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KYBERNETIKA- VOLUME 22 (1986), NUMBER 3 

ISOTROPY OF STATIONARY RANDOM FIELDS 
ON LATTICE1 

ANTONIN OTAHAL 

The notion of a stationary weakly isotropic random field on an n-lattice (n-dimensional 
square lattice) is suggested in the paper to constitute a discrete model of stationary isotropic 
spatial random events. The spectral representation of a stationary weakly isotropic random field 
is derived and, on the base of that, the hypothesis is tested under which a stationary ^-lattice 
field is supposed to be weakly isotropic. 

0. INTRODUCTION 

The definition of a stationary random field on an n-lattice is very similar to that 
of a stationary random field on an n-dimensional Euclidean space; cf. e.g. [4, 9]. 
It is not the case if we take into consideration the notion of a stationary isotropic 
random field. On a Euclidean space such a field is naturally defined by aid of the 
condition saying that the covariance function depends just on the (Euclidean) distance 
or, equivalently, the covariance function is invariant with respect to the group of all 
the distance-preserving space transforms; cf. e.g. [8, 9]. Trying to define a stationary 
isotropic random field on an ^-lattice we come to problems — cf. [4], Sec.V. We 
might, of course, suppose the covariance function to depend just on the distance, 
coming to what we could call stationary "strongly" isotropic random field. The point 
is, such fields are rather difficult to describe effectively. That is why we choose an 
easier way in this paper and define a stationary weakly isotropic random field on an 
n-lattice by aid of the condition saying that the covariance function is invariant 
with respect to the group of all the distance-preserving n-lattice transforms.-Unlike 
in the continuous case, these two ways of definition are no more equivalent, the 
latter being weaker. 

In our approach an important role is played by the hyperoctaedral group of 

1 The results presented in the paper are based on the author's dissertation "Spectral Analysis 
of Stationary Weakly Isotropic Random Fields" (in Czech), UTIA CSAV, Prague 1984. 
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degree n, whose properties we study in the first part of the paper. The second one is 
devoted to spectral representation of stationary weakly isotropic random fields. 
In the third part of the paper, as an example of application of the spectral represent­
ation, there is derived a statistical procedure for testing the hypothesis under which 
a stationary n-lattice random field is supposed to be weakly isotropic. 

1. HYPEROCTAEDRAL GROUP 

We will introduce the definition of the hyperoctaedral group H„ of degree n, 
characterize its matrix representations and study functions and measures invariant 
with respect to H„. (Concepts of matrix — or linear - group representations are 
introduced e.g. in [1, 5, 7].) 

Let n be a fixed positive integer. Through S„ we denote the symmetric group 
of degree n, i.e. the group of all permutations on {1, ..., «}. It is well known that 
|S„| = n\ where, for a set C, the symbol |C| denotes the number of elements of C. 
A = (A, *) will denote the two-element group {0, 1} with 0 * 0 = 1 * 1 = 0, 0 * 1 = 
= 1*0 = 1 and A" will denote the nth direct power of A. That is, for a = (a,, ... a„) e 
e A", we define a * /? = (at * fiu ..., a„ * /?„). Obviously |A"| = 2". 

For aeA", Q e S„ and j , k = 1, ..., n we define uJk(a) = ( — 1)*J 5Jk, vJk(o) = 
~ djQ(k) where 5 is the Kronecker symbol. Further we define n x n matrices «(a) = 
= (uJk(a)), v(g) = (vJk(g)), h(a, Q) = u(a) . V(Q). 

The hyperoctaedral group Hn of degree n is the set {h(a, Q): a e A", Q e S„} together 
with the operation of the usual product of matrices. It is easy to verify that H„ is 
a group of orthogonal n x n matrices, number of them being 2". n!, and an ortho­
gonal n x n matrix belongs to H„ if and only if all its elements are integers. 

Let us denote U = {«(a): a e A"} and V = {V(Q): Q e S„}. Then U, Vare subgroups 
of H„, the subgroup U is normal and the only element of U n V is a unit matrix. 
So H„ is a semidirect product of U, V(cf. [1]) or, equivalently, H„ is isomorphic 
to a semidirect product of the groups A", S„. Hence one corollary of Clifford's 
theorem (cf. [1], 1.11) enables us to characterize matrix representations of//,, through 
those of A" and S„. 

