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K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 3 

ON THE NUMBER OF MONOTONIC FUNCTIONS 
FROM TWO-VALUED LOGIC TO ^-VALUED LOGIC 

JURA J HROMKOVIČ 

We deal with the generalized Dedekind's problem, i.e. with the determination of the number — 
tp(n) of monotonic functions of n variables from two-valued logic to ^-valued logic in this paper. 
Improving the lower and upper bounds of <p(n) we obtain an asymptotic estimate of log2 <p(n). 

0. INTRODUCTION 

The problem of number determination of monotonic functions of n variables-i^(n) 
was formulated and solved for n = 4 by Dedekind [3] in 1897. For n = 5 and n = 6, 
this problem was solved in Church [2] and in Ward [12] respectively. The further 
authors bringing the essential improvement of the estimates of \j/(n) were Gilbert [4], 
Korobkov [8, 9, 10], Hansel [5], and Kleitman [7] who gave an asymptotic estimate 
of log2 iji(n). The best known result obtained is Korshunov's asymptotic estimate 
(*)of^(n)(of[ll]) 

0) m * A ) exp {(B»2) (-L + ^ - J L ) } for n even, 

Hn) » 2.2^-" ^ exp {(. " „\ (-1— ~ ±- ^ 
U V \\(n - 3)12) \̂ 2c« + 3)/2 r + 6 2„ + 3) 

-\ U for n odd. 
( n - l ) / 2 y \ k 2 ^ + 1 W 2 2" + 4 

Besides the classical Dedekind's problem a more general problem — the problem 
of the determination of the number of n variables monotonic functions from m-
valued logic to fc-valued logic has been formulated. The best known results concern­
ing the solution of this generalized task can be found in Alexejev [ l ] . Since we shall 
deal with a special cases of the task introduced, with the number determination 
of w-variables monotonic functions from two-valued logic to fc-valued logic (denoted 
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by <p(n)), we state Alexejev's results (T) and (2') for <p(n) only 

{!') 2 ^ 2 " ( , + C l ' , " , ) g « p ( n ) ^ 2 ^ . ) 2 " ( , + £ 2 ; < " \ 

where 

* a ( " ) - C - l 0 g 2
4

( 2 n + 1 ) . hm£ ;(n) = 0 , 
\ / n 

(2') log2 <p(n) = ^ - = - 1 2"(1 + c'(n)), where e'(») = 1 ^ 2 M l & L ± D . 
v ' (27in) n 1 / 4 

The results of this paper are lower bound (Theorem 2) and an upper bound 
(Theorem 5) on cp(n) which does not contain the additional member in the exponent 
of 2. Using these bounds we obtain in Section 4 the underlying asymptotic estimate 
of <p(n) which is more precise than (2'): 

log2 <p(n) = (k-\) L ^ \ (1 + <«)) , where \s(n)\ ^ ~ . 

The paper consists of four sections. In Section 1 the basic definitions and notations 
used are given. The lower bound and the upper bound of <p(n) are obtained in Section 
2 and 3 respectively. The above stated estimate of log2 <p(n) is given in Section 4. 

1. DEFINITIONS AND NOTATIONS 

In this section we define some basic notions which we shall use in this paper. 
The set B" = {(a., a2, ..••,«„) J a ; e {0,1} , i = 1, 2 , . . . , n) is called n-dimensional 

cube. The vectors a" = (a , , . . . , a„) [or simply a] in B" are called the vertices of the 
n-dimensional cube B". 

The norm of a vertex a" is defined as the number of coordinates which are equal 
to one, i.e. „ 

;= I 

The set of all vertices of B" having the norm k is called the k-th sphere of B", and 
denoted by B"k. 

The distance between a and j§ in B" is the number 

Q(a, /i) = t |a, - fi,\ , 
i= i 

where a = (a,, ..., a„) and ft = (f}u ..., /?„). The vertices a and ft of B" are called 
adjacent iff Q(&, ft) = 1. An unordered pair of adjacent vertices is called the edge 
of B". 

We say that the vertex a" precedes the vertex /?" (we denote a" g fi") iff a; ^ j8f 

for all i = 1, ..., n. If a" ^ ^" or ft" ^ a" holds then a" and P" are called comparable. 
In the opposite case a" and j5" are called incomparable. 
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The set A _ B" is called independent iff, for all a, ft in A, a and ft are incomparable. 
We shall denote the class of all independent sets of B" by A". Clearly A" _ 2B". 

The function / ( x , , . . . , xn) [ / : 5" -> {0, 1}J defined on B" and gaining the values 
from {0, 1} is called the Boolean function of n variables. The monotonic Boolean 
function / is each Boolean function / satisfying condition / (a) g f(ft) for all a, ft 
in _" such that a :g ft. (/'('j) will denote the number of all monotonic Boolean functions 
of n variables. 

