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Summary. The first section consists of auxiliary results about nondecreasing real functions.
In the second section a new characterization of relatively compact sets of regulated functions
in the sup-norm topology is brought, and the third section includes, among others, an analo-
gue of Helly’s Choice Theorem in the space of regulated functions.

Keywords: regulated function, linear prolongation along an increasing function, e-variation

AMS classification: 2TA45, 46E15

INTRODUCTION

When investigating integral equations in the space of regulated functions there is
a need to clarify some questions concerning the pointwise convergence of regulated
functions. While the uniform convergence of regulated functions has been met with
in classical literature and further interesting results have been brought e.g. by Ch. S.
Hénig in [3], [4], the pointwise convergence has not been studied in a sufficient
measure so far.

During the study of the pointwise convergence it has appeared fruitful to introduce
a method of a prolongation along an increasing function, which is useful also for
establishing new properties of regulated functions.

1. PRELIMINARIES. REAL MONOTONE FUNCTIONS

1.1. The symbol N will denote the set of all positive integers. For N € N the symbol
R" denotes the N-dimensional Euclidean space with the norm |+|. In case N = 1
we write R! = R.

The set of all continuous functions defined on an interval [a, b] and with values
in R" is denoted by x[a, b]. In case [a, b] = [0, 1] we write [0, 1] = @y.

The symbol (a,);%; denotes the sequence {a,, a,, a3, ...}.

The symbol y o v denotes the composed function y(v(t)), provided it is well-defined.
If Yis a set of functions then Yov = {y o v; y e Y}. If Vis also a set of functions then
YoV={yov; yeY,veV}.
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For any bounded function x:[a,b] - RY we denote |x|s = sup {|x(1)];
t € [a, b]}. If there is nc danger of misunderstanding, we write shortly |x|.

The symbol BVy[a, b] denotes the set of all functions x: [a, b] - R with bounded
variation; BVy[0, 1] = BVj.

1.2. The function x: [a, b] — R" is regulated if for every t € [a, b) the right-sided

limit lim x(t) = x(¢+) exists and is finite, and for every e (a, b] the left-sided
-t

limit lim x(t) = x(¢—) exists and is finite.

Tot—

The linear space of all regulated functions from [a, b] to RY will be denoted by
Ryla, b]; we write #5[0, 1] = &y. It is usual to define the topology of uniform
convergence on .%N[a, b], which is given by the sup-norm H . l[(,,,,].

If a sequence of regulated functions (x,);=, = #y[a, b] converges uniformly to
a function x,, we write x, =3 X,.

1.3. A set & = Zy[a, b] has uniform one-sided limits at a point t, € [a, b],
if for every ¢ > 0 there is 6 > 0 such that for every x € & and t € [a, b] we have:
I to <t <ty+ 6 then |x(t) — x(to+)| < & if 1, — 6 <t <1, then |x(to—) —
- x(1)] <e

A set o < %N[a, b] is called equiregulated, if it has uniform one-sided limits
at every point t, € [a, b].

1.4. Often it is useful to identify such regulated functions which have the same
one-sided limits, and to deal e.g. only with left-continuous functions (see [3], p. 20
or [4], Def. 1.5): For x € #y[a, b] let us define x~(t) = x(t—) for t € (a, b], x (a) =
= x(a+). The set

Ryla, b] = {x € Zy[a, b]; x~ = x}

is a closed linear subspace of #y[a, b]. Two functions x, y € Zy[a, b] are considered
equivalent if x~ = y~; the class of equivalence of any function x € .%N[a, b] contains
precisely one function from %y [a, b].

Let us recall several properties of regulated functions:

1.5. A function x: [a, b] - R" is regulated if and only if it is a uniform limit of
a sequence of piecewise constant functions ([1], 7.3.2.1).

1.6. Every regulated function has an at most countable number of points of dis-
continuity ([1], 7.3.2.1).

1.7. Every regulated function from a compact interval [a, b] to R" is bounded
by a constant (a consequence of 1.5).

1.8. The normed linear space (#y[a, b]; ||*||) is a Banach space (a consequence
of [1], 7.3.2.1 (2)).

1.9. Proposition. A function x: [a, b] — R¥ is regulated if and only if for every
& > 0 there is a finite sequence

a=t0<t1<...<t"=b
such that
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(1)  if o <t <t <t then |x(t") - x(t')| <e
holds for every i=1,2,...,n.

Proof. (1) Assume that x is regulated. Let ¢ > 0 be given. Let us denote by C the
set of all T & (a, b] such that there is a finite sequence a =t < t; <...<f =7
satisfying (1.1) with k instead of n.

Since the limit x(a+) exists, there is © > a such that |x(t) — x(a+)| < /2 for
te(a, t). Then for every a < t' < t" < 7 we have

[x(1") — x(t')] £ |x(t") — x(a+)| + |x(t') — x(a+)] < &.
Consequently 7 € C. Denote ¢ = sup C; we have ¢ > a.
Since the limit x(c—) exists, there is § > 0 such that [x(t) — x(c=)| < &2 for
every te(c — 4, c). Let us find a point 7€ C N (¢ — &, ¢). Since 7 € C, there is a finite

sequence a =ty < t; < ... < t;, = 7 such that (1.1) holds with k instead of n.
If we denote t,,, = c, then (1.1) holds also for n = k + 1, since

[x() = *()] < [x(#") = x(e=)] + [x(+) = x(c—)[ < &

provided t; =t <t' < t" < ¢ = t;,,. Hence c e C. Similarly as at the beginning
of this proof it can be shown that if ¢ < b then there is t > ¢ which belongs to C.
This is impossible, hence ¢ = b.

(ii) Let te[a, b] and & > O be given. Assume that there is a finite sequence a =
=1, <t <...<t, = bsuch that (1.1) holds.

In case that t = t; for some i€{1,2,...,n — 1}, denote & = min {t;,, — 1,
1 — tisa}

Incase t = a we denote 8 = t; — to;if t =bthend =1, — t,_,. If te(t;-y, ;)
for some i € {1, 2, ..., n}, we denote

d=min{t; —t, t — t;_}.
In any of the cases listed above we have the following:
(12) If ¢,t"c[a,b] andtheir t—8<t <t'<t or
t<t <t"<t+6 then |x(t")— x(r)] <e.
The Bolzano-Cauchy Theorem implies that if for every ¢ > O there is & > 0 such that

(1.2) holds, then the limits x(t—), x(t+) exist.

1.10. Definition. For every nondecreasing function f:[a, b] — [c, d] such that
f(a) = ¢,f(b).= danda < b,c < dletus define an ““inverse function” f_: [¢c, d] -
— [a, b] by the formula

f-i(s) = inf{te[a, b]; f(t=) S s S f(t+)} for se(c,d);
foile)=a, foy(d)=0b
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(we assume that f(a—) = f(a), f(b+) = f(b)).

1.11. Proposition. Assume that f:[a, b] - [c,d] is a nondecreasing function,
f(a) = ¢, f(b) = d. Then

(i) the function f_,:[c,d] - [a, b] is nondecreasing and left-continuous
on (c, d);

(ii) if f is left-continuous on (a, b) then (f_y)-, = f;

(iii) f_, is continuous on [c, d] if and only if f is increasing on [a, b];

(iv) if f is increasing on [a, b] then f_,(f(t)) = t for t € [a, b].

Proof. (i) 1. For every nondecreasing function ¢: [, 8] = [7, 8] such that
o(a) = 7, o(B) = & let us define a set

Y, ={(ts)eR*; te[a,p], o(t-)<s = o(t+)}.

We will prove that ¥, has the following properties:
(a) If (11, 5,) € ¥, and (1, s;) € ¥, then either t; < t, and s, 55, or t; 2 1,
and s; = s,.

(b) ¥, is a compact subset of R>.

ad (a): For t; < t, we have ¢(t;+) < ¢(t,—). Then s; < o(t;+) < o(t,—) <
< s,. Similarly, if t; > t, then s, = s,. In case t; = t, it is evident that either
S; =5, Or §4 = 5,.

(b) To prove that ¥, is compact, it is sufficient to verify that it is closed, because
the boundedness is evident.

Assume that ¥, is not closed. Then there is a sequence of pairs (t,, 5,)s=; from ¥,
such that (t,, s,) = (0, 5o) and (o, so) ¢ ¥,. It is possible to find a subsequence
(ts)r=1 which is monotone.

If (1,,) is a nondecreasing sequence and t,, < ¢, for every integer k, then ¢(t,,) —
— ¢(to—) for k —» oo. Since ¢(t, —) < s, < ¢(to—), we get 5, — ¢(t,—). Taking
into account that s, — so, we obtain the equality s, = ¢(t,—) which implies that
the pair (1o, 5o) = (to, ¢(to—)) belongs to ¥,. We have got a contradiction with
(to, So0) ¢ ¥, Similarly, if the subsequence (1, ) is nonincreasing and t, > t, for
every k, then (to, so) = (to, @(to+)) € ¥,,.

If there is ko such that ¢, = t,, we have t, = 1, for every k > k,. Then ¢(to—) <
< $u = @(to+) holds for any k 2 ko; consequently ¢(to—) < 5o < @(to+). We
conclude that (to, s,) € ¥, which is a contradiction with (fo, o) ¢ ¥,.

(c) Assume that ¥, is not connected. Then there are two open disjoint sets A, B =
< R? such that ¥, N A % 0, ¥, n B + 0 and ¥, = AU B. Fot instance assume
that (B, ¢(B)) € B. Let us denote

(1.3) t4 = sup {t€[q, B]; there is s such that (t,5)e ‘P,,, N A}
sup ({s € [y, 6]; (t4,5) e ¥, 0 A} U {o(ts —)}).

If s, = o(t,—) then (z,, s € ¥, If s, > ¢(t,—) then there is s = ¢(t,—) such
that (t4,s)€ ¥, n A. For any s 2 ¢(t,—) such that (t,,5)e ¥,n A we have

I

Sa
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o(ta—) =5 < ¢(t,+); hence also @(t4—) < s, < o(t4+) and we conclude that
(145 54) € ¥, Either (14, 54) € 4, or (t4, 54) € B. First assume that (1, s,) € ¥, 0 4.
Since A is open, there is & > 0 such that if (t,s)e R, |t — 1] <&, |s — 54| <0,
then (1, s) € 4.

In case that s, < @(t4+), every s € (54 9(t4+)) N (s4, 54 + &) satisfies (14, 5) € 4.
At the same time (14, s) € ¥, and we getacontradiction with (1.3).The case s, =
= ¢(t,+) implies that t, % B, because (B, ¢(f)) € B. There is > O such that § < ¢
and if t,<t<t,+ 0 then ¢(t,+) = ¢(t) < ¢(t,+) + ¢, and consequently
(t, 9(t)) € A. This is a contradiction with (1.3).

Now let us assume that (14, s,) € ¥, N B. (1, 5,) is different from (o, ¢()), be-
cause ¥, N A4 + 0. Thereis 7 > Osuch that if (t,s) e R?, |t — t,| < n,|s — 54| <,
then (t,s)eB. In case s, > ¢(t,—) we have (t,,5)€ ¥, "B for any se
€ [¢(ta—), 54) 0 (s4 — 7, 54); this contradicts (1.3). In case s, = ¢(t,—) the point t,
is different from «, and there is A > O such that A < nandift, — 1 <t < 1, then
o(ta—) —n < o(t—) = o(t+) < ¢(t,—). Then (1,5)e ¥, N B holds for every
(t,s)e ¥, suchthat t, — A < t < t,. This contradicts (1.3). Since all the possibilities
lead to a contradiction, we conclude that ¥, is connected.

2. Let a nonempty, connected and compact set ¥ = R? be given such that

(1.4) if (t,s,)e¥ and (t5,5,)€¥, theneither t; <t, and
§; S5, or t;=t, and s; =5,.

The following properties of ¥ are evident:
(1.5) If (t,s,)€¥, (t,5,)e¥ and s, <s,, then the relations

(t,s)e¥ and s, <s<s, implythat ¢ =1¢.

(1.6) If (t,59)€¥, (t,s;)e¥ and s, <s,, then (t,5)e¥
forevery s; < s=<s,.