Let G be a finite group and Ml, ...,Mk be irreducible matrix representations 
of G such that for every irreducible matrix representation M of G there exists j e 
e {1, ..., k) for which the representations M, MJ are mutually equivalent. Then we 
say M1, ..., Mk to constitute a complete set of irreducible representations of G. 

We say a vector X = (Xu ..., Xm) of positive integers to be a partition of n if 
Xy = ... = Xm and Xt + ... + Xm = n. As shown in [5], by means of Young's 
algorithm it is possible, for every partition X of n, to define certain irreducible ortho­
gonal representation Tx (whose dimension we denote r(X)) of the symmetric group S„. 
The set {Tx: X is a partition of n} is a complete set of irreducible representations 
of S„. 
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Formally we put the set of partitions of the number 0 to be equal to (0), the group 
S0 to be equal to St and the representation T(0) to be equal to 1. 

For fe = 0, . . . , n we define a subgroup S„ik of S„ as the set of exactly those per­
mutations Q e S„ for which ;' e {1 , . . . , fe} implies Q(J) e{l, ..., k}. That is, Q e S„yk 

if and only if Q is a composition of permutations Qt e Sk and Q2 e S„_k, Q2 acting 
on {fe + 1, . . . , n}. Through (n: k) we denote the set of all k-element subsets of the 
set {1, ..., n} and to every B e (n: fe) we assign a permutation rB e S„ in the following 
way. We denote Bt = { l , . . . , fe} \B and B2 = B\ {1, ..., fe}. It is \Bj\ = \B2\, 
therefore we may write Bt = {xi,..., xr}, B2 = {_y1; ..., yr} and define, for every 
J = 1 , . . . , » , 

i yv for j = x v , v = 1, . . . , r , 
xv for j = yv, v = 1, . . . , r , 
j otherwise. 

Let fe e {0,. . . , n}, X be a partition of fe,' / j b e a partition of (n — fe), o e H^, a = 
= A(a, e). We define an (r(X). r'[ri)) x (r X). r(/x)) matrix 

p*,XMa) = J ( - 1 ) ^ " J -"'(-i) ® - " f e ) for Q e S„,fc 
w (0 otherwise 

where ® denotes the Kronecker product of matrices and Qt e Sk, Q2 e S„_fc are the 
permutations which correspond to Q e S„ t in the sense mentioned above. 

Further we define a representation Mk,x''x of Hn for every g e Hn as 

M^»(g) = (Pk^(v(rA). g . v(rB)))Am) ; 

the matrix on the right hand side is written in the block form. 

1.1. Theorem. Let us denote A(n) = {(fe, X, /J): k = 0, . . . , n, X is a partition of fe, 
pi is a partition of (n — fe)}. Then {Ma; aeA(n)} is a complete set of irreducible 
representations of the hyperoctaedral group Hn and every representation in this set 
is orthogonal. 

Proof. The statement follows from the application of Clifford's theorem mentioned 
above - cf. [1], 1.11. • • 

1.2. Remark. We denote through d(a) the dimension of the representation Ma. 
From the preceding theorem it follows that, for every a, be A(n). every j , k = 
= 1, ..., d(a) and every s, t = 1, . . . , d(b), the relation 

777T Z mUd) mbt(g) = 77-T KbdjAt 
\Hn\ gsH„ dyO) 

holds - cf..[7], Chap. V. 20. 
Symbols Z, R will denote the sets of all integers, reals (respectively). A subset M 

of R" we say to be Hn-invariant if, for every (column vector) x e M and every g e Hn, 
it is gxeM. 

Let M be an H„-invariant subset of R". A function / which is defined on M we say 
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to be H„-invariant if it isj(gx) = f(x) for every xe M and every g e H„. A measure m 
defined on the sigma-algebra 38(M) of all Borel subsets of M we say to be H„-invariant 
if, for every g e H„ and every A e 3§(M), m(gA) = m(A) where gA = {ox: x e A}. 

