obtain 

A'VB' = L, . 4 ' A B ' = {s0}. 

Thus 

AnB = A'nB' = {s0}. 

The relation (8) is valid and hence 

(9) L = (AnB')x(A'nB). 
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Let a e A+. Then in view of 2.3 we have 

a(A'nB) = s°. 

Put a(A n B') = x. According to (9) and 2.3, 

a = sup{x,s 0}. 

Clearly x ^ s°, whence a = x. Thus A+ C An B'. Dually we obtain that A~ C 

A n B'. Thus according to 2.4, A C An B' yielding that A C B ' . Analogously we 

establish the validity of the relation B' C A. Hence A = B' and thus ^4' = B. • 

From 3.9 and 3.2 we infer 

3.10. Lemma. Each element of D(L) has a unique complement. 

Now let A, B be elements of D(L), A A B = P, A V B = Q. From L = P' x P and 

from 2.7 we obtain 

Q = (Q n P ' ) x P. 

Put Q n P ' = Qi . Hence Q = Qi x P . Analogously we have 

A = Ai x P, B = Blx P, 

where At= AnP' and Bx = BnP'. Thus in view of 3.3 we get .4i < Q i , B x < Qx ; 

also 

AlAB1=A1nB1 = (AnP') n(BnP') = (AnB)nP' = PnP' = {s0}. 

Further we have 

Q = Av B = (AnB) x(AnB')x(A'nB) = P x(AnB') x (A' n B) 

and Qi C Q, Q, n P = {s0}. Therefore 

Qi = ( P n Q i ) x f i n B ' n Q . ) x ( A ' n B n Q , ) 

= ( ^ n P ' n Q i ) x ( . 4 ' n B n Q i ) . 

Let us consider the elements 4 ' n B n Q , and A[ n P i of P>(L). 

Let x e A'i n P i . Then x e P i , whence x e Qi and x £ P . Therefore x(P) = s° 

From L = A x .4' = A\ x P x A' we obtain that A[ = P x A'. Thus x e A' and so 

,4; nP[ C A'OBnQi. 

154 



Further, let y € A'nBnQi. Thus y 6 B C Q = Qi x P and so in view of y e Qi 

we get y(P) = {s°} yielding that y 6 B\. Next we have y e A' C A[. Therefore 

A'nBnQi cA[nBi. 

Summarizing, we obtained the relation 

A'nBnQi = A[ n P i . 

Analogously we can prove 

AnB'nQ! = AinB[. 

Hence 

Qi = (AinBi) x (AinB[) x (A\ n B i ) = .4. VJBX. 

Thus we have verified the following result. 

3.11 . L e m m a . Let A, S , P, Q, Ai and P i be as above. Then Ai is a complement 

ofBx in the lattice D(Pi). 

3.12. Lemma. Let A,P,Q be as above, C <E D(L), P sC C ^ Q, A ^ C. If 

C = CX x P , then Ai +CX. 

P r o o f . If Ci = Ai, then A = Ai x P implies that C = A, which is a contra­

diction. D 

3.13. Lemma. Let A,P,Q e D(L), P ^ A sC Q. Then A has exactiy one 

complement in the interval [P,Q] of D(L). 

P r o o f . This is a consequence of 3.10, 3.11 and 3.12. D 

3.14. Propos i t ion . The partially ordered set D(L) is a Boolean algebra. 

P r o o f . It is well-known that 3.13 implies the distributivity of D(L). Hence 3.6 

and 3.13 suffice to complete the proof. D 
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i 4. CONSTRUCTION OF PARTIALLY ORDERED SETS Ck 

In this section we suppose that the assumptions of (A) are satisfied. The case 

L = {s0} being trivial we can assume without loss of generality that card!/ > 1 and 

card Li > 1 for each i e I. 

For each i ( l ) 6 / there exists an internal direct product decomposition 

(10) Lm= TT Amj 

jeJ(HD) 

such that each Amj is directly indecomposable and card A;(i):; > 1. From 2.7 it 

follows that such an internal direct product decomposition is uniquely determined. 

In view of condition (i) in (A) we can suppose that the set / is linearly ordered 

and that whenever i ( l ) , i (2) £ / , i ( l ) < i(2), then Lm C Li{i). 

4 . 1 . L e m m a . Let i ( l ) , i (2) 6 / , i ( l) < i(2), j(l) s J ( i ( l ) ) . Then there exists a 

uniquely determined j(2) € J(i(2)) such that 

Ai(l)j(l) Q Ai(2)j(2)-

P r o o f . We have 

(10') Li{2)= f j A m , 

J£J(i(2)) 

Li(i) C Li(2). 

