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K Y B E R N E T I K A — V O L U M E 32 ( 1 9 9 6 ) , N U M B E R 6, P A G E S 6 2 5 - 6 4 4 

ON THE ANALYSIS OF PERIODIC LINEAR SYSTEMS1 

ANTONIO TORNAMBĚ 

In this paper, both discrete-time and continuous-time periodic linear systems are analy­
sed and discussed. The concepts of eigenvalue, eigenvector, characteristic multiplier, steady-
state response, and of blocking zero are stated in a unique framework for both classes of 
systems. 

1. INTRODUCTION AND NOTATION 

The interest of considering periodic linear systems is motivated by the large variety of 
processes that can be modelled by (difference or differential) linear equations with 
periodic coefficients (see, e.g., [1,2,10,28,29,31,33] for the continuous-time ones 
and see [3,7,8,11,12,20,21,22,23,32] for the discrete-time ones). A control theory 
is developing for periodic linear systems, and contributions on several control prob­
lems have been given, including eigenvalue assignment, state and output dead-beat 
control, disturbance localisation, model matching, robust tracking and regulation, 
block decoupling, and adaptive control [6,13,14,15,16,17,18,19,25,26,27,30,34]. 

The aim of this paper is to express in a unique framework the concepts of eigen­
value, eigenvector, characteristic multiplier, steady-state response, and of blocking 
zero both for continuos time and discrete-time linear systems. 

The class of the linear periodic systems of period u> (briefly, w-periodic) that are 
considered in this paper, is described by: 

Ax(t) = A(t)x(t) + B(t)u(t), (1.1) 
y(t) = C(t)x(t) + D(t)u(t), (1.2) 

where A is either the differentiation operator (i.e., the operator such that Ax(t) = 
XS ' , < 6 1 ) or the one-step forward-shift operator (i.e., the operator such that 

Ax(t) = x(t + 1), t e 7L), t e T, T = 1 if A is the differentiation operator or 
T = % if A is the one-step forward-shift operator, w G T, w > 0, x(t) £ E n is the 
state, u(t) G M.p is the control input, y(t) £ E9 is the output to be controlled (which 
is assumed to be measured), and A(-), B(), C(-), D() are real matrices that are 
u>-periodic [continuous, if T = E] functions of t £ T. 

1 This work was supported by Ministero Universita Ricerca Scientifica Tecnologica 
(ex 60% funds). 
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2. ANALYSIS OF w-PERIODIC HOMOGENEOUS LINEAR SYSTEMS 

Consider an u>-periodic homogeneous linear system described by the following equa­
tion: 

Ax(t) = A(t)x(t). (2.1) 

Definition 1. (See [24] for the case T = 1 and t0 = 0.) A complex Ato is an 
eigenvalue at the initial time t0 G T of the w-periodic matrix A(t) if and only if 
there exists an o;-periodic [differentiable with respect to t € T, if T = M] vector 
function vto(-) G Cn of t G T, ?;to(i) -* 0 for all t G T, which is referred to as a 
right eigenvector at the initial time t0 of A(t), such that the vector function £t0(-) 
of £ G T, defined as follows 

c m = f ^WeA <° ( {" t o ) , ViGT, *>t 0 , ifT = l , 
C < o U - I ^0(^)A(

o-to), VfGT, t > t0, if r = z, l ' j 

is solution of (2.1) from the initial time t = t0; such a vector function &„(•) is called 
an eigensolution at the initial timet0 of (2.1) with eigenvalue Afo. 

Since [0,w] is a closed interval [and vto(-) is a continuous vector function of t 6 T, 
if T = E], then the following relation holds: 

*€[0,w] 

whence 

I60(*)l < t)ere[A*oK*-to)j Vt GT, i > t0, if T = M, 

\Ct0(t)\ < v(\\to\)(t-t°), v t e r , <>*o, i f r = z. 

The following lemma is classical (see, e.g., [24]). 

Lemma 1. System (2.1) is exponentially stable if and only if all the eigenvalues at 
the initial time t0 G T of matrix A(t) have negative real part if T = 1 , or modulus 
smaller than 1 if T = Z, for all <o G T. 