Let us denote 

I" = {xe R": - i S x} = \ for all j = 1,...,«} , 

R„ = {x e ff": 0 ^ x t g ... ^ x„ ^ i} . 

1.3. Lemma. Let P be an ff„-invariant probability measure defined on &(I"). Then 
there exists a unique probability measure Q defined on &(R„) such that, for every 
(Borel) measurable bounded function / on I", it holds 

(1) f / W ^ ) ^ I f /(*r)dQ(r). 
Ji» III«I ^H»Jl?„ 

Proof. According to [2] every ff„-invariant probability measure is represented 
by means of ff„-ergodic measures. In order to complete the proof it is sufficient 
to take into account the one-to-one correspondence between ff„-ergodic measures 
and points of R„. In fact, if we denote Mr = {gr: g e ff„} for every r e R„, the corre­
sponding ff„-ergodic measure mr is for every A e 83(1") defined as 

mr(A) = \Mr n A|/|Mr| . • 

Let j be a complex function defined on Z". We say j to be positive semidefinite if, 
for every positive integer m, every m-tuple of complex numbers cu ..., c„, and every 
m-tuple K1, ..., Km e I" the inequality 

t tcj.ct.f(KJ-K*) = 0 
j - l k = l 

holds (asterisk denotes the complex conjugate). 

1.4. Lemma. Let f be an ff„-invariant positive semidefinite function defined on I". 
There exists a unique ff„-invariant finite measure F on I" such that, for every K e I", 
it is 

(2) f(K)=[ ^^dF(t) 
J i" 

where <., . > denotes the usual scalar product, <x, y> = YjXjV}-
Proof. Let us denote J" = {teM": - \ < t} g \ for a l l j = 1, ..., n}. According 

to a generalized version of the Bochner theorem (cf. [7]) there exists a unique measure 
G on J" such that 

f(K) = f e 2 * 1 ^^ dG(t) 
Jj" 

holds for every K e Z". We define a measure Q on I" as Q(A) = G(A n J") for every 
A e @{I") and, for every g e ff„, a measure Qg as Qg(A) = Q(gA). Then F = (l/|ff„|) . 
• Z Qg is a n ff„-invariant measure for which (2) holds. 
geH„ 
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In order to prove the uniqueness of E we define a function mod: /" -» J"; for x el" 

we define y = mod (x) as 

U for x, = - * , 
J ' Xj otherwise , 

j = 1, ..., n. From this definition it follows that, for every ^-invariant set Ae 

e3S(l"), the equality A = m o d - 1 (mod(A)) holds. Let E1, E2 be H„-invariant 

measures on /" for which (2) is true. As e z is a 27ti-periodic function of a complex 

variable z, it is, for every Ke I" and ;' = 1, 2, 

f(K)= Г e ^ ^ d ^ m o d - 1 ) ^ ) 

where we have denoted (E ; mod" 1 ) (A) = E^mod-1^)) for every Ae J'(T). It 

is ^ m o d - 1 = E2mod_1 because the «-tuple Fourier coefficients of these two 

measures are the same (cf. [6], Thm. VII. 1.7). If it were E1 4= E2, Theorems 1 and 

3 in [6] would imply the existence of an /^.-invariant set A e 3S(I") for which E*(A) 4= 

E2(A). Equivalently, it would hold (E1 mod" 1 ) (mod(A)) = F\A) * E2(A) = 

= (E2 mod" 1 ) (mod (A)); that is, the contradiction E1 m o d - 1 4= E2 m o d - 1 would 

follow. • 

2. SPECTRAL REPRESENTATION OF STATIONARY WEAKLY 

ISOTROPIC RANDOM FIELDS 

We define a random field X on I" as a system of (generally complex) random 

variables, X = (X(K): Kel") - i.e. the index set is an ra-lattice I" - such that 

every random variable from X has zero mean and finite variance. 