Hence Li(i) is an interval of Li(2) and thus according to 2.8, 

Liw= n (^(D 0 ^) . , - ) -
J£J(i(2)) 

Then, since Amj is a directly indecomposable internal direct factor of Li(i) we infer 

that there exists j(2) G J(i(2)) such that 

Ai(l)j(l) Q L«(l) nAi(2)j(2)-

This yields that whenever j e J(i(2)) and j ^ j'(2), then 

Ai(i)j(i)nAi{2)j = {s°}. 

Hence the index j(2) is uniquely determined. D 
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If i ( l) < i(2) and if i ( l ) , i ( 2 ) are as above, then we denote 

<fta)i(2)(ii) = i ( 2 ) . 

For i ( l ) = i(2) we put 

<Pi(i)i(2)(ii) = i ( i ) -

4.2. L e m m a . Let i( l) , i(2), i(3) £ / , i ( l) <. i(2) $ i(3), j ( l ) 6 J ( i ( l ) ) and 

i(2) = V.(i).(j)(i(l))- Then 

V»(l)i(S)(i(l))=V».(2)i(3)(i(2)). 

P r o o f . Denote <#(2).(3)(i(2)) = i(3). Then 

^.(l)j(l) S Ai(2)j(2) £ ^4i(3)j(3), 

whence <P.(i),(3)Q(l)) = i ( 3 ) - n 

Let i( l) e / and i ( l ) £ J ( i ( l ) ) . We put 

- V M O ) = U '4,'(2M(2)' 
i(2),j(2) 

where i(2) runs over the set (i(2) e / : i(2) ^ i ( l )} and for each such i(2) we have 

i(2) = Vi(i)i(2)(i(i))-
Let us remark that if i ( l) 6 / and i ( l ) , i ' ( l ) are distinct elements of J ( i ( l ) ) , then 

Bi{1)j{1) and Bi{1)r{1) can be equal. Further, if i(l) < i(2) and j(2) = </>,(i).(2)(i(l))> 

then according to 4.2 we have 

Bi(l)j(l) = Bi{2)j(2)-

Let Ck be the system of all directed sets B,(i)j(i)> where i(l) runs over the set / , 

and for each i ( l ) e / , i ( l ) runs over the set Ji{1)-

Let »(1) 6 / and k 6 K. Consider the relation (10) and denote 

J?{1) = {jeJ(i(l)):Ai{1)jQCk}, 

4(1) = •!(*'(!)) NJfo). 
L h ) = n ^M' 

J S J " ( 1) 

L i ( D = n ^ I M -
je-/.!'(ii 
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Then 

(10") Li(1) = La
(l) x Lb

i(1). 

Also, from the definition of Ck we obtain 

4.3. Lemma. Let i ( l ) , i (2) £ / , i ( l ) < i(2). Then La
(1) is an interval of La

(2) 

and Lb
(1) is an interval of Lb

i(2). Moreover, 

ck= U Lhr 
t ( l ) 6 / 

We put 

ci= U 4D-
,:(i)e/ 

4.4. Lemma. Let i ( l ) , i (2) £ I, i ( l ) < i(2), x £ L i ( i ) . Then 

x(Li(l)) =*(La(2)), 

x(Lb
(l)) = x(Lb

(2)). 

P r o o f . This is a consequence of (10"), 4.3 and 2.8. D 

Let x £ L. There exists i( l) £ I such that x £ I<«(i). Denote 

xa = x(La
(1)), xb = x(Lb

i(l)). 

In view of 4.4, the mapping i\>: L —> L x L defined by 

$(x) = (xa,xb) 

is correctly defined. 

Clearly xa £ Ck and re6 £ CA*. 

4 .5 . L e m m a . Let x, j / £ L. Then a: <. y if and only if xa ^ ya and xb <. y6. 

P r o o f . There exists i ( l ) £ / such that both x and y belong to Li(1). Let. x ^ y. 

Then in view of the definition of the mapping i/> we have x" <. ya and xb ^ i/'-

Conversely, suppose that xa <_ y" and xb ^ i/6. Thus (10") yields that x ^.y. D 



4.6. Lemma. Let z1 e Ck, z2 € C*k. There exists x e L such that i>(x) = 

(*i,z2). 