Let us denote
« = inf {t€R; there is s € R such that (f,s)e ¥} .
B = sup {t e R; there'is s € R such that (t,s) e ¥} .

Then —0 <o < f < o and

(1.7) for every te[a, f] theset {seR; (t,s)e ¥} is nonempty and
compact.

In the sequel assume that « < S.
Let us define

(1.8) o(t) = inf {seR; (t,s)e ¥} for te [o B),
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o(t)y =sup{seR; (t,s)e ¥} for t=p.

We will show that the function ¢ is nondecreasing on [05, ﬂ] and left-continuous
on (a, p).

If « <£t, <t, £ B, then for every s,,s, such that (ty, s)) ey, (t2,52) e ¥ we
have s, < s,, because ¥ satisfies (1.4). Consequently o(t)) = ¢(t,) which means
that ¢ is nondecreasing.

Since ¥ is compact, for every t € [a, b] the pair (¢, ¢(t)) belongs to ¥. The com-
pactness yields also (¢, p(t—))e ¥ and (1, ¢(t+)) € ¥. For any t€(a, b) we have
#(t—) < ¢(t) because ¢ is nondecreasing; at the same time ¢(t) = inf{s; (t,s) e ¥} <
< ¢(t—) because (¢, (t—)) e ¥. Consequently ¢(t—) = ¢(t) for any 1 € (a, p).

Let us prove that if for the given set ¥ we define ¢ by (1.8) then ¥ = ¥,. If
(t,s)e ¥, then a <t < B and ¢(t—) <s < ¢(t+). Since (t,p(t—))e ¥ and
(t, o(t+)) e ¥, by (1.6) we have (1, s) € ¥. Hence ¥, = ¥.

Assume that there is (t, s) € ¥\ ¥,,. In case t < f§ the definition (1.8) implies that
¢(t) < 5. By the assumption (¢, s) ¢ ¥, we get s > ¢(t+). Then thereist' > ¢ such
that ¢(t+) < (') < s; we have two pairs (¢, s), (', ¢(t')) which both belong to ¥,
however t < t' and s > ¢(t'). This contradicts (1.4). Hence ¥ = ¥,

3. For aset ¥ = R? let us denote ¥_; = {(s, 1) € R*; (1,5) € ¥}.

Now we can prove Proposition 1.11:

(i) Assume that a function f: [a, b] = [c, d] is given such that f is nondecreasing
on [a, b], and f(a) = ¢, f(b) = d and a < b, ¢ < d. Let us consider the set ¥,.
It is evident that the set (¥ )_, has the same properties as ¥, — it is connected,
compact and (a) holds with (¥,)_, instead of ¥,. Similarly as in (1.8) we can define
such function ¢ that (¥,)_, = ¥,, replacing [«, B] by [c, d]. The function ¢ is
nondecreasing on [¢, d] and left-continuous on (c, d). Taking into account the defini-
tion of the inverse function f_;, we immediately see that f_, = ¢.

(i) Assuming that f is left-continuous on (a, b), from the evident equality
(¥))-1)-1 = ¥y we get (f_1)-y = 1.

(iii) The function f_, is increasing if and only if for every ¢ € [a, b] there is precisely
one s such that (¢, s) € ¥,. The latter means that ¥ is the graph of a continuous
function, namely f.

(iv) is evident.

1.12. Lemma. (i) For every n = 0,1,2,... let a nondecreasing function f,e
€ R [a, b] be given, and assume that '

(19) fot) = fo(t) for every te[a,b] and f(t+)— fo(t+)
for every te(a,b).

Then the sequence of functions f,(t) converges to f(t) uniformly on [a, b].
(i) If the function f, is continuous, then the assumption
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1.9y fAt) = fo(t) for every te[a,b]
implies (1.9).

Proof. (i) It is sufficient to prove that the functions f,, n € N are equiregulated.
Then they will belong to a compact set in #;[a, b] and consequently f, =3 f,.

Let to € [a, b] and & > 0 be given. There is such § > 0 that for every € [a, b]

we have: If t, — 0 St < ¢, thenfo(to) fo(t) < & if tg < t < to + 6 then fo(t) —
— folto+) < & By (1.9) there is an integer n, such that

If,.(to —8) — folto — 9)| < e, Ifu(to) - fo(to)l <eg,
[fulto+) = folto+)| <& and |fto + 8) — folto + 8)| < &
for every n 2 n,. v

If t € [a, b] is such that t, — § < t < t,, then we have for every n > n,

0= f,.(to) ~ (1) = 1(to) — fulto — 8) = [fulto) — fo(to)] +

+ [fo(to) - fo(to - 9] + [fo(to — 6) — fiulto — 8)] < 3e.
Ifte [a, b] and ty <t =ty + 6, then we have for every n = n,

0 £ £t) = flto+) < filto + 8) = fulto+) =

= [fulto + &) = folto + 8)] + [fo(to + &) — fo(to+)] +

+ [folto+) — fulto+)] < 3e.

(ii) Assume that f, is continuous. Let t € [a, b) and ¢ > 0 be given. Let us find
such & > 0 that fo(t + ) — fo(t) < ¢. There is an integer ny such that

Ifut +8) — fo(t + )] <& and |f,(t) — fo(t)] <&

forevery n = n,.

For n = n, we have

ft+) = fo(H‘) <t +9) — folt) =
= [ft + &) = fo(t + 8)] + [folt + 8) — fo(1)] < 2¢;
Slt+) = folt+) 2 ft) ~ fol®) > -

Consequently f,(t+) = fo(t+) = fo(2).

1.13. Proposition. Assume that for every n = 0, 1,2, ... a nondecreasing function
fa: [a, b] = [c, d] is given, f,(a) = ¢, f(b) = d, f, is left-continuous on (a, b).

(i) If f(2) = fo(?) for every t € [a, b] at which f, is continuous, then (f,)-4 (s) =
= (fo)-1(s) for every s € [c, d] at which (fo)-1 is continuous, and vice versa.

(ii) If, moreover, f, is increasing on [a, b] then (f,)-1 =3 (fo)-1.

Proof. (i) We will prove that the condition
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(1.10) ft) = fot) forevery te[a,b] such thatf, is continuous at ¢
is satisfied if and only if
(1.11) dist (¥;,, ¥,) = sup inf {|t — 7| +|s— o]} >0 with n— oo.

t,5)e¥ o (r,0)e¥y,

Assume that (1.10) holds. Let & > 0 be given. By Proposition 1.9 there is a finite
sequence a = to < t; < ... <t =b such that (1.1) holds for i=1,2,... k.
Assume that t; — t,_, <¢/2 for i =1,2,..., k. For every i =1,2,...,k let us
find t; € (t;-,, t;) such that f, is continuous at 7,. Denote 7, = a, T,+; = b. Then
T, — T, <efori=1,2,...,k + 1.

Since f,(1;) = fo(t;) With n — o for every i = 0,1,...,k + 1, there is an an
integer ng such that

(1.12) |fu(z) = fo(r)] <& forevery i=0,1,...,k+1, n

Let a pair (7, §) € ¥, be given. We want to show that

v

ng.

(1.13) inf{|f —t| +[5—s|; (t,)e ¥} <2 forevery n=n,.

There is i €{1,2,...,k + 1} such that t; < ¥ < 7.
Let n 2 n, be fixed. In case that f,(1;) < § < f,(7;+,) let us denote s = 3. In case
5 < fi(r;) denote s = f,(t;); if § > f,(7i+1), let us denote s = f(7;41).
In the case § < f,(t;) we have the inequalities
0<s—3§=fft)— 3= fr:)) — fo(r:) < & (we have used (1.12))
and

fow) £ £o(1) £ 3 = foli+)) -
Similarly in the case § > f,(7;+;) We have
0<3—5=358—fltisr) £ foltis1) — fulTis1) <.
Consequently in each of the three cases mentioned we have
(1.14) |5—s| <e.

Let us denote t = (f,)_;(s). The inequality f,(t;) <s < f(v;+,) implies that
T; £t < 1,4, By virtue of the inequalities 7; < 7 < 7,44 and 7;4; — 7; < € We get
|t = 1| < e, which together with (1.14) yields (1.13). Then (1.11) holds.

Now let us assume that (1.11) holds. Let t, € (a, b) be given such that f, is conti-
nuous at t (we are not concerned with t = a, t = b since the values f,(a), f,(b) are
fixed). '

For a given ¢ > 0 let us find 6 > 0 such that

(115) i [t —to| <8 then |fo(f) — folto)] <&-

Denote t' = t, — 8, t" = to + 6. By (L.11) there is such an integer n, that

2
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inf{[t — t| + |0 — s|; (r,0)e ¥,,} < & for every n 2 n,, (t,s)e ¥y, Let n 2 ng
be fixed. Then there are (7, a), (1", 0”) € ¥, such that
(116) [ =+ = fo(t) <8, | = 1]+ |o" — fo(17)] < 8.
We have ©' <1t'+ 6 =1, ©">1"— 08 =1t hence v’ < t, < ¢”. Using (1.16),
we get

folt) = 8 < o' S (T +) S filte) ST S 0" < fot") + 5.
By (1.15) we have

fo(to) — 28 < fo(t') — e < fo(t') — 6 <
< fulto) < fo(t") + 6 < folto) + 2¢.
Consequently |fo(to) — fu(to)| < 2¢ for every n = n,.
Since evidently dist (¥,,, ¥y,) = dist ((¥,,)-1, (¥,,)-1), the equivalence of
(1.10), (1.11) immediately yields part (i) of Proposition 1.11.
(ii) If f, is increasing, then (fo)_, is continuous by Proposition 1.11 (iii). Lemma
1.12 implies that (f,)-; = (fo)-1.

1.14. Let us denote by A the set of all continuous increasing functions A: [0, 1] -
- [0, 1] such that A(0) = 0, A(1) = 1. In [2], Chap. 6, § 5 we can find a metric
space

P = {xeRy; x(1) = x(1+) forevery te[0,1), x(1-) = x(1)}
with the metric

o(x, y) = inf {|x — y o A + [id - Al; Aed},
where id(t) = t. The same metric can be introduced also in %y, only replacing the
right-continuity in 2 by the left-continuity in £j.

It is evident that a sequence (f,)o.; = Ry converges to fo € Ry in the metric g,
if and only if there is a sequence

(A)y = A suchthat 3, 3id and fooh = fo.

1.15. Lemma. Let sequences (x,)i=o = &y and (A,)n.1 < A be given such that
Mt) = t for every te[0,1]. If x, 024, =3 xo on [0, 1], then x,(t) = xo(t) holds for
every te(O, 1) at which the function x, is continuous.

Proof. Assume that x, is continuous at t € (0, 1). Fora given ¢ > Othereis 6 > 0
such that |x4(t) — x,(f)| < & for every te(t — 8, t + 9).

By Proposition 1.13(ii) the pointwise convergence A(f) =t yields 2, ' =3 id.
There is n, € N such that

[4r* —id]| <& and [x,04 — x,| <& forevery n=n,.
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For any n = n, we have the estimate

[xat) = xo(B)] = |(xn o a) (7 1(1)) — xo(1)| <
= [(xn o &) (A2 (1) = xo(& ()] + [xo(A7 () = xo(f)] =

< %no 2 — Xo| + |xo(As (2)) — xo(t)] < 2e.

1.16. Let us denote by Q the set of all functions g: [0, 1] — [0, 1] satisfying the
following conditions:

(1.17) q is nondecreasing on [0, 1] and left-continuous on (0, 1] ;

(1.18) 0<gq(t)<t forevery te[0,1]; 4¢(1)=1;

(1.19) if te(0,1) issuchthat q(t+) <t then qis linear on some
neighborhood of t.

1.17. Lemma. Let q € Q be given. If t€(0,1) is a point such that q(t) < t, then
there are o, B€ [0, 1] such thata < t < B and
(1) g is linear on (a, B] with slope less than 1;
(ii) gle+) = « = q(1);
(iii) g(B) < B; if B <1 then g(B+) = B.

Proof. Let us fix 7 such that ¢(f) < © < t. We have g(t+) < ¢(¢) < 7; by (1.19)
the function g has the form g(s) = g(t) + ¢(s — 7) for s belonging to a neigh-
borhood of 7. Denote

(1.20) « = inf {c€[0,7]; q(s) = q(r) + (s — 7) forevery se[o,t]};
B=sup{oe[r,1]; 4q(s) = q(z) + (s — 7) forevery se[r,0]}.