A random field X on I" is stationary if there exists a covariance function B 

defined on Z" such that it is E{X(K) . Z(L)*} = B(K - L) for every K, L e I". A sta­

tionary random field X on I" is weakly isotropic if, for every g e H„ and every 

Kel", B(K) = B{gK) holds. From the definition of the hyperoctaedral group Hn 

it is easy to see that the condition 

for every distance-preserving transformation Ton Z" and 

every K,LeI" it is E{X(K)X(L)*} = E{Z(T(K))Z(TVL))*} 

is a necessary and sufficient one for the random field X to be weakly isotropic. 

For every a e A(n), j , k = 1, ..., dKa), Kel" and x e R" we define 

. \tin\ geH„ 

(cf. 1.1 and 1.2). The functions (e%: a e A(n), j , k = 1, ..., d(aj) we shall call general­

ized goniometric functions with regard to that for n = 1 these functions are cos Kx, 

i . sin Kx and some properties of functions (ejk) are similar to those of goniometric 

functions. 
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2.1. Lemma. For every Ke I", x e R", g e H„, a = (p, X, fi) e A(n) and j , k = I, ... 
..., d(a) the following assertions are true: 

0) e2*i<K'gx> = I d(«)™ fe%(K, x) m%(g), 
aeA(n) j= 1 k= 1 

d(a) 

(ii) e?fc(aK, x) = £ m? f » < t(K, x ) , 

(iii) e ; t ( K , a x ) = f < ( 0 ) e » / K , x ) , 
s = l 

(iv) Sd(«)ZE|e-t(K,x)P = l, 
aeA(n) s = l ( = l 

(v) e ^ ' ^ K , x) is real for p even and purely imaginary for p odd. 
Proof. The assertions (i) — (iv) follow from the definitions of generalized gonio-

metric functions and of the representations M" (cf. 1.2). 
Let us prove the assertion (v). We denote through £ the n x n unit matrix. It is 

( — £) e H„ and from the definition of M" the relation 

ma(-E)-\ 5jk f ° r P e V e " mA E>-\-5Jk for p odd 

follows. Obviously ea
k(K, x)* = ea

k(-K, x); so putting g = - £ in (ii) we obtain 

e" (K »> - J e^(K'x) f o r -f e v e n 

e * ^ « x ; {_e« t(K,x) for p odd. • 

The generalized goniometric function e(0'(0)'(n)\ which corresponds to the unit 
representation M ( 0 ' ( 0 ) ' ( n ) ) of H„, we shall denote shortly e1. Taking into account 
the relation 2 cos x = eix + e~'x we see that 

«I(K> x) = - z n c ° s (2KKJXM)) 
nl eeS„ j = \ 

holds for every Ke Z", x e R". 

2.2. Theorem. Let B be a covariance function of a stationary weakly isotropic 
random field on Z". Then there exists exactly one finite measure S on R„ such that 
it is 

(3) B{K)= f e,(K,r)dS(r) 

for every K e 1". 
Proof follows immediately from 1.3 and 1.4 because a covariance function is 

positive semidefinite. • 

The relation (3) is called the spectral representation of the covariance function B 
and the measure S in (3) we call the spectral measure of B. 

Let (D, 3), £,) be a finite measure space. Further let there be given, for every ; = 
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= 1, . . . , p and every C e ® , a random variable Zj{C) with zero mean and finite 
variance and suppose, for every j,k = 1, ..., p and every Cu C2 e 2), the relation 
E{ZXci) • Zk(c2)*} = Sjk. £(C, n C2) to hold. Then we say that a finite orthogonal 
system Z = (Zu ..., Zp) of random measures on D consistent with the measure t 
is given. 

If there is given a random measure Z cosnistent with the measure £, (i.e. if it is 
p = 1 in the situation considered above) then it is possible to define, for any function 
j which is square integrable with respect to £, a stochastic integral J D jdZ - the in­
tegral is understood in the square mean sense, for details cf. e.g. [3], Chap. IV. 5. 