P r o o f . There is i ( l ) G / with Zi,z2 G Li{1). Then zx G L^(1) and z2 G L,-(l)-
Now it suffices to apply (10"). • 

Also, from the definition of u> we immediately obtain 

4.7. Lemma. Let X G L. Then 

(i) x € C * &tl>(x) = (x,s°), 

(ii) i G C J ^ ^ ( x ) = (s°,2-). 

From 4.5, 4.6 and 4.7 we infer 

4.8. Lemma. The mapping ip defines an internal direct product decomposition 

L = Ck xCj ; . 

4.9. Lemma. Let A G D(L), i( l) G / , j ( l ) G J ( i ( l ) ) , AnAi{1)j{1) ^ {s°}. 

Then Bi{1)j{1) C A. 

P r o o f . Since A;(i)j(i) is directly indecomposable, from A n Ai{1)j{i) i= {s0} we 
obtain A n A i ( i ) j ( 1 ) = -4 i ( i ) j ( 1 ) , thus Ai{1)j{1) C A. 

Let i(2) > i ( l ) . Denote <pi{1)i{2)(j(l)) = j (2) . Hence by the same reasoning as we 

have applied to Ai{1)j{1) we get Ai{2)j{2) Q A. Therefore Bi(i)j(i) CA. D 

4.10. Lemma. Let k G A". Then Ck is directly indecomposable. 

P r o o f . By way of contradiction, suppose that Ck is directly decomposable. 

Hence it can be represented in the form 

Ck = AxB, A^{s°}jtB. 

There is i(l) G / and j ( l ) e J ( i ( l ) ) such that Ck = Bi{1)j{1). Hence Ai{1)j{1) is an 

interval of Ck. This yields 

Ai{»m = (^i(i)j(i) n - 4 ) x (Ai{i)j{1) n f l ) . 

Since A,(i)j(i) is directly indecomposable, without loss of generality we can suppose 

that 
Ai(i)j{i) = Ai(i)j(\) n A -

Thus in view of 4.9 we obtain the relation Ck = Bi{1)j{1) C .4, whence B = {.s0}. 

which is a contradiction. • 
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4.11. L e m m a . Let {s0} jt A 6 D(L). Then the following conditions are 

equivaient: 

(i) A is an atom of D(L). 

(ii) A is directly indecomposable. 

The proof is the same as in [4], Lemma 2.1. 

4.12. L e m m a . Let A g D(L), A # {s0}. Then there exist i(l) e / and 

j(l) e J(i(l)) such thatAr\Ai{l)j{l) ^ {s0}. 

P r o o f . There exists x € A with x ^ s°. Further, there exists i ( l ) e, I sudi 

that x € L;(i)- Consider the relation (10). There is j(l) G J(i(l)) such that 

x(Ai{1)j{l)) ^s°. 

Hence A n Ai{1)j{1) = A(Ai{1)j{1)) / {s 0}. • 

P r o o f of (A). It suffices to apply 4.8-4.12. O 

5. EXAMPLES 

Let Ca and Ch be as in Section 1. 

From 4.11 and 2.7 it easily follows that Ch is a subclass of Ca. 

5.1. E x a m p l e . Let L be the system of all finite subsets of an infinite set M; 

this system is partially ordered by the set-theoretical inclusion. Then L belongs to 

Ca, but it does not belong to Ch. 

In particular, let M be the set of all positive integers, s° = 0. For each n e M 

put vn = { 1 , 2 , . . . , n } , Ln = [s°,vn}. Then Ln e Ch for each n t M , |J Ln = £,, 

hence L satisfies the assumptions of (A). Nevertheless, L $ C0. 

5.2. E x a m p l e . There exists an infinite Boolean algebra X such that X has 

no atom. Let L = X U {y} be such that y $ X and y is the greatest element of L-

Further let s° be the least element of X. Then D(L) = {{s°},L}, whence L 6 C0-

On the other hand, X is an interval of L and for each x G X, the interval [s°,x] 

belongs to D(X), hence the partially ordered set D(X) is isomorphic to X. Therefore 

D(L) fails to be atomic, i.e., X does not belong to C„. 



5.3. E x a m p l e . The assertion of Lemma 2.8 cannot be extended to the case 

when X is a convex subset of L with s° e X . Indeed, let M be an infinite set and 

let L be the Boolean algebra of all subsets of M; put s° = 0. For each m e M let 

Lm = {0, {m}}. Then L — ]\ Lm. Let X be the system consisting of all finite 
mEM 

subsets of M. This system is directed, convex in L and for each m G M we have 

XnLm = Lm. However, X £ f l ^ 
,n£M 
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