We have o < 7 < .

If g(¢+) < « then the function g should be linear on a neighbourhood of o, it
will have the same form to the left as to the right. This contradicts (1.20), hence
q(a+) = o. The same argument yields ¢(8+) = B in case that < 1.

Let us verify that & < ¢ < . The first inequality follows from o < t < t. If t > B
then ¢(f) 2 q(B+); consequently B = q(B+) =< ¢(f) < © which contradicts t < B.

Froma < 7 < t we get & = g(a+) =< ¢(). Then (ii) holds.

Let us prove that g(8) < B. The function ¢ has on (, f] the form

a(s) = q(t) + q(tt) 2 (s—1t) for se(a, B], where —q(tt—)'—:j < 1 is the
- -

slope of the linear function.

Then
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) = o) + L= - ) <o+ 1-(B =0 <5,

1.18. Lemma. Let a sequence (q,.) .1 < Q be given. Assume that there is a function
go € R7 such that q4(1) = 1 and q,(t) - qo(t) for every te(O 1) at which q, is
continuous. Then q, € Q.

Proof. The function g, is evidently nondecreasing and satisfies 0 < go(t) < ¢
for every t € [0, 1].

Let t € (0, 1) be given such that go(t+) < . Let us fix o such that go(t+) < ¢ < 1.
There are 7', t” € [0, 1] such that 6 < 7' <t < 7", q, is continuous at 7', " and
do(s) < o for every se[r,1"]. Since g,(t') = 4o(7), 4u(z") = qo(z"), there is an
integer n, such that

g,(t) <o and gq,t") <o forevery n=n,.

For every se[t,7"] and n = n, we have q,(s) £ ¢,(t") < 6 < s. According to
Lemma 1.17 the function 4, is linear on [, "] for n = n,. Consequently also g,
is linear on [7, 7"].

1.19. Lemma. Assume that a sequence (q,)n=o = Q is given such that q,(t) — q(1)
for every t € [0, 1] at which g, is continuous. Then there is a sequence of continuous
increasing functions (A,);, < A such that 4, 3 id and q, o 4, 3 go.

Proof. For every k € N there are finitely many points ¢ € (0, 1) such that
ao(t+) — qo(t) = 1/k .

Let us denote all these points by g%, B5, ..., Bt further let us denote fg = 0,
Bk, +1 = 1, and assume that

0=fs<pi<...<Bor =1.

By Lemma 1.17 for every i = 1, 2, ..., m, there is a such that B;_; < o} < % and g,
is linear on («j, 7], go(}+) = af. We have

(121) i - of = qo(Bi+) — go(ef+) Z ao(Bi+) — 40(BY) 2 1k

for i = 1,2, ..., m. Denote Cos 1 =1.
Let us prove that

(1.22) if te(ft_y,af) for i=1,2,...,m +1 then t— qo(t) <1[k

Assume that t — go(t) 2 1/k for some f € (i-4, o;]; then by Lemma 1.17 there i 15
t' = tsuch that qo is linear on (t,#)andgo(t) < t' = got' +). By the definition of o
we have t' < af. Then :

Qo' +) — ao(t) = 1" — qo(t') 2 t — qo(f) 2 1/k
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and the point ¢’ should belong to the set {#%, B%, ..., B&,} which is not true.

For every i =1,2,...,m, denote 5 = Bt — 1/4k, 9’; =B — 1)2k, sk =df +
+ 1/4k; by (1. 21) we have 9 > sk

Leti =0,1,..., m. In case ﬂ, = of,, define ¥ = g% + 1/4k = sk,

In case % < o, | let us find 7% such that

Bi< ot < b,y o B+ Lk,

and ¢, is continuous at ¥,
There is an integer n; such that for every n = n} the function g, is linear on each
of the intervals [s%, #], i = 1,2,..., m and

(1.23) |a.(t) — ao(t)| < 1[4k forevery te[sh,ff], i=1,2,..,m,.

Denote 14 = 0, sk, .q = L.
Leti =1,2,...,m + 1. In case that g¥_, < of, let us find a division

k — .k k ok
Ti—l —-0‘,:0<0'il <. <0'".‘k—5i

such that o}, — ¢%;_, < 1[4k for i = 1,2,..., 7} and g, is continuous at ¢};, j =
=0,1,...,r% In case B%_, = of denote ¥ = 0.

There is an integer n} such that |q,(c;;) — qo(0:j)| < 1/4k for every n 2 n}
i=1,2,...,m+1,j=0,1,...,7% -1

Let us denote n, = max {n}, n;}. For n = m,n, + 1,...,nq — 1 let us define
a function A, € 4 in the following way:
For every i = 1, 2, ..., m, we have

1 = ai(rh) = [ = ao(t)] + [ao(r)) — au(r)] > [ti — qo(B)] — 1/4k =
= [B% — qo(BD)] + [1i — Bi] — 1[4k = 1]2k;;
7t — ai(t}) = [7} = qo(m))] + [40(h) — au(7)] < [F = qo(0)] +
+ 1[4k < [7 — qo(Bi+)] + 1/4k = [} — BT] + 1/4k < 1[2k.
These inequalities yield
(1.24) 5 — q,(f) > 12k > 75 — g,(7}).

Using Lemma 1.17, we can find y,, = ¥ such that g, is linear on [f},7,,] and

4(Yint) > a(y:,0)- According to (1.24) it is impossible that g, are linear on [}, 1,]
Hence

th < Pin < 5.
Let us define 4,(8%) = 7:. A(%) = 9%, 4,(7}) = 7}, A, being linear on the intervals
[9% B, [B%, ©5] for i=1,2,...,m; Af)=1 for te[0, )u F]k(r',;l, %) u
U (7., 1]. The function 4, is increasing and ‘ continuous, 2,(0) :(2), A1) = 1.

Since #§ < y;, < 1f and 7§ — ¥ < 1/2k, we have |4,(B%) — Bi| < 1/2k. Consequently
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4, = id| < 1/2k for n = mme + 1, .., meyy — 1.

Now we aim at proving that g,. 4,3 g,. Assume that n, < n < n,.,. Let
te[9%,p1), i =1,2,...,m. Then 4,(t) € [9%, 9,,]; let us notice that qo and g, are
lipschitzian with the constant 1 on [8}, ] and [9%, Vi) respectively. We have

[2:(4(1) = 2o(1)] = [2:(4(1)) = au(85)] +
+ |29 — ao(99)] + [20(%) — go(f)] <
<[t = 95] + 1/4k + 8F — 1 <
< 2. [7 - 9] + 1/4k = 2. 3[4k + 1/4k = 7/4k .
Assume that te (B}, 75] i = 1,2, ..., my; then A,(1) € (y,,, ©]. We have
2(2(1) = 90(1) = 2u(71)) — 90(t) = [g(7}) — qo(7%)] +
+ [‘10(“',;) - ‘IO(t)] < 1/4k + [‘10(7';) - ‘10(5’5‘*’)] =
= 1/4k + [qo(t}) — BE] < 14k + [ — B¥] < 1)4k + 1)4k = 1/2k ;
’ q..(i..(t)) - ‘10(t) P qn(?i,n'*') - ‘IO(t) = Yin — ‘10(t) ZVin— 2
2y, —Ti2 —1)2k.
Let te(of_y, 05, i=1,2,..,m +1,j=0,1,..., 7% — 1. Then
‘In(}“n(t)) - qo(t) = q,,(t) - qt) < qn(a?j) - 40(‘7?}—1) =
= [gu(o;) — do(oi)] + [oF; — of_1] + [0%-1 = go(tj-1)] <
< 1/4k + 1/4k + 1/k = 32k ;
au(A(1)) — ao(t) = 4.(t) — o(t) Z au(0%j-1) — qo(c}y) =
= [au(0%j-1) — a0(0%j-1)] + [a0(0Fi-1) — ao(oi)] > —1/4k +
+ [‘Io(“;j—l) - ":“j—l] + [0'{,-—1 - a",.‘j] > —1/4k - 1/k - 1/4k =
= —3)2k.
Taking into account (1.23), we can conclude that
|24(A)) — q0(t)] < 2/k for every te[0,1] and n = n,.

1.20. Theorem. Assume that a sequence of increasing functions (f,)i-, = R]

is given such that

(1.25) f(0) =0, f(1) =1, the continuous part of f, is increasing
for every neN;

(1.26) for every &> 0 thereis 5,e(0,¢] such that the following
holds: If t€[0,1) .and f(1) — fi(t+) < 8., then f,(t+) —
- ft) <e.
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Then there is a sequence of increasing continuous functions (@)=, < A such that
[(f)-1 — @' >0 with n> oo,

and theset {f,o ¢, '; n = 1,2, ...} is relatively compact in the metric space (7 ; o).
Proof. For a fixed integer n let us find an increasing function g, € £; such that
9,(0) = 0, g,(1) = 1, g, has finitely many points of discontinuity and

12)  Nf-ad <ifn and [(5)-r — @)-il < Un.

The function g, will be constructed in the following way:
There is a division 0 =ty < t; < ... <t < t,,, = 1 such that t;, — t,_, < 1/n
fori=1,2,....,k+ 1 and

() = 0] = TLA+) = ()] = L) = F(ti-a4)] < Un
where we denote by f”, f€ the jump part and the continuous part of f.

Let us define

- — £ (1. Sults) = fultii+)
9/0) =0, g,(t) = fu(t;) + )

LS = f3(t)] for te(tioyt], i=1,2,..,k+ 1.
We have
(1.28) g(t) = f(t;) and g, (t;+) = f(t;+) for i=1,2,.. k.
For te(t;_y, ;] we have

l9.(8) = £:(0)] =

= |Lfa(t) = £t )T L) = £(ti-a H)]| < 1.
Hence |g, — f.|| < 1/n.

By virtue of (1.28), for every se(f(ti=y+), fu(t:)] = (gu(ti=1+), g.(;)] both
(f)-1(s) and (g,)-4 (s) belong to (t;_,, t;]. From the assumption t; — ¢;_, < 1/n
we conclude that

I(£)-1(5) = (gn)-1 ()] < 1m.

If S E(f"(ti),f"(ti+)] = (gn(ti)9 g"(t,‘*')], then (fn)—-l (S) = (g")_l (S) = t,'. We haVe
found that |(f,)-1 () — (ga)-1(5)| < 1/n for every s€ [0, 1].
Foreveryi = 1,2, ..., k let us find a point s; satisfying

(1.29) tioy <s;<t;, t;—1fn<s; and g,t;) - g.,,(s,) <1/n.
Denote g,(s;) = 05, ga(t:) = 70, gu(ti+) = 9.

Let us define a function ¢, € A as follows: For t€[0,s,] U o (ti=1, si] v (t,‘,‘l]
we define ¢,(f) = g,(t). For te(s;, t;], i = 1,2,...,k let us deﬁr;c:2
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odt) = a:(s) + 2;%—)-——-"# (o) — 0] = o1 + 2= %[00 - ol

Further let us define g, = g, - ¢, *. The function g, has the form

U0 o] for se(on 8],
Ty — 0y

qn(s) =0y +
i=12,...,k,
k
4,(s) =5 for se[0,6,]UU(Si-1,0.]U (% 1].
i=2

It is evident that g, € Q.