2.3. Theorem. Let X be a stationary weakly isotropic random field on Z" with the 
spectral measure S on R„. Then there exists a finite orthogonal system Z = (Z"k: 
a e A(n), j , k = 1, ..., d(a)) of random measures on R" consistent with S such that, 
for every K e Z", it holds 

(4) X(K) = £ (d(a)y'2l £ f e°jk(K, r) d Z » . 
aeA(n) j = Hc = lJRn 

Proof. Let K, L e I". With regard to 2.2 we may write 

E{X(K). X(L)*} = B(K-L) = ~ £ f e
2Ki<K-L'<"> dS(r) . 

\H,\ 9^Hn}Rn 

Substituting for e2*l<K<er> and e27ti<L'sr> according to 2.1. (i) and taking into account 
Remark 2.1, we obtain 

d(.a) d(a) c 

E{X(K).X(L)*}= Zd(a)Z I 4 ( K , r ) 4 ( L , r ) * d S ( r ) • 
asA(n) j = 1 k = 1 J Rn 

and the assertion of the theorem follows from the Karhunen theorem (cf. e.g. [3], 
Chap. IV. 5). In fact, let us denote y the "counting" measure on T = {(«,j, k): 
aeA(n),j, k = 1, ..., d(a)}. Then, by the Karhunen theorem referred to, a random 
measure [ on F x jR„ corresponds to the product measure y x S on r x R„ such 
that Z%(C) = {((a, j,k)x C). • 

The relation (4) we call the spectral representation of the stationary weakly 
isotropic random field X. 

3. TEST OF WEAK ISOTROPY 

The random measures which occur in the spectral representation (4) are mutually 
orthogonal, i.e. uncorrelated. This property characterizes stationary weakly isotropic 
random fields in the class of stationary random fields and will be used to derive 
a test of weak isotropy for a stationary random field on the base of values observed 
in some finite region of indices. 
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For the sake of simplicity, we suppose the stationary random field in question 
to be Gaussian and to have an exponential decay of covariances. 

A stationary randon field X on Z" we say to be Gaussian if all random variables 
in X are real and, for every positive integer m and every m-tuple of indices K1,..., Km, 
the random vector (X(KX), ...,X(K"')) is Gaussian with zero mean and variance 
matrix (B(KJ — Kk))jJt = 1 where B is the covariance function of K. 

A function b defined on Z" fulfils the condition of exponential decay if 

(5) there exist M > 0, 6 > 0 such that, for every Ke I", 

b(K) < M . exp {-e . £ \Kj\) holds . 
J = I 

3.1. Lemma. Let b be a nonvanishing complex function on Z" which fulfils the 
condition of exponential decay. We define a function <p on J" = {x e R": —\ < Xj ^ 
< i for all) = 1, ..., n} as 

<p(x) = ZKK).e^<K'*> 
K 

where K runs over I". Then the n-dimensional Lebesgue measure Ln of the set 
N = {xe J": (p(x) = 0} is zero. 

Proof. It is sufficient to prove 

(6) from L„(N) > 0 it follows b = 0, i.e. b(K) = 0 for all KeZ". 

The proof of (6) we shall carry out by induction with respect to n. 
1) For n = 1 it follows from (5) that the complex function <p of the complex 

variable z which is defined m 

* , ) - £*(*).-* 
fc= - 00 

is holomorphic in the domain U = {z: e~£ < |z| < e8}. If the L„ measure of N = 
= {x e J: (p(e2n'*) = 0} is positive, then the set JV = {27iix: xeN} has a cluster 
point in U which implies <p = 0 on U. 

2) Let n ^ 2 and (6) hold for n - 1 . Ln(N) > 0 implies L^^M) > 0 where 
M = { t e J " - 1 : Z . 1 ( N t ) > 0 } , Nt = {y e J)(p(t, y) = 0}. For kel, teJ"'1 we 
denote 

c(/c, t) = Y>(K, /t). #*<«*> 
K 

where Kruns over Z"_ 1 . From (5) 

\c(k,t)\^M(1 + e~^"~1--^ 
J - e" 

follows. As <p(t, >>) = £ e2""'5'. c(/c, t), it is (cf. 1)) c(k, t) = 0 for every fceZand 

the induction assumption implies b = 0. Q 

Let us denote, for every x e J", 

(7) /(x) = XB(K).e-2"i<^> 
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where K runs over Z". If B fulfils the condition of exponential decay (5), the last sum 
converges a n d / i s bounded and continuous. The function/is called spectral density 
of the stationary random field X, whose covariance function is B, because (7) implies, 
for every Ke Z". 