The function f(xu ..., x„) [ / : B" -* {0, 1, . . . , k — 1} is called the function from 
two-valued logic to k-valued logic, or simply the (2, k) function. The (2, k) function/ 
is called monotonic (2, k) function if, for all a, ft in B" such that a S ft, /(a) _ f(ft) 
holds. The number of all monotonic (2, k) functions of n variables is denoted by 
(p(n). Obviously, the notions (2, 2) function and Boolean function are equivalent. 

A set A{1] = {a in B" | a 2; e}, for s e B", is said to be the interval of B". Using 
the notation of interval we introduce the following notation. Let C _ B". Then 
Ac = {jArc]. 

IEC 

For each (2, k) function / , we shall consider the set system Nf = {Nf, Nf,... 
k- I 

...,N)rx], where Nl
f = {a in B" \f(S) = i). Clearly, B" = \J Nf and NJ

fnNf = 0 
fo r ;* / : . i=0 

Concluding this section we give some notations. Let L be a set. Then j__| denotes 
the number of elements in L. Let in be a real number [mj ([m]) is the floor (ceiling) 
O f 771. 

2. THE LOWER BOUND OF <p(n) 

We shall obtain the lower bound (1) of the number of all monotonic functions 
from two-valued logic to fe-valued logic in this section. We shall use a similar idea as 
in Alexejev [ l ] but our proof technique utilizing the nice properties of the ?!--dimen-
sional cube helps to obtain the finer estimate of <p(n) than (F). 

Theorem 1. Let {Su ..., Sk_j} _ 2B" be a set system, where S; are independent 
for all i = 1, ..., k - 1, and Sf n Sj = 0for i * j . Let 1 g r < s g k - 1. and for 

fc— i 

no two a in Sr and /3 in SSS. ^ /? holds. Then q>(n) 5i 2d, where d = Tj |S ; | . 

Proof. We show using the set system {S., S2,..., Sfc-i} that 2d different, monot­
onic functions from 2-valued logic to /c-valued logic can be constructed. Let 
{Si, S2, ..., S^_|} be a set system, where SJ = S; for all i = 1,.-.., k — 1. Clearly, 
for 1 g i < j g /c — 1 and all a in S;, all ft in S^ the negation of ft g a holds (i.e. 
a < /5 or a and /5 are incomparable). It can be easy seen that there exists exactly 

i - i _'|s.-l 
TT2ls'l = 2 , = ' = 2 d 
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different set systems {S't, S'-,, ..., S'k_t} chosen from the basic set system {St, S2, ... 
. . . , S , t _ , } . 

In what follows we shall show that a monotonic (2, k) function can be assigned 
to each set system {S,,..., S'k_t} in such a way that two different, monotonic (2, k) 
functions are assigned to different set systems $fi_,Sfi

2. Obviously, this will prove 
our asssertion. 

We define a decomposition of B" to k disjoint sets D0, _),, ..., D,._, according 
to a set system [S't,..., S'k_ ,} in the following way. 

i t - i 

-> . - . - " -_<_- , . ->*-2 = As,k_2 -Dk_t,...,Dt = ASi,- [J Dp... 
; = .+ i 

...,Dt =ASi,-{jDj, D_ = B" -"[JDj . 
. = 2 / = 1 

Then puttingN'f = D ;,forallf = 0, ...,k — 1, the set systemNf determines unambi­
guously a (2, k) function. 

Let us shown that the (2, k) function defined in the way introduced above is 
monotonic. We prove it by contradiction. Let there exist a and ft in B", such that 
a. > ft and i = / (a) < f(ft) = j for some i,j in {0, 1, . . . , k - l} . Then 

k - i fc-1 

a-Di=-ASl. - (J Dc and ft e £>,. = As, - [j Dc. 
c = ; + i ' c=j+i 

But, considering the properties of {S'_, S'2,..., S,'_,} and the construction of Z), and 
Dj we see that for all y in £>, and all e in Dj the negation of y __ e holds. It means 
that either a < ft or 5. and /? are incomparable, what is the contradiction with the 
assumption S > ft. 

Now we shall show that different (2, k) functions/' and / " are assigned to different 
set systems </" = {S\, S2,..., S'k_t}, and <_"" = {S_, S2,..., Sl'_,}. Since Sf" + &>" 
there exists c in {0, 1 , . . . , / . — 1} such that S^, + S^'. Without loss of generality we 
can assume that there exists a in S^ such that a does not belong to S"c. Clearly,/'(a) = c. 
Let us assume / ' = /'" what implies /"(a) = c. It follows that there exists ft in S"c 

such that ft < dt. So, f"(ft) = c implies /'(/?) = c, what can hold iff there exists y 
in S^ such that y __ ft. But this is a contradiction with the independence of the set 
S'c because y g ft < a. and y, a belong to S'c. __\ 

Theorem 2. Let n, k be natural numbers, n __ k __ 2. Then 
/ n \ ( k - 2 > / 2 / „ s 

, ^ i - / a ) + 2 ,_-, (<-/*)->) , 
1. <p(n) 2: 2 for w, fe even , 

( I < - 3 ) / 2 , „ v 

2. (p(n) ^ 2 i = 0 L"/2J"' for n, fe odd, 

- , , . (t'./2j'+/,/2)+2 ,J0 (l»/2J-») „ , , - . 
3. cp(n) __ 2 for 11 odd and fc even, 