Let i =1,2,..,k. Since g,(s;) = 0, = ¢,(s;), gu(t:+) =%, = 9,(r;) and the
functions g,, ¢, are increasing, we have (g,)-; (6;) = 5; = @, '(6}), (g,)-1(3;) =
=1, = ¢, '(8). Hence s;<(g,)-1(s)<t; and s, < ¢;'(5) < t; for every se

€ (a,, 9] Since 1; — s5; < 1 /n by (1. 29) we obtain the estimate

[(gs)-1(s) — @5 '(s)| < 1/n for every se (o, 9,]-
k
If sef[0,0,]UuU(Si-1, 0] (% 1] then (g,)-4(s) = @, '(s). Consequently
1=2

l(gn)-1 — @2 '] < 1/n. By (1.27) we have
130) (s — 0] < 2n.
Let us prove
(1.31) If for & > 0 the value of §, is taken from (1.26), then g,(s) e (1 — 2¢, 1)
for every se(1 — §,,1).

k

Let se(l — d,,1). Either s€[0,0,] U U (%i-1,0,] U (8, 1], then g,(s) = s, and
i=2

4u(s) e (1 — b, 1). Or se(o;, 9;] for some i € {1, 2, ..., k}; then

1—q,,(s)—[1-—s]+[s-—a] —'<[1-s]+[9-—1:]-

Sl o) D)~ ) <5 2

If we define for every integer n functions g,, @,, g, in this way, by (1.30) it is clear
that [[(f,)-; — @, || = 0. Let us prove that the set {f, o ¢, ; ne N} is relatively
compact in the metric space (7 ; 0).Let (f,, - @,,')% be an arbitrary subsequence.
By Helly’s Choice Theorem the sequence (q,,,)}”:l contains a pointwise convergent
subsequence 4y, (s) — g(s) for every s € [0, 1]. Let us define g4(0) = 0, 4o(s) = a(s—)
for s € (0, 1]. Let us prove that go(1) = 1.
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For a given & > 0 let us find 6, by (1.26). Let se(1 — §,, 1). Since q,,i,(s) - 4(s),
there is Iy € N such that |g,, (s) — g(s)] < & for every I 2 I,. Let us fix ! 2 I, and

denoten = n;,. Then0 < 1 — ¢(s) = [1 — 4.(s)] + [a.(s) - q(s)] [;l - qs)] +
+ & < 3¢ according to (1.31). Consequently gq(1) = ¢(1-) =

By Lemma 1.18 the function g, belongs to Q and by Lemma 1. 19 there is a sequence
(4)i; such that dn;° A1 3 qo- Then "(f,. °‘Pn“)° A= ‘lo" "fn“ gn“" +
+ |[(g,.“ 0 (p"—nl) odr = qo| < 1fn, + |[dn; 04— do| = 0 with I —» oo. Hence the
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sequence ( Jug,o (p,,'hl)}";1 is convergent in the metric space (% ; g).

1.21. Theorem. Let a sequence of nondecreasing functions »(h,,)‘,‘le < Ry be
given such that h,,(O) = 0. Assume that there is a nondecreasing continuous function
n: [0, ©) - [0, o), 7(0) = 0 such that

(1.32) limsup [h,(t") — h(t')] < n(ho(t”) — ho(t))
provided h is continuous at t',t"; 0 < t' <t" < 1.

Then there is a subsequence (h,, )1, a sequence of increasing cont:nuous functtons
(v)i=1 = A and a function veRL so that

(1.33) the functions h,_ov* ; are uniformly convergent; :
(1.34) v(t) = v(t) for every te [0, 1] at which v is continuous;
(1.35) o(t") — o(t') S 1" — t' + n(ho(t") — ho(t')) for every <t

Proof. Let us define

t + ht)
f..()—1+h(1) for n=1,2,.

Then f, € 7, f,(0) = 0, f,(1) = 1 and the continuous part of f, is increasing.
The assumption (1.32) implies that there is K such that 1 + k,(1) < K for every
neN.

If hy is continuous at ¢’ < t”, then

=t + h(t") — h(t) _
1+ hy(1) B

Slimsup [t — ¢ + h(t") = h(t)] S 1" — ¢ + n(ho(t") — ho(1)) -

n—w

(1.36) lim sup [£,(¢") — f(t')] = lim sup

Let us verify the assumption (1.26) of Theorem 1.20. Since the function" hy is
left-continuous at 1 and 7% is right-continuous at 0, for a given & > O there is ‘A €
€(0, ¢/2) such that ‘
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n(ho(1) — ho(t)) < g/2 forevery te(l —4,1).
Lette(l — 2,1 — A/Z]Vbe fixed so that h, is continuous at 7. By (1.36) we hav¢
limsup [£,(1) — f2)] S [1 = 7] + n(ho(1) — ho(r)) < €.

n- o

There is ny € N such that

(1.37) f(1) = f(t) <e forevery n 2n,.

Let n =1,2,..,n, — 1. There is s,€(0, 1) such that f,(1) — f,(s,) < e. Denote
8n = f1) = fulss). I £(1) — f(t+) < 8, then f,(t+) > f,(s,), which implies
t = s,. Consequently f,(t+) — fu(t) £ f(1) — f,(s,) < &

Denote &, = min {8y, 6;, ..., 05y—1, 42K, ¢}. Assume that f,(1) — f,,(t+) <9,
n = n,. Then

1—t21—1t+ h(1l) = h(t+) = [£,(1) = f(t+)] (1 + K1) =
S [A(1) - ft+)]K < 0K < A2,
Then te(1 — 7, 1). By (1.37) we have fo(1+) — £.(t) < f(1) — £.(x) <e.

By Helly’s Choice Theorem there is a function v, and a subsequence (f,.,‘)f’:l
such that f,, — v,(t) for every t€ [0, 1]. Define v(0) = 0, o(1) = 1, v(t) = vo(t—)
for t €(0, 1). From (1.36) we get (1.35); hence ve %] .

Since the assumptions of Theorem 1.20 are satisfied, there is a sequence (@, )i=1 <
c A such that ||(f,)-1 — @5 '] > 0 with k —» oo and the set {f, - o '; ke N}
is relatively compact in (£ ; ¢). Consequently there is a subsequence which for
simplicity will be denoted again by (f,, o ¢; '), a function g € #7 and a sequence
(A4)=1 = A such that

(foo@c Dok 3g and A4 3id.

Since f,(t") — fu(t') = (1" — t')[K for every ¢ <", ne N, we get v(t") — o(t') =
2 (1" — t')[K for t' < t”. Then the function v is increasing. Proposition 1.13 implies
that (f,.)-1 =3 v—;. Then also ¢* ;=3 v_,. By Proposition 1.13 we obtain that

(1.38) @i(t) = v(t) provided v is continuous at t€[0,1].

Let us denote v, = A; ' o ¢, for every k e N. Then v, € 4; (1.38) implies (1.34).
Since the functions f, o v, ' are uniformly convergent, the functions by o vy
are also uniformly convergent.

1.22. Proposition. For every nondecreasing function x: [0, 1] — [0, o) such that

lim x(r) =0= x(O), there is a continuous concave increasing function n: [0, 1] -
r—0+

— [0, ) such that n(0) = 0and #(r) < n(r) for every re[0,1].
Proof. Denote u(0) =0 and define (o = sup{{eR; x(r) < »(1) — {1 - r)
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for every r € [0, 1]}. Since the function x is nondecreasing, we have {, = 0. Define
u(r) = x(1) — {o(1 — r) for ref[4,1].

For k = 1,2,... let us assume that the function p has been defined on [27% 1].
Denote

Lo=sup{leR; x(r) < p(27%) - ¢(27* = r) for every re[0,27%]}
and define .
u(r)=p2™") = L(27* = r) for re[27%1,27%).

Obviously 0 < »(r) < u(r) for every re[0,1], and the function J is continuous
on (0, 1] (it is piecewise linear). Since the function x is nondecreasing, we have
{e = 0 for every k = 0,1,2,... and consequently the function pu is nondecreasing
on [0,1].
Let us show that the function p is concave. For k = 0,1,2,..., re[0,27%71]

we have the inequality

ur) = ur) = w27 - 427 = 1) =

=[2™) - G2 =27 - L2 - ) =

— U — L= ).

Consequently {;,, = {;, hence the function p is concave on (0, 1]. Since u(r) = 0
on (0, 1] and p(0) = 0, this function is concave on the whole interval [0,1].
Let us prove that p(0+) = lim p(r) = 0. Let us denote = p(0+). Assume that
r-0+

B > 0. Since %(0+) = 0, there is & > 0 such that »(r) < B/2 for every r € (0, 6).
There is an integer ko such that 27%° < 8. Then for any k > ko and re(0,27¥]
we have

wr) S x27%) < p.1=p0+).3 =
< H27. 4 < a2 27 = W2 (- 2712k - ) =
= W27~ [ . 27 @ - ).
Taking into account the definition of {;, we find that
Loz p(27F). 21,
Then )
B=p0+) = p2 ) =p27%) - 27F -2 <
< (2 - [2). 2] @7 - 27+ 1) =
= W@ (1 = 27127 — 2747 = (274 34

holds for any integer k = k,. Passing to infinity with k, we obtain
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w(0+) < p(0+). 34,

which is a contradiction with g > 0.

‘We have proved that p is a continuous, concave and nondecreasing function.
Then the function n(r) = p(r) + r, r € [0, 1] satisfies the requirements of Proposi-
tion 1.22.

2. CHARACTERIZATIONS OF COMPACT SETS IN #y[a, b]

2.1. Lemma. Assume that the set & = Ry[a, b] is equiregulated. Then for every
€ > 0 there is a division a =ty < t; < ... < t;, = b such that

(21) |%(t) — x(t')| < & forevery xesf and [t,t] < (tj-1.1;),
i=1,2. k.

Proof. By D let us denote the set of all d €(a, b] such that there is a division
a =1ty <ty... <t =dfor which (2.1) holds.

There is 6, €(0, b — a] such that |x(r) — x(a+)| < /2 for every xe o, te
€(a,a + 8,); denote d; =a +6,, a=1t,<t, =d, For [t,t'] = (a,d,) and
x € o we have the inequality |x(t) — x(t')| < |x(t) — x(a+)| + |x() — x(a+)| S &
Hence d; € D. Denote d = sup D. There is & > 0 such that |x(d—) — x(f)| < ¢/2
for every xe o, te(d — 6,d)n[a,b]. Find de D (d — 8,d) and a division
a=1ty<ty..<t=d such that (2.1) holds. Denote t,.4 =d. For [t,¢] <
< (t ty+1) and x €./ we have the inequality |x(f) — x(t')| £ |x(t) — x(d—)| +
+ |x(t) — x(d—)| S &. Hence de D. If d < b then it would be possible to find
d, €(d, b] such that d, € D in similar way as d, was defined. But this contradicts
d = sup D and consequently d = b.

2.2. Lemma. Assume that a set of < &y[a, b] is equiregulated and for any
t € [a, b] there is a number vy, such that
(22) |x(t) = x(t=)| £ v, holds for te(a,b];
[x(t+) — x(t)] £ v, holds for te[a,b).

Then there is K > 0 such that |x(t) — x(a)| < K for every x € o, t€[a, b].

Proof. Denote by B the set of all 7 € (a, b] for which there is K, > 0 such that
|x() — x(a)| < K, for any x € o, t € [a, 7). Since the set o is equiregulated, there
is 6 > 0 such that |x(f) — x(a+)| < 1 for every xe o, te(a,a + 6]. For every
te(a,a + 8] and x € o we have the estimate

[x(1) — x(a)] < [x(1) = x(@+)| + [x(a+) — x(a)] 1+ 10 = Ky -
Hence (4, a + 8] = B. Denote 1, = sup B.
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There is 8’ > 0 such that |x(r) — X(to—)| < 1 for every x € o, te [ty — &', 10).
Let us fix a point te BN [1:0 —&,7). Forxed, te (7, 7o) we have
(1) = x(@)] = [x()) = x(zo—)| + [x(zo=) = x(2)] + |x() — x(a)| S
<1+1+K;;
then also |x(to—) — x(a)] £ 2 + K, and
[x(z0) — x(a)] = [x(z0) = x(7o=)| + (x(zo—) — x(a)| < 7, + 2 + K.
Hence 7o € B with K, = 7,, + 2 + K.
For 7, < b we can find 6” > 0 such that
|x(f) — x(to+)] £1 forany xes, te(ry 7o + 8"].

Then |x(t) — x(a)] < |x(f) = x(to+)| + |¥(ro+) — x(zo)| + [x(v0) — x(a)] = 1 +
+ Y + K;y = K(zy1+5- Hence 15 + 6”€ B and we get a contradiction with the
definition of B. Consequently 7, = b € B.

2.3. Proposition. A set o/ < Ry[a, b] is relatively compact in the sup-norm
topology if and only if it is equiregulated, satisfies (2.2) and there is « > 0 such that
|x(a)] £ « for any x e .