ß (K)= f e2 я i< к '*>/(x)dx. 

The measure whose Radon-Nikodym derivative with respect to n-dimensional 
Lebesgue measure is / is denoted E. 

From the Karhunen theorem it follows that there exists a random measure Z 
on J" consistent with E such that, for every K e Z", it is 

(8) X(K) = f e2*i<K-*> d Z x ) . [/•'<•" 
3.2. Lemma. Let Z be the random measure which corresponds, by means of (8), 

to a stationary field X on Z" with exponential decay of covariances. Then, for every 
Borel subset C of J", 

(9) Z(C) = YX(K) f 
к Jc 

dx 

holds where K runs over Z" and the sum is understood in the square mean sense. 
Proof. For y e J" we define 

for y e C , 
otherwise . ic(y) = {i 

As J c e-
2ni<K.*> dx, K e Z", are n-tuple Fourier coefficients of l c , the relation 

£c2*i<K..> f e-2,i<K,x> d x = ^ 
K Jc 

holds; the convergence is understood in the square mean sense with respect to the 
n-dimensional Lebesgue measure. The sum converges in the square mean also 
with respect to E because the spectral density / is bounded. Therefore (9) follows 
from substitution for X(K) from (8) to (9) with respect to that, for a random measure 
W consistent with a measure £,, l.i.m. [q>m dW = fa dWis equivalent to l.i.m. <pm = q> 

with respect to tj (cf. [3], Chap. IV. 5). • 

Let <g = (CU..., CQ) be a partition of the set Rn = {x e R": 0 ^ xx ^ ... S x„ ^ 
^ i } . We say ^ to be a regular partition if every C e & is a Borel subset of R„ and 
the n-dimensional Lebesgue measure of C is positive. 

For a regular partition ^ of R„, we say a stationary random field X with a spectral 
density/ to be 'g'-isotropic if, for every C e ^ and every g e H„, it is 

(10) f / ( x ) d x = f / ( x ) d x . 
Jc J9C 
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For a fine regular partition <$, i.e. a partition which consists of a "large number 
of small sets", the notion of 'g'-isotropy is near to that of weak isotropy because 
the weak isotropy is equivalent to holding of (10) for every Borel subset C of R„. 

So we are going to derive a test of <<?-isotropy instead of that of weak isotropy. 
For this purpose we define, for a e A(n), j , k = \,...,d(a), KeZ" and xef i " , 

the function 

(ii) E;/K,X) = | . e"4^x\ for e"^x^ real> 
v ' Jk^ ' [-1 .e"k(K,x) otherwise. 

According to 2.1. (v), the function s"k is real. Further we define, for the given Gaussian 
stationary random field X on Z" with exponential decay of covariances, 

(12) C%(C) = (d(a)Y>2 pT(K) f 4 ( K , x) dx 
K JC 

where K runs over Z" and C is a Borel subset of R„. The last sum converges in the 
square mean sense with regard to Lemma 3.2. As the field X is supposed to be Gaus­
sian, the random vector C(C) = (C"k(C): a e A(n), j , k = 1, ..., d(a)) is Gaussian. 

3.3. Lemma. Let % = [Cu ..., CQ) be a regular partition of R„ and C(C), CeV, 
be the random vectors defined above. Then 

(i) all the random vectors C(Ci)> • • •, C(Cg) a r e mutually (stochastically) independent, 
(ii) the field X is ^-isotropic if and only if, for every C e c€, all the components 

of the random vector C(C) are mutually independent, 
(iii) if the field Xis 'g'-isotropic, the variance of the random variable C%(C) is positive 

for every C e <£, ae A(n), j , k; = 1, ..., dKa). 
Proof. The relations (11), (12) and the definition of generalized goniometric 

functions yield 

(13) (,%(C) = y(a) { M ^ X ™%(9) • Z{gC) 
\Hn\ geH„ 

where 
, \ _ fl for a = (p, X, ii), p even 

A a ! ~ {i for a = (p, X,fi), p odd 

and Z corresponds to X by means of (8). 