. . ('./2) + („/2 + ('i_l)/2) + 2 ,.?, (n/2-i) , . , , 
4. (/>(») 2: 2 for n even and fc odd. 
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Proof. Considering the result of theorem 1 it is sufficient to show that there exists 
a set system Sf S 2B" fulfilling the assumptions of Theorem 1 such that the cardinality 
sum of sets in Sf is equal to binary logarithm of the lower bound of (p(n). Clearly, 
the spheres B" are independent sets and the set system Sf = {_•„,, Bai,..., B"aui\, 
where at < am for i < m, fulfils the assumptions of Theorem 1. So, choosing the 
most powerful (according to the cardinality) spheres to Sf we obtain the assertion 
of Theorem 2. • 

3. THE UPPER BOUND OF cp(n) 

To obtain the upper bound of <p(n) we use a new method based on the following 
two theorems. We shall not prove the assertion formulated in Theorem 3 because it is 
well-known [6, 7]. 

Theorem 3. The number of monotonic Boolean functions of n variables is equal 
to the number of all independent sets in 2B". 

Theorem 4. Let Mfc_, be the set of all (fc - l)-tuples (S1 ; S 2 , . . . , Sfc_,), where St 

is an independent set of B" for i = 1, 2 , . . . , fc - 1. Then <p(n) ^ |f-_fc_,|. 

Proof. We shall prove the assertion introduced showing that a (fc — l)-tuple 
of independent sets of B" can be unambiguously assigned to each monotonic (2, fc) 
function in such a way that different (fc — l)-tuples are assigned to different, monoton­
ic (2, fc) functions/, , /2 . 

L e t / be a monotonic (2, fc) function of n variables. Let Nf = {N°f,N\, ..., N)r1}. 
Let S; £ N'f be the set of minimal vectors of N'f for i = 1, 2 , . . . , fc — 1. Then we 
have a (fc — l)-tuple (S,, S 2 , . . . , Sfc_,) for each monotonic (2, fc) function. Clearly, 
the sets S, are independent. 

Now, we shall show that two different (fc - l)-tuples (SUS2,..., Sfc_x) and 
(Si, S 2 , . . . , S t_,) are assigned to different monotonic (2, fc) functions / and / ' . 
Let us consider two set systems Nf and Nf, for two different monotonic (2, fc) 
functions / and / ' respectively. Then there exists i in {1, 2 , . . . , fc — 1} such that 
Nf 4= Nf,. We can assume without the loss of generality that there exists a in Nf 

such that 6itfiN'f.. Let ft be such vector in S ; that $ :£ a (obviously, such a vector 
must exist). If fi does not belong to SJ the proof is completed. Let us consider the 
possibility that ft e S-. Realizing that 5. $ Nf, and / ' is monotonic we obtain a e NJ

f, 
for j > i. So, there exists y in NJ

f. such that y ^ a and yeSf Obviously y cannot be­
long to Sj because y e Sj implies j = f(y) > /(a) = i, what is a contradiction with 
the fact y ^ S. Q 

Before formulating the upper bound of cp(n) in the following Theorem 5 we note 
that the equality between (p(n) and |Ml"_i| does not hold. 
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Theorem 5. 

(i + 7i(n)) for n even, where lim yjji) — 0, 

«.) s _ - . - <-V) esp |(t _ „ [((> _»3)/2) (_J_ - £ - __, + 

+ ((.-1)/2)(iSrai + ^ ) ) ( 1 + ' « 

for n odd, wliere lim y2(«.) = 0. 

Proof. Considering the result of Theorems 3 and 4 we obtain 

<p(n)^\Ml_,\ = [>P(n)f~l. 

Using Korshunov's estimate of ^(n), and a simple arrangement we obtain the asser­
tion of Theorem 5. • 

4. THE ASYMPTOTIC ESTIMATE OF BINARY LOGARITHM OF cp(n) 

In this section we give an asymptotic estimate of binary logarithm of the number 
of monotonic(2, k) functions which is more precise than the estimate of Alexejev [1]. 
We obtain it in the following two lemmas. 

Lemma 1. log2 <p(n) ^ (k - I) (, , j (1 - k2\n) . 

Proof. It is no hard technical problem to show that 

( W J - H ^ J T 1 - 0 0 -
where i as a constant. Using this fact and the assertion of Theorem 2 we have 

/ \ (*-i)(i-oiVi-*2/») 
<p(n) £ 2 ^ / 2 J ! \ • 

Lemma 2. log2 <p(n) g (k — 1) f. , , I /1 H \ , for a constant c. 
\lnl2ij\ ( n \\ 

\ U»/-jJ, 
Proof. Taking logarithms of the upper bound of <p(n) and doing some simple 

arrangements the result of Lemma 2 can be obtained. • 
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Theorem 6. <p(n) = (k - 1) K ^ (1 + 0(l/»)). 

Proof. It is the direct consequence of Lemmas 1 and 2. D 
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