Proof. It is well-known that a subset A of a Banach space X is relatively compact
if and only if it is totally bounded, i.e. for every ¢ > O there is a finite &-net F for
A — i.e. such a subset F = {x,, x,, ..., x,} of X that for every x € A there is x, € F
satisfying [|x — x,| < e

(i) Assume that & is relatively compact. Then it is bounded by a constant C;
evidently (2.2) is satisfied with y, = 2C for every ¢ € [a, b].

Let to€[a, b] and & > 0 be given. Let {x,, X, ..., x;} = #y[a, b] be a finite
g[3-net for &. Forevery n = 1,2, ..., k there is §, > 0 such that

[%a(t) — xa(to+)| < &/3 for te(to,to + 8,) n[a, b] and
|Xo(to—) — x,(t)] < &[3 for te(ty — 8, to)n[a,b].
Denote 6 = min {dy, 8, ..., &}.
For arbitrary x € o let us find x, such that |x — x,| < ¢/3. For every te
te(to, to + 8) N [a, b] we have the inequality
[x(8) = x(to+)| = [x(1) — xO] + [xu(t) = xulto+)| +
+ [xilto+) = x(to+)] = 2[x — x| + [x(t) — xlto+)| < &,
and similarly |x(to—) — x(t)] < & for te(t, — 8, to) N [a, b]..
(i) Assume that o is equiregulated, (2.2) holds and |x(a)| < « for every x € .

By Lemma 2.2 there is K > 0 such that |x(f) — x(a)| < K for any x e & and
te[a, b]. Hence |x(t)] < |x() — x(a)| + |x(a)] < K + . If we denote y = K + «
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then |[x|| < y for any x e o.

Let ¢ > 0 be given. By Lemma 2.1 there is a divisiona = t, <t; <... <t =b
such that (2.1) holds, when ¢ is replaced by ¢/2.

Let {a;, a5, ..., ®,} be a finite ¢/2-net of the compact set {x € R"; la] y}. Define
F={x:[a,b] > R", x is constant on (t;-,, t;) for every j = 1,2, ..., k and x(t)e
€{ay, ay, ..., a,} for every t € [a, b]}. The set F = #y[a, b] is evidently finite.

Let us verify that F is an e-net for &/. Let x € & be given. Foreveryn < 0,1, ..., k
there is i, € {1,2,..., m} such that Ix(t) —a,| Se forevery n = 1,2,..., k there
is j,e{1,2,..., m} such that |x(t,—) — | < ¢gf2. '

Let us define z(t,) =«;, n = 0,1 .k, z(t) = a;, for te(t,_y,t,) and any
n=1,2 ..k Then zeF and]z(t,,) - x(t,,)] Se |z(t) — x(0)] = |y, = x(1)] £
< oy, — x(ta—)| + |x(ta—) — x(1)] < & for te(t,-,,1,); hence |z — x| S & We
have proved that & is totally bounded.

2.4. Corollary. A set o/ = Ry[a, b] si relatively compact if and only if it is
equiregulated and for every t € [a, b] the set {x(t); x € &} is bounded in R".

Proof. If &/ is relatively compact then it is equiregulated by Proposition 2.3 and
evidently it is bounded.

Assume that o is equiregulated and |x(1)| < B, for x € &, t € [a, b].

Let te(a, b) be given. There is & > 0 such that |x(t) — x(t—)| < 1 for xe o,
te(t—6,1) and |x(r) — x(t+)] £ 1 for te(t,t +6). Let t,e(t ~5,1), 1,€
e(1,t + 6) be fixed. Then

[x(t) = x(t=) < [x(O] + [x(@)] + [x(t=) = x(w)] < Bc + By + 15
[x(t+) = x(1)] = |x(1+) = x(z2)| + |x(z2)| + [x(O)] < 1 + B, + B
Let us denote y, = 1 + B, + max {B,,, B.,}. Analogously 7,, 7, can be defined.
Hence the condition (2.2) is fulfilled and & is relatively compact by Proposition 2.3.

Remark. This result can be found also e.g. in [3].

2.5. By the symbol V let us denote the set of all increasing functions v: [O, 1] -
~ [0, 1] such that v(0) = 0, v(1) = 1. Any function v € V transforms the interval
[0,1] onto a subset of [0, 1] having the form [0, 1]\ { n [v(t—) o)) v

v ﬂ (”(‘) o(t+)]}- - W

v(t)<u(t+)

2.6. Definition. Let v € V be given. By the symbol L, let us denote the set of all
Junctions y € Ry for which the following conditions hold:

(2.3) If t€(0,1] is a point such that v(t—) < v(t) then the function y is left-
continuous at the point v(t—) and linear on the interval [v(t—), v(t)].

(24) If t€[0, 1) is a point such that v(t) < v(t+) then the function y is right-
continuous at v(t+) and linear on [u(t), v(t+)].
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2.7. Definitiin, Let an increasing function v e V and a regulated function x € R,
be given. A regulated function y € Ry is called the linear prolongation of the
function x along the function v, if y € L, and x(t) = y(u(t)) for every t e [0, 1].

2.8. Proposition. Let v € V. If 1, V2 € L, are functions such that y(v(t)) = yz(u(t))
for every tela,b] where [a,b] = [0,1], then y(tr) = yy(1) for every
v € [1(a), o(b)]-

Proof. Denote y = y; — y,, then yeL, and y(v(t)) = O for every te[a,b].
If te(a, b] is such that v(t—) < (t) then y(x(t—)) = O by the assumption (2.3).
Since the function y is linear on the interval [v(r—), v(t)], it vanishes on all this
interval. Similarly for every t € [a, b) such that v(t) < v(t+) we have y(u(t)) <
= y(v(t+)) = 0 and consequently y(t) = 0 for every 7 € [1(t), v(t+)]. Then yi(t)

— ¥2(1) = y(r) = 0 for every 7 € [v(a), v(b)].

2.9. Proposition. Let v e V. Any function x € &y has exactly one linear prolonga-
tion along v.

Proof. For a given function x € 2y let us define a function y: [0, 1] — R" in the
following way:
(2.5) y(r) = x(t) provided © = v(z), te[0, 1];
if o(t—) #* v(r) then y(r) = x(t—) for © = v(t—) and y is linear on
[o(t-), u(0)];
if o(t) # o(t+) then y(r) = x(t+) for © = v(t+) and y is linear on
[(2), o(t+)].

To prove that y is regulated, it is sufficient to verify that

(2.6) lim y(t) = x(to—) forevery 7o = v(to—), to€(0,1];
lim y(t) = x(to+) forevery 1o = 0(to+), toe[0,1).
t=10+

Let 15 €(0, 1], denote 7o = v(t,—). For a given & > 0 there is & > 0 such that
|x(t) = x(to—)| < & for every te(t, — 6, t,). For arbitrary 7 e (v(to — &), vto—))
we can find t € (t, — 9, ;) such that t € [v(t—), v(t+)] (this interval contains only
one point when v is continuous at 7). If = € [o(t—), v()], there is A € [0, 1] such that
t = Av(t—) + (1 — A) v(t); since y is linear on [v(t—), o(1)], it has the form y(t) =
= Ax(t—) + (1 — 2) x(t). We get the inequality |p(z) — x(to—)| < A|x(t—) —
— x(to=)| + (1 = 2) |x(t) — x(to—)| < &. In the latter case te [v(t), o(t+)] we
can find p e [0, 1] such that T = po(f) + (1 — p) o(t+), and again we get |y(7) —
— x(to—)| < & Consequently lim y(t) = x(to—). The other equality in (2.6) can
be verified analogously.

 Itisevident that y € L,. It follows from Proposition 2.8 that the linear prolongation
is unique.

41



2.10. Proposition. Let v € V. The linear prolongation of a function x € Ry along v
is continuous if and only if the condition

2.7) if te(0,1], x(t—) =% x(t) then v(t—) * o(1);

if tel0,1), x(t) + x(t+) then oft) + v(t+)
holds.

Proof. Let us denote by y the linear prolongation of x along v. Assume that y
is continuous. If v(t—) = v(t) for some te(0,1] then x(t—) = 11m Wo(z)) =

= y(v(;))d— x(t); if v(t+) = o(¢) for some t € [0, 1) then x(t+) = x(t) Hence (2.7)
is satisfie

Assume that the condition (2.7) holds. In order to verify that y is continuous,
it is sufficient to whow that

lim y(z) = y(1,) forevery 7, =1(to—), t,€(0,1] and

Tt

“lim y(t) = y(1o) forevery 1o =0(to+), t,€[0,1).
T—=10+

Let 1, €(0, 1], denote 1o = v(to—). If v(to—) # v(t,) then y(to) = x(to—) by (1.6);
from (1.7) we get lim y(7) = x(to—) = ¥(vo). If v(to—) = v(to) then x(to—) =

T+t%0—

= x(to) by virtue of (2.7) and from (2.6) we get the equality lim y(z) = x(to) =

= TO) T+ToT—

The equality lim y(tr) = y(zo) for 75 = 1(to+) can be verified analogously.

=10+

2.11. Proposition. Assume that v € V. For every two functions yy, ¥, € L, we have
the equality

Iys = vall = lyrov =320

Proof. Let us denote y = y, — y,. Evidently |yoo| < |y|. If ¢ = o(t), te
€[0,1], then

(28) (@) = )] = v o]
If 9 = o(t—) and v(t—) # v(f) then the function y is continuous at v(t—) due to
{2.3); from (2.8) we get

@9) )} = lim [y(o(s))] < |y o]

Since y is linear on [v(t—), v(t)] and we have estimates (2.8), (2.9) for 9 = v(t-),
o = o(t), for every 7 € [v(t—), ()] the inequality |y(z)| < ||y o v|| holds.

Similarly |y(z)| < |y o'v|| for every t e [v(t), v(t+)] where t€[0,1) is such that
o(t) # v(t+). Hence |y|| < [y ov
It has been proved that |y, — y,| = [y] = [[yov]| = [[y10v — y200|.
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2.12. Proposition. Let functions x € #y and v € V be given, assume that there is
a continuous increasing concave function n: [0, 1] — [0, o), #(0) = 0 such that

(2.10) [x(t2) — x(t,)| < n(v(t2) — o(t,)) forevery 0<t, <t <1.
Let the function y € L, be the linear prolongation of the function x along v. Then
|¥(z2) — ¥(z1)] S (2 — v,) forevery 01, <1,<1.

Proof. Let us denote by Z the closure of the set {t€[0, 1]; © = v(t) for some
te[0,1]}. If 7,, 7, € [0, 1] are points such that 7, = v(t), 7, = v(t;) and t, < t,,
then (2.1) implies that

|9(z2) = y(x,)| = [x(t2) = x(t1)] = n(o(t2) — v(t2)) = n(z2 — 7).

Since the functions y, n are continuous, the inequality

(211)  [x(w2) = ¥z S n(es — )
holds for every 74, 7, € Z such that 7, < 1,.

(a) Assume that (a, b) is a component of the openset (0, )\ Z,leta < 7, < 1, <
< b. Since a, b € Z, the inequality |y(b) — ¥(a)| < n(b — a) holds.

Either (a, b) = (v(t—), o()) or (a, b) = (v(¢), vo(t+)) for some te [0, 1]. Since
y € L,, the function y is linear on [a, b]; hence

T —11

o Do) - 5@

Owing to the fact that # is a concave function and n(O) = 0, we get the inequality

.V(‘Uz) - J’(Tl) =

T, — 1T T, — 1
) = 2(e] s 22 o~ @) 50 (2220 - ) =
=1t — 75).

(b) It remains to consider the case when 1y, 7, € [0, 1] are pointssuchthat a <
<1, £b=c£1,<d, where a,b,c,deZ and the following holds: If a < b
then y is linear on [a, b]; if ¢ < d then yislinear on [c, d]. Let 4;, 4, € [0, 1] besuch
that 1, = (1 — A))a + A;b and 7, = (1 — A) ¢ + 4,d.