If C, D e <€, C =|= D, then obviously gC, hD are disjoint for all g, h e H„ because 
for r, s £ R„, r 4= s, the sets {gr: g e H„) and {gs: g e H„} are disjoint (cf. the proof 
of Lemma 1.3); from that (i) follows. In fact, values of Z for disjoint sets are uncorrel-
ated and the joint distribution of C(C), C e c6, is Gaussian. 

Using (13) we for every Ce 1 ^ calculate 

(14) E{CUC) C(C)} - y(a) y(bf M ^ ) T E m%{g) m»M F(gC). 
L n J gsH„ 

In case X is ^"-isotropic, it is F(gC) = F(C) for every g e H„, and the last relation 
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can be simplified according to 1.2 as 

f7!^) for a = b,j = s,k = t, 
E{^(C)£,(C)}= |ff„| 

(0 otherwise. 

That is, under the 'g'-isotropy the components of the vector £(C) are, for every C e ^ , 
mutually independent and they have positive variances because ^ is a regular parti­
tion which, according to Lemma 3.1, implies F(C) > 0 for every C e #. 

On the other hand, let, for a set C e ci, the components of £(C) be mutually inde­
pendent. According to [7], Chap. V. 22 we may write, for every g e ff„, 

(15) F(gC) = £ d(W)f ^F^C). m:v(g) 
weA(n) « = l l > = - l 

where the coefficients E,7„(C) are uniquely determined. Let us substitute, according 
to (15), on the right hand side of (14) and put a = (0, (0), (n)) there. It is d(a) = 1, 
m"(g) = 1 for all g e ff„, and y(a) = 1. So, for every b e A(n) and every s, t = 1, ... 
..,d(b), 

E{nC) {*(C)} = y(bf W ^ £ mb,(g) £ d(w) £ I m^g) F&gC). 
\HJ geH„ w u v 

The right hand side of the last relation equals, with respect to 1.2, to y(b)* . (d(b))112 . 
. Fb

t(C)l\H„\ and the left hand one is supposed to be zero for b =# a. Therefore it is 
FbJ(C) = 0 for b 4= « and (15) yields F(C) = F(gC) for every g e ff„. • 

The last lemma transforms the problem of testing <<?-isotTopy onto that of testing 

mutual independence of the components of the vectors £(C)> C e ^ . As variances 

of these components are unknown, we use a nonparametric chi-square goodness 

of fit test. 

For a real x we define 
for x g 0 , 
for x > 0 . •м - {; 

Let y = (Yj, ..., Ym) be a Gaussian random vector with zero mean. We denote 
<P(Y) = (<£(Yi), ..., <P(Y„,)). It is easy to prove that <P(Y) is uniformly distributed 
on {0, 1}'" if and only if the components of y are mutually independent and their 
variances are positive. 

Now we are able to formulate a test of the hypothesis 

(H) stationary random field X is weakly isotropic 

on the base of values X(K) observed in a finite (sufficiently large) region JT. More 
exactly, we assume the field X to be Gaussian stationary with exponential decay 
of covariances and we are testing, for some fine regular partition # = (C1;..., CG) 
of Rn, ^-isotropy instead of weak isotropy. 
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Let us denote h = |j_„| = 2". n!, / = 2ft - 1 and, for C e (€, 

qk(C,^) = (d(a)Y'^X(K)\ sUK,r)dr 
K JC 

where K runs over Jf. For every a e {0, l}h we define T^, X ) to be the number 

of those C e <ti for which $(£(C, Jf)) = a where £ = (<^). Then the statistic 

n*. *") - —-11 ( w *") - ~^)2 

where a runs over {0, 1}* has asymptotically (for Jf -> I", Q -» oo) the distribution 

That is, the hypothesis (H) is rejected on p % level of significance if the value 

of T(V, Jf) exceeds the p % critical value of %2
f distribution. 

(Received May 31, 1985.) 
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