Since the function 7 is concave, (2.2) yields the estimate

[¥(z2) = ¥(zy)| =

= |[(1 = 42) 5(c) + A2 (@] = [(1 = 21) ¥(a) + 4, ¥(B)]| =
= |(1 = 22) [(1 = A1) () = ¥(a)) + u(¥(c) — ¥(B))] +

+ 2,[(1 = A1) (¥(d) — ¥(a)) + 4(»(d) — »B))]| =

S -2)[0 - 2)n(c —a) + Amn(c — b)] +

+ A,[(1 = A4)n(d — a) + An(d — b)] < n(x; — =) -
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2.13. Lemma. If two sets M~ < (0,1] and M™* < [0, 1) are at most countable,
there exists an increasing function v € V such that

(212) M~ ={te(0,1]; o(t—) + o(1)} and
M* = {te[0,1); ot) * v(t+)}.

Proof. Let us order the sets M~, M* into sequences M~ = {s,, 55, ...}, M* =
= {04, 65, ...} (finite sequences if the sets are finite). Let us take any sequences of
positive numbers {ry, r,, ...} and {o;, ¢, ...} such that ) r; < o, Y'0; < oo. Let us
define w(t)=t+ Y r;+ Y ¢ for every te[0,1]. Then the function w is

0<syst 0so;<t
increasing, w(0) = 0, 0 < w(1) < oo. The function v(t) = w(1)™' w(t) belongs to V *
and satisfies (2.12).

2.14. Theorem. For an arbitrary function x: [0, 1] — R" the following conditions
are equivalent:
(i) The function x is regulated.
(ii) There is a continuous function y:[0,1] - R" and an increasing function
v e Vsuch that x(t) = y(v(t)) for every te [0, 1].
(iii) There is an increasing function v: [0, 1] — [0, 1] and a continuous in-
creasing function n: [0, 1] - [0, o) such that n(0) = 0 and

(2.13) |x(t,) — x(t1)] < n(v(t;) — v(t,)) provided 0 <t <t £1.
Proof. (i) = (ii). Let us denote
(2.14) M~ ={te(0,1]; x(t—) + x(f)} and
M* = {te[0,1); x(t) + x(t+)} .

By virtue of the property 1.6 the sets M~, M* are at most countable. By Lemma 2.13
there is a function v € V such that (2.12) holds. If y € L, is the linear prolongation
of x along v, it is continuous according to Proposition 2.10.

(ii) = (iii) The function # is a modulus of continuity of the function y.

(iii) = (i) Let 1o € (0, 1]. For an arbitrary ¢ > 0 there is 2 > 0 such that 7(4) < &
and there is & > 0 such that v(to—) — v(to — 8) S A If 1, — 6 St < 1" < 1o,
then o(t") — o(t)) < o(to—) — v(to — 8) £ A, hence |x(t") — x(t')| < n(v(t") —
— o(t')) = n(4) < e. It is well-known that this implies the existence of the limit
lim x(t) = x(to —). Similarly for every t, € [0, 1) the limit x(to+) exists.
t—=>to— .

2.15. Remark. If the function x belongs to #y , the set M ~ is empty and the set M *
does not contain the point 0. Hence the function v in Theorem 2.14 is also left-
continuous on (0, 1] and right-continuous at 0.

2.16. Lemma. If a set of = Ry is equiregulated then the sets
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(2.15) M~ ={te(0,1]; thereis xeof suchthat x(t—) % x(t)} and
*={te[0,1); thereis xeof suchthat x(t) + x(t+)}

are at most countable.

Proof. Only the set M~ will be dealt with — the proof for M* is quite analogous.
For every j € N let us denote

M; = {t€(0, 1]; there is x € o such that |x(t) — x(t—)| = 1/j} .

Since M~ U ;» it is sufficient to prove that the set M; is finite for every j eN,

Assume that there is j such that the set M is infinite. Let us choose a strictly mono-

tone sequence (1,);=; < M and denote its 11m1t by t,. For instance, assume that the

sequence (1,) is decreasing.
For every n € N there is x, € o such that |x,(t,) — x,(t,—)| 2
is equiregulated, there is & > 0 such that

1/j. Since the set of

[x(t) — x(to+)| < 1/3j forevery xesf, te(ty, to + 0).
There is n, € N such that ¢, € (to,u to + &) forevery n = ny. If n = n, then

1j < [afts) = xta=)l =

< Paltn) = xalto +)] + [mlta=) = xlto+)] = 2/3,

which is a contradiction; hence M; is finite.

2.17. Theorem. For any set of regulated functions o/ < Ry the following pro-

perties are equivalent:
(i) o is equiregulated and satisfies (2.2).
(ii) There is an increasing function v e V and an increasing continuous function

1: [0, o) > [0, o), 7(0) = 0 such that
(2.16) [x(t") = x(t')| < n(v(t”) — o(¢')) for every xe o,
0sr<tsgl.

(ili) There is ve V and an equicontinuous set B < €y such that o < # o v,
i.e. for every x € o there is a continuous function y € # such that x = y o v.

Proof. (i) = (ii) By Lemma 2.16 the sets M~, M* defined in (2.15) are at most
countable. By Lemma 2.13 we can construct a function v € ¥ such that (2.12) holds.

This function is defined so that
(2.17) t") —v(t)2 (" —-1), 02 <t <1
for some ¢ > 0. For every r > 0 let us define
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w(r) = sup {{x(t") = x(t')|; xe s, 01 <" <1, ot") — o) S 1} .

For t' < t" let us denote r = v(t") — v(t'). Then
(2.18) [x(t") = x(t')] < #(r) = #(o(t") — o(t')) forany xeo.

Lemma 2.2 implies that %(r) < oo for every r > 0. The function » is evidently
nondecreasing on (0, o). »
Let us prove that %(0+) = 0. For every r > 0 there is x, € o and 1, < 1, such that

oty) —o(t) S v and  [x(8) — x(1)] 2 3 x(r) -
By (2.17) we have '

< o) - o)) < L
c (o]

hence t;, — t, - 0 with r = 0.
Since the nets (1,),>0 and ({}),», are contained in the compact interval [0, 1],
there are convergent subsequences

(2.19) t,, >t and f;, —1t, with r,>0.

Denote X, = X,, t;, =ty t; =1, forne N.
Since the set & is equiregulated, for every ¢ > 0 there is 5, > 0 such that we have
for every x € o, t€ [0, 1]:
(2.20) if to—08,<t <to then |x(to—)— x(t)] <e;
if o<t <to+ 6, then |x(f) — x(to+)| <e.

(a) Assume that the sequence (r,) can be found so that t, = t, for every ne N.
Then

o(ty) — o(to) £ ra > 0; consequently o(to+) — v(t) = 0.
Then to ¢ M* and x(t,+) = x(t,) holds for every x € «. If for a given &¢ > 0 the
integer n is big enough so that 1, < ty + &,, then (2.20) yields

w(rs) < 2|x,(tn) — x:(to)] < 2e.

(b) Similarly, if t, = t, for every ne N, then v(t;) — v(t;) < r,, hence v(t,) —
—v(to—) =0, and x(t;) = x(to—) for every xe.o/. Then x(r,) < 2|x,(to) —
— x,(t)] < 2¢ for every n such that t, — 6, < 1,.

(c) If we can find sequences (1,), (f,) such that t, < t, < t,, the inequality v(t;) —
— o(t,) £ r, = Oimplies vto+) — v(to—) = 0.Hence to ¢ M~ U M* and x(t,—) =
= x(to) = x(to+) for any x € .

If for ¢ > 0 an integer n satisfies t, — 0, < t, < ty < 1, < 15 + §,, then

w(ra) < 2[|xtn) = xlto)] + [xalto) — x(r)]] < 4e.
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(d) Assume that t, < t, < t, for every n € N. If for agivene > 0 theinequality
to — 6, < t, holds, then

#(ra) £ 2[[xu(tn) — xalto—)| + [xato—) — x2)|] < 4.
(e) Similarly in the case of t, < ¢, < t, we get:
if t,<ty+ 9, then x(r,) <4e.

We conclude that x(r,,) — 0 with n > oo in each of the cases mentioned. Consequently
%0+) = 0.
By Proposition 1.22 there js an increasing continuous function #: [0, o) — [0, o)
such that 7(0) = 0 and x(r) < n(r) for every r > 0. Then from (2.18) we obtain (2.16).
(ii) = (iii) According to Proposition 1.22 the function # in (2.16) can be replaced
by a concave increasing function # such that n(r) < #(r) for r € [0, 1]. From (2.16)
we get

[x(z+) — x(¢t)] < n(o(t+) — o(t)) forany xeof, te[0,1);
[x(1) — x(t—)| < n(v(t) — o(t—)) forany xesf, te(0, 1] .

Consequently (2.7) is satisfied for any x € /.

Let us denote by % the set of the linear prolongations of all functions from o/
along v. Then & = % - v holds. According to Proposition 2.11 all functions from #
are continuous. Moreover, by Proposition 2.12 every y € & satisfies

() = ¥(@)| S A(x" = 7) for 07T <" £1.

The function # is a uniform modulus of continuity of the set 4.

(iii) = (i) If & = & o v where # < €y is an equicontinuous set, it is well-known
that there is such K > 0 that ] y) — y(0)| < K for every t€[0,1], ye #. Then
(2.2) is satisfied.

Let us prove that the set & is equiregulated. Let ¢ > 0 be given. There is A > 0
such that the following holds: If |t — 7’| < A then |y(z") — y(7')| < & for any
y €.

Let 1, €(0, 1] be given, denote 7, = v(t,—). There is 6 > 0 such that v(to—) —
— 9ty — 6) £ A. For any te(t, — ,1t,) denote = o(f). Then 17, — v < A. If
x = yov then [x(to—) — x(t)] = [¥(o(fo—)) — X(o(A)] = [¥(s0) — 3(2)] < &. Simi-
larly for every t, € [0, 1) there is 6 > 0 such that |x(t) — x(to+)| < &for any x € &,
te(to, to + &). Hence the set o is equiregulated.

Now we will formulate an 1mportant theorem about various characterizations of
relatively compact sets in Zy. -

2.18. Theorem. For any set of regulated functions o/ = Ry the following pro-
perties are equivalent:

(i) & is relatively compact in the sup-norm topology in Zy.
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(il) o is equiregulated, satisfies (2.2) and

(2.21) there is a >0 suchthat |x(0)] S« forany xes.

(iii) The set o satisfies (2.16) and (2.21).
(iv) There is v e V and a compact set of continuous functions # < €y such that
LB

~ Proof. The equivalence (i) <> (ii) was established in Proposition 2.3. Here we
will give another proof of (ii) = (i), proving successively the implications (ii) =
=> (iii) = (iv) = (i). Now let us use only the fact that (i) = (ii) was proved in Pro-
position 2.3.

(ii) = (iii) is the same as (i) = (ii) in Theorem 2.17, together with the assumption
(2.21).

(iii) = (iv): By (ii) = (iii) in Theorem 2.17 there is v € V and an equicontinuous
set B, < Gy such that o = &, o v. By (2.21) the inequality |y(0)] < « holds for
every y € #,. By the Arzela-Ascoli Theorem the set 4, is relatively compact in €.
Then there is a compact set Z < €y such that #, = #; hence o = & o v.

(iv) = (i) Let (x,)i=, = & be an arbitrary sequence; for any ne N there is
Vn € & such that x, = y,.v. Since the set # is compact, there is a convergent
subsequence y, 3 yo. Then x, = y, ov =3 yo o v; hence (xn) is a Cauchy
subsequence. Consequently & is relatively compact.

3. POINTWISE CONVERGENCE OF REGULATED FUNCTIONS

3.1. It is well-known that functions of bounded variation have a nice property
expressed in Helly’s Choice Theorem:

Assume that for a sequence (z,)y-, < BVy[a, b] there are positive numbers y, K
such that |z,(a)| < y and var} z, < K holds for every n € N. Then there is a function
z, and a subsequence (z,)5= such that z,(t) = zo(t) holds for every te[a, b].
The function z, is of bounded variation and

var® z, < liminf var) z, .
n-*o

" In order to extend this result to the space #Zy[a, b], it is possible to reason in this
way: Let a sequence of regulated functions (x,)a=; < %y[a, b] be given such that
|xi(@)] = v for any neN. Assume that in an arbitrary close ‘“‘neighbourhood”
{(in the sup-norm) of the sequence (x,) we can find a sequence (z,) the members of
which have uniformly bounded variations. Then we can find a pointwise convergent
subsequence (z,,), using Helly’s Choice Theorem. Since the functions z,, k€ N
are ‘‘near” to the functions x,,, k € N, we can expect that the subsequence (%ny) 18
““almost” pointwise convergent. More precisely:
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Assume that for every ¢ > O there is a sequence (z)a=, < BVy[a, b] and a number
K, > 0 such that

[xs = 2E[apy < ¢ and vargz:i< K, holdsforany neN.

Let (&n)- 1 be an arbitrary sequence of positive numbers such that ¢, — 0. For every
m e N the sequence (z5"):%, contains a pointwise convergent subsequence (by Helly’s
Choice Theorem). Using diagonalization process, we can find an increasing sequence
of indices (n,);-, such that

zin(t) - zg(t) holds for every te[a,b] and meN.

Let us show that (z§")y- , is a Cauchy sequence in the sup-norm topology. Let n > 0
be given. There is m, € N such that ¢, < n/4 for any m = m,. Let m, p 2 m, and
t€[a, b] be fixed. There is k € N such that

|zim(t) — z&(1)] < nf4 and |zi2(t) — zg(1)] < n[4. Then
|257(1) — z&(9)] < |267(t) — zn(9)] + [28(0) — zzz(e)] +
+ |zim(t) — X (O] + |222(1) — x, ()] <nf4 + n/d + &, + 5, <7

We find that ||z§ — z§| < # holds for any m, p = m,. Hence (zi")72-, is a Cauchy
sequence and it has a uniform limit x,. It is easy to verify that x,,(t) — xo(¢) for every
te[a, b]. In this way we have found a subsequence of (x,) which is pointwise
convergent.

3.2. Definition. For an arbitrary function x: [a, b] > R and a positive number
& > 0 let us define

e-vary x = inf {var} z; z € BVy[a, b], |

X = z||papy S €} .

We set inf @ = oo.

3.3. Definition. We say that a set & = Ry[a, b] has uniformly bounded e-varia-
tions, when for every & > O there is a number K, > 0 such that e-vart x < K, for
every x€ .

3.4. Proposition. A function x: [a, b] - R" is regulated if and only if e-var x <
< oo for every ¢ > 0.

Proof. If the function x is regulated, then the property 1.5 implies that for every
& > 0 there is a piecewise constant function z: [a, b] - R" such that |x — z| S e.
Of course, the function z has bounded variation.

Now let us assume that 1/n — var) x < oo fot every n € N. Then for every ne N
there is z, € BV[a, b] such that |x — z,|| £ 1/n. Since the functions z, are regulated,
it follows from 1.8 that x € #y[a, b].
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3.5. Proposition. For every function x € #[a, b] and positive number ¢ there is
a function z € BVy[a, b] such that |x — z| < & and var} z = e-var}, x.

Proof. For every k € N there is a function z, € BVy[a, b] such that |x — z,[| < ¢
and

e-vary x < varhz, < e-varyx + lfk.

Hence e-var® x = lim var z,.
k~ o
Since the sequence (z,)i%; is bounded and its members have uniformly bounded
variations, by Helly’s Choice Theorem there is a subsequence (z, J);'; 1 and a function z

such that
z,(t) - z(t) forany te[a,b], and var}z < liminfvar] z,, =

jow

= ¢gvarx.

On the other hand, since obviously |[x — z|| £ &, it follows from Definition 3.2 that
e-var® x < varb z. This completes the proof of the equality e-var® x = var), z.

3.6. Proposition. Assume that the members of a sequence (x,)i=; < #y[a, b]
have uniformly bounded e-variations. If x,(t) = x,(t) for every t € [a, b], then the
function x, is regulated and
(3.1) e-var® x, < liminf e-var® x, for every ¢ > 0.

n—» o
Proof. For every ¢ > 0 there is K, > 0 such that e-var® x, < K, holds for any
neN. Let ¢ > 0 be fixed. There is a subsequence (x,, )i, such that
liminf e-var® x, = lim e-var® x,, .
n— o k-
By Proposition 3.5 for any k € N there is z; € BVy[a, b] such that ”x,,k —zi e
- and e-var} x,, = var) z{. By Helly’s Choice Theorem there is a subsequence (z},);~
and a function z§ such that zj (1) —» zg(t) for every te[a, b], and var; z5 <
< liminf var} z; . Let t € [a, b] and n > 0 be given. There is an integer j such that

Jj—o

]x,,kj(t) — xo(t)] < n/2 and |z (1) — zatt)l < n/2. Then |x,(t) — z§(1)| <
< [xo(t) = 2 (] + [xn (1) = 2 (0] + |2(8) = 26(8)] <mf2 + e +nf2=¢ + 1

Since this estimate holds for any t and #, we conclude that ||x, — z§|| < e. Definition
3.2 yields e-varg x, < varg z§. Further var} z§ < liminf var, z§, = liminf a—vaer,,kl =
j>o j=w
= lim ¢-var} x,, = liminf e-var x,. Hence (3.1) holds. Moreover, it is evident that
k- n—awo
liminf e-var? x, < K,; then e-varl x, is finite for every ¢ > 0. By Proposition 3.4
L had ]

the function x, is regulated.
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3.7. Proposition. If a set o/ < Ry[a, b] has uniformly bounded e-variations,
then there is « > 0 such that |x(t;) — x(t,)| < a for any xe S, a < t; <1, < b.

Moreover, if the set {x(a); x € o/} is bounded, then there is >0 such that
|x|| £ B for any xe . ‘

Proof. There is K > 0 such that 1-var x < K for any x € . For arbitrary
x € o there is ze BVy[a, b] such that [x — z|| S land varjz S K. Ifa < 1, <
< t, £ b then

[x(r2) = x(t,)] = |x(t2) — 2(t2)] + |2(t2) — 2(t:)] + [z(tl) - x(t1)|

<2||x—z]| +varz<2+K=u.
If there is 7 > 0 such that |x(a)| < y for any x € &, then }
[x(0)] = |x(a)| + [x(t) — x(a)] Sy + « =B forevery xeo,

t€[a, b]. Consequently |x| < B.
Using the notion of e-variation, let us formulate the main theoremof this section,
which is an analogue of Helly’s Choice Theorem in the space of regulated functions.

3.8. Theorem. Assume that the sequence (x,)n=; < #la, b] has umformly
bounded e-variations and that there is y > 0 such that lx (a)l < y for every ne N.
Then there is a subsequence (x,, )= and afuncnon Xo € #y[a, b] such that x,,[(t) -

— xo(t) for every te[a, b]. .

An outline of the proof is given in 3.1. However, this proof will not be presented
in detail at this moment, because Theorem 3.8 will be proved later i in ‘another way.

In the following we will work on the interval [0, 1], because the, notion of linear
prolongation will be used, which was defined for the interval [0 1]. Of course, all
results can be simply transferred to an arbitrary compact interval [a b].

3.9. Lemma. Assume that an equicontinuous set 8 < €y is given. Then for any
& > 0 there is K, > 0 such that for every y € B there is a function {: [0 1] - R¥
which is lipschitzian with the constant K, and such that |y — (|| < e.

Proof. For a given ¢ > 0 let us find 6 > 0 such that
if |t"—7|<é then |y(t")— y(7')| <¢f2

holds for every y € 4.
Let 0 =17, <1, <... <71, =1 be a division such that

2Lt —1-.<6 for i=1,2,...,k.

For any y € B let us define a function {: [0, 1] — R such that {(t;) = y(r;) for
i=0,1,..., k and { is linear on each of the intervals [t;,_;, 7], i = 1,2,..., k; i.e.
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{z) = m(zi-y) + w‘).(t = 1-y) for tefr,_y,1,].

i~ Ti—a

For i=1,2,...,k we have

(7 — ¥(7i-1) <2 2 ¢ _¢
== - ) (i) <= - ==,
=ty |0 () = 3z 52 5

Hence { is lipschitzian with the constant K, = ¢/8. If t € [1,_,, 7,] then

[¢=) - »(2)] =

i) + A=A ()

i~ Ti-1

< (ri-s) = ¥(@)] + () — v(rizy)| < e

Consequently [[{ — y|| < e.

3.10. Theorem. For an arbitrary set of regulated functions o/ < Ry the following
conditions are equivalent:

(i) The set o has uniformly bounded e-variations.
(i) There is an increasing continuous function n:[0,1] - [0, ), 7(0) =0

such that for every x € o there is an increasing function v, € V satisfying

(32 [x(t") = x(t')] < n(v(t") — v(t')) for Ot <t"<1;

(33) o) —olt) 2 —1) for OSr<rs1;

(3.4) if x is continuous at 0 or 1, then v, is continuous at 0 or 1, respectively;
and

(3.5) if the set o has uniform one-sided limits at 0 and 1, then also the set

{v,, x € o} has uniform one-sided limits at 0 and 1.

(iii) There is an equicontinuous set # < €y such that for any x € o there are
V<€ B and v, € V satisfying x = y, o v, (this can be written as 4 < B o V).

Proof. (i) = (ii) By Proposition 3.7 there is « > 0 such that
(3.6) [x(t") — x(t')] £ « holdsforany xesf, 0S¢ <" <1.

For any j € N there is K; > 0 such that 1/j-varg x < K for every x € o/.
Let x € o be given. For any integer j there is z, ; € BVy such that

(3.7) [* =z, £1/i and varjz,; < K;.
Let us define
(3.8) 1,; = sup {t €(0, 3]; |x(t) — x(0+)| < 1/2j for every t€(0, ]},
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6, = inf {0 € [ 1) |x(1—) — x(£)| < 1/2j for every te&[a,1)}.

Evidently 7, ; > 0 and 0x,j < 1.
Let us define

(39) £ {0) = x(0); Cxi(0) = x(0+) + Xeaym) = 204) gy te(0,7,);

x,j

Geilr) = z, (1) for te€ (x> 0x1] 5

Cef(t) = x(1-) + Al _1) : :E’ij,,-'f') (t—1) for te(a, . 1),

L) = x(l) .

For t€(0, 7, ;) we have

[0 1) = x()] S ¥y =) = XOH)] + ]x(1) = x(O+)] = 15

Similarly

|Gei() = x(1)| £ Ui forany te(og;1).
Hence
(310) e, - x| =10

By (3.6), (3.7) and (3.10) we have an estimate

var {, ; = varg” Ly ; + vargy) zo; + var, (< )
< [x(0+) = x(0)] + [x(7e,;=) = X(O0+)] + |24, (7c,)) — *(zs;=)| +
+ varg Zyj T lx(o'x,1'+) - nyf(ax,j)I + lx(l—) - xlax,j+)| +

+ |x(1) = x(1-)| £ 60 + 2|z, ; — x| + varg z, ; < 6x + 2j + K.

If we denote

(3.11) M; = 6a + 2[j + K;,
then

(3.12) varg (S M;.

Using (3.10), (3.11) we find that {,; has similar properties as z,; in (3.7), but
moreover it has a special form near the endpoints of the interval [0, 1].
Let us define

(3.13) v, (1) = varh {,; for te[0,1].
From (3.12) it follows that

(3.14) 0 =<v,(tf) <M, holds forany te[0,1].
Let us define
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(3.15) o) = a4+ Y27 (1/M)) v, (f) for te[0,1],

ji=1
where the number a, € [1/2, 1] is chosen so that v,(1) = 1. We have the inequality
(316) . v (1) = v, () £ 27 M[0,(1") — v(t)] for ¢ <1".

From (3.14) it follows that the series in (3.15) is uniformly absolutely convergent.

Since a, = 1/2, the property (3.3) is evident.

Assume that x is continuous from the right at 0. Since {,; is linear on (0, 7 ;)
and {, }(0) = x(0), ¢, (0+) = x(0+), it is evident that . ; are, as well as v, ;,
continuous at O for every j € N.

For a given &€ (0, 1) there is an integer j, such that 27°7' < g/4. For j =
=1,2,...,j, denote

V0 =ETy .

Further, denote

(3.17) § = min {f— F A 5,.,,} .

x

By (3.11) we have a > M. If t € (0, 8), then

(G18) oo (1) = [x(tay—) = x(0)]. - s o <M, 2 < Mg
‘ x.J X, Tx.j
By (3.14),(3.17) and (3.18) we get an estimate
o) = 00 = o) <
NP | = .
ca+ ¥l 4 $oas
j=1 M_,' Jj=jo+1
Jjo
Sab+y2797t .—I—.Mjs+2 < ax.—i—+2"a +eld=c¢.
i=1 j a,

Consequently v, is right-continuous at the point 0. Similarly it can be proved that
if x is left-continuous at 1, then v, is left-continuous at 1. Hence (3.4) holds.
For r > 0Oilet'us define

(3.19) u(r) = sup {|x(t") — x(v)|, where xeof,
0SSt <t"S1, 0t")—v(t)Sr}.
Evidently the inequality

(320)  x(#) - ()] S Hedt”) - 0dt)

holds for every xe &, 0 < t' < t" < 1.
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It is obvious that the function x is nondecreasing. Let us prove that »(0+) = 0.
On the contrary, assume that #(0+) = % > 0. Let us find j € N such that 2/j < x/4.
Denote

(3.21) r=uxf4.27971 L
M;
Since %(r) = %(0+) = x, there are x € & and t' < t” such that
[x(t") = x(t')] > %/2 and v (t") — v (t) S r.
By (3.10), (3.13), (3.16) and (3.21) we have
o < [x(17) = x(0)] £ 2fx = Layll + [Ce (") — Geslt)] =
< 2fj + [oaft") = v ()] = 207 + 2771 M(odt) — 0d(1)) <
<4+ 27" M;.r=ux2,
which is a contradiction with % > 0. By Proposition 1.22 there is a continuous
increasing function #:[0,1] - [0, ) such that 7(0) = 0, x(r) < n(r) for any
re(0, 1]. Now we can get (3.2) from (3.20).

In this part of the proof it remains to prove (3.5). Assume that the set &/ has
uniform one-sided limits at the points 0,1. Let A€ (0, 1) be given. There is j' € N
such that

e 1
2j’ 2(]' — 1)
Then also 277" < 4. For any j = 1,2, ..., j’ — 1 there is 4; > 0 such that
(3.22) |x(t) — x(0+)] < 4 forany te€(0,4;), xe,
|x(1—) — x(t)] <A forany te(l —4;,1), xes.
Denote 4, = min {14, 4,, 4,,...,4;._,}. Let xe & and je{1,2,...,j — 1} be

given. Since

1 1
4,2 4;, 4, £ and A —— < -,
o=d do=3 2 - 1)~ 2
(3.22) together with (3.8) imply that t,; = 4, and ¢, ; £ 1 — 4,. Denote 4 =
= 4,y .4; then 4 < /4. ,
Let x € o and t € (0, 4) be given. Since te(0, 7, ;) for any j =1,2,...,j’ — 1,
by the definitions of {, ; and v, ; we have an estimate

(3.23) |05, (1) — 5, (0+)] = |x(74,;—) = x(0+)|.

1<

~o |
&l
IIA
N

Tx,j

Since M; > 6a by (3.11), we get by (3.14) and (3.23)
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o) = 00 +)] = @t + T 2797 [, 1) = 0.,(0+)] <
j=1 M;
i L R
Sad+ Y2707 — A4+ Y2t — . (1) £
j=1 M; j=ZJ' M; A
Jj'-1 ©
gA+22-f-*.—'1-+22*f-1<11+—’—1—+2"f'<,1. 3. L),
j=1 60 j=j 4 12« 4 12« :
Consequently the set {v,; x € &/} has uniform right-sided limits at 0. Similarly we
can prove that it has uniform left-sided limits at 1; hence (3.5) holds.
(ii) = (iii) By Proposition 1.22 there is a continuous increasing concave function

#:[0,1] - [0, ) such that 4(0) = 0 and #(r) < fi(r), r € [0, 1]. Then the inequality
[x(t2) = x(t;)] £ A(vu(tz) — vi(ty)), 051, <1, 21

holds for eveiy xe .
For x € o let us denote by y, the linear prolongation of the function x along v,.

Denote # = {y,; x€ o} It follows from Proposition 2.12 that

l}’x(Tz) - J’x('fl)l = ﬁ(‘tz - 71) , 0SSty <, =21,
This means that the set # is equicontinuous.Evidently o = {y, 00 xe o} <

cBoV.

(iii) = (i) For a given ¢ > 0 let us find the number K, by Lemma 3.9. For any
x € o there are y € # and v e Vsuch that x = y . v. By Lemma 3.9 there is { € €y
which is K, -lipschitzian and such that |[{ — y| < &. Denote z = { o v. Then

|z = x| =[teo—yoo]| = [0y <e,
and var} z < var) { £ K,. Consequently s-vary x < K,.

Using Theorem 3.10 and the well-known Arzela-Ascoli Theorem, we obtain an
important theorem which is an analogue of Theorem 2.18.

3.11. Theorem. For an arbitrary set of regulated functions of = Ry the following

conditions are equivalent:
(i) The set o has uniformly bounded e-variations and there is y > 0 such that

|x(0)] < y holds for any x € .

(i) There is an increasing continuous function n:[0,1] - [0, ), n(0) =0
such that for every x € o there is an increasing function v, € V satisfying (3.3),
(3.4) and

[x(¢7) = x(t')] < n(v,(t") — v (') for OS¢t <t" <1,
and
3.24 there is such f > 0 that |[x|| < B holds for any x e .
(
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(iii) There is a set 8 — €y which is compact in the sup-norm topology so that
for every x € of there are y, € # and v, € V satisfying x = y, o0, (i.e. & = Bo V).

Proof. (i) = (ii) The property (3.24) follows from Proposition 3.7, the remaining
part follows from Theorem 3.10.

(i) = (iii) Let us denote by %, the set of the linear prolongations y, along v, of
all functions x from /. By Theorem 3.10 the set %, is equicontinuous. By Proposi-
tion 2.11 and (3.24) we have

||y,|] <pB forany y,e%B,.

Since %, is equicontinuous and bounded, by the Arzeld-Ascoli Theorem the set %,
is relatively compact in the sup-norm topology on %y. If we denote by 4 the closure
of #,, then # is compact and &f < B o V.

(iii) = (i) follows immediately from Theorem 3.10.

At this moment we have an effective tool for proving a theorem formulated
earlier.

3.8. Theorem. Assume that the sequence (x,)i, < #y[a,b] has uniformly
bounded g-variations, and that there is y > 0 such that lx,,(a)[ < y for every ne N.
Then there is a subsequence (x,)i~1 and a function x,€ &y[a, b] such that

Xn(t) = xo(t) for every te[a, b].
Proof. Let us define
x,(t) = x(a + (b — a)t) forany te[0,1], neN.

Evidently the set {x,; n € N} has uniformly bounded e-variations and |x,(0)| < y
for ne N. By Theorem 3.11 there is a compact set # < €y such that for every
ne N there are y, € # and v, € V satisfying x, = y, o v,. Since # is compact, there
is yo€ %y and a uniformly convergent subsequence (y, )i=1 Such that y, =3 y,.
By Helly’s Choice Theorem there is a nondecreasing function v, and a subsequence
of (v,)i=1 which will be denoted again by (v,,), such that v,(t) = vo(f) for any

tef0,1].
If we define
’ t—a .
Xg = Yoot and xo(f) = xg (b ) for te[a,b],
—a
then

x,(t) > xo(t) forany te[0,1], and X (1) = xo(f) for any
te[a, b]. ‘ .
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3.12. If we compare the results of the second and third sections, we can feel some
relationship between the uniform convergence of regulated functions and the point-
wise convergence of such regulated functions which have uniformly bounded
£-variations. ' :

It would be an interesting result if an arbitrary sequence of pointwise convergent
functions having uniformly bounded variations could be transformed to another
sequence of regulated functions which is uniformly convergent, and if this transfor-.
mation could be made by compositions with continuous increasing functions. More
formally, if x,(t) > xo(t) for t€ [0, 1] and the functions x,, n € N have uniformly
bounded e-variations, we would like to find continuous increasing functions w, € 4,
n e N such that the functions &, = x, - w, ! were uniformly convergent, or at least
equiregulated. Such result would be useful in the theory of ordinary differential and
integral equations. :

Regrettably, this is not true; but a result like this takes place for some subsequence
of (x,). This result will be formulated now for the space %y .

3.13. Theorem. Assume that a sequence (x,);=o = #y has uniformly bounded
g-variations and that it has uniform one-sided limits at the points 0, 1. Assume that

x(t) = xo(t) forany te[0,1] at which x, is continuous .

Then there is a subsequence (xk)-,, a sequence of regulated functions (&)i=o <
< Ry, a sequence of increasing continuous functions (Wk)ff=1 < A and an in-
creasing function wy € Vn R such that

{3.25) x¥=¢Eow, forany keN, xo=E& ow, and
{3.26) & &, w(t) > wo(f) forevery te[0,1] atwhichw,
is continuous.

Proof. By Theorem 3.11 there is a compact set # < %y and for any n e N there
are y, € # and v, € V such that x, = y, - v, and (3.3) (3.4), (3.5) hold.

For any n & N let us denote v)(0) =-0, v)(t) = v,(t—) for t € (0, 1]. Since v,(0+) =
= 1,(0) = 0 and v,(1—) = v,(1) = 1 by (3.4), we have v,€ VN #;. Since x, € Ay
and y, is continuous, we find that

x1) =11_i’r‘r1 x,(1) = Eirfx—y,,(v,,(r)) = y(va(t=)) = yal(va(t)) for 1e(0,1].

Hence x, = y, o v, where v,e Vn %7 .
By Helly’s Choice Theorem there is a subsequence (vy,)i=1 and a function vg
such that v,,(f) — vo(r) for any t € [0, 1]. From (3.3) it follows that v; is increasing.
By (3.5) the functions v,, n € N have uniform one-sided limits at 0 and 1. Hence
for a given A > 0 there is § > 0 such that [v,() — 1,(0+)| = vi(t) < 4/2 holds for
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any t€(0,3), ne N. Let ¢ € (0, 6) be given. There is an integer k such that [v, (f) —
— vo(f)] < 4/2. Let us find 7 € [, &) such that v, is continuous at t. Then

[6(t) — v6(0)] = 25(t) < [on(t) — 26(1)] + vafc) < 4.
Hence vy is continuous at 0, and similarly vg is also continuous at 1. If we define
wo(0) = 0, wo(t) = vo(t—) for te(0, 1], then wo e Vn &7 and

(3.27) v, (t) = wo(t) forany re[0,1] at which w, is continuous .

If we replace f, by v, , then the assumption (1.25) of Theorem 1.20 is satisfied.

By (3.27) the assumption (1.32) of Theorem 1.21 is satisfied when h,, ho, n are
replaced by v,,, w,, id. As is shown in the proof of Theorem 1.21, the assumption
(1.26) of Theorem 1.20 is satisfied. By Theorem 1.20 there is a sequence (v )r=y < 4
such that ||(v;)-; — v || = 0 and the set {v}, o v '; k € N}. is relatively compact
in the metric space (£7 ; ¢). Then

(1) - wo(t) forevery t€[0,1] at which w, is continuous .

Let us denote g, = v, 0 Vg ', ke N.

There is a subsequence of (g,) which for simplicity will be denoted again by (q,),
and a sequence (4,);=1 < A such that 4, 3 id and ¢, o 4, =3 g0 € %y .

Since the sequence (¥,,) is contained in a compact set & = ¥y, there is y, € ¥y and
a subsequence which will be denoted again by y,,, such that y, =3 yo.

Let us denote & = Y, 0qio 4 for any ke N, &, = yg o0 qo; Wi = At o v, for
k € N. Then (3.25), (3.26) hold.
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Souhrn
REGULOVANE FUNKCE

DANA FRANKOVA

Prvni kapitola sestava z pomocnych vysledkii o neklesajicich realnych funkcich. Druhé
kapitola pfinaSi novou charakterizaci relativn® kompaktnich mnoZin regulovanych funkci
v supremalni topologii, tfeti kapitola obsahuje mimo jiné analogii Hellyovy vty o vyb&ru v pros-
toru regulovanych funkci.
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