The following lemmas can be easily stated and proved. 

Lemma 2. (See [24] for the case T = 1 and t0 = 0.) Let vto(-) G C" be an 
^-periodic vector function of t £ T [which is assumed to be differentiable, if T = M), 
different from the zero vector for all t £T. Then, vto(t) is a right eigenvector at the 
initial time t0 G T of A(tf) with eigenvalue Xto G C at the initial time i0 g T if and 
only if the following relations hold: 

t>ťo(ť) = [ ^ W - A ^ W ť ) , V/GT, / > ť 0 ! ifT = M, (2.3) 

ť + 1 ) = —A(t)vt0(t), VťGT, ť > ť 0 , ifT = Z )A ť o 5éO, (2.4) 

0 = 4 o ) « J * o + M . V/.GZ, ifT = Z,Aťo = 0. (2.5) 
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P r o o f . (Necessity) If the vector function 60( ') of i £ T defined in (2.2) is 
solution of (2.1) from the initial time t = t0 £ T, then the following relations hold 

Vt0(t) eA«oC'-*o) + XfoVto(4) e A, 0 ( t - .o ) = A{t) ^ ( t ) e A . 0 ( t - t 0 ) ) 

V * £ T , < > t 0 , i fT = l , (2.6) 

«•.(< +1) ^ " ^ = A(<) Mt) Ag"^, 
V i G T , <>< 0 ) i fT = Z. (2.7) 

Relation (2.3) is obtained from (2.6), taking into account that eA'o(t-<o) ^ Q for 
all t € M. For Alo / 0, relation (2.4) is obtained from (2.7), taking into account that 
A(t-to) _£ 0 for a l l t £ ^ F o r ^ _ Q) r e l a t i o n (2.5) is obtained from (2.7), by the 

w-periodicity of vto(-), taking into account that A^ °̂  = 0 and \\ ~ o) = 1 for 
t = t0. 

(Sufficiency) If the non-zero cj-periodic [differentiable, if T = 3E] vector function 
vto(-) of t € T satisfies (2.3)-(2.5) (with t>to(0 that is arbitrarily chosen different 
from the zero vector for alH £ T, t ^ t0 + hui, if T = Z. and A*0 = 0), then relations 
(2.6), (2.7) hold, whence &„(<) defined in (2.2) is solution of (2.1) from the initial 
time t = to € T. 

Remark 1. By Lemma 2, in the cases T = M. and T = 7L, A*0 -£ 0, a solution 
*,o(0 of (2.3) (if T = 1) , or of (2.4) (if T = Z, A*0 / 0), is a right eigenvector at 
the initial time 2o £ T of A(t) with eigenvalue Xto if and only if it is an w-periodic 
function of t € T different from the zero vector for all tf € T. 

Lemma 3. Let vto(0 £ Cn be a right eigenvector at the initial time t0 £ T of 
A(t). Then, the value Ato £ C such that (2.3) (if T = K), or (2.4) (if T = Z and 
Ato ^ 0), or (2.5) (if T = Z and A<0 = 0), hold, is uniquely determined. 

P r o o f . Consider the case T = HL Suppose there exists two values Aj0 £ C and 
Aio £ C such that (2.3) holds with Xto = Xto and Ato = Ato. Then, by subtraction 
one obtains: 

[A*--**.] <*.(-) = 0, V t e R . (2.8) 

Since vto(0 ^ 0 for all < £ R, equation (2.8) implies Aio = A<0, as was to be 
proved. 

Consider the case T = 7L. Suppose there exist two values At0 £ C, Xto ^ 0, and 
Ato £ C, A<0 -* 0, such that (2.4) holds with Xto = Xto and Xto = A«0, i.e., such that 

X,0i*0(t + 1) = A(t)vt0(t), Vt~Z, (2.9) 

W + l) = -4(0 «*„(<). V t G Z . (2-10) 

By subtracting (2.9) from (2.10), one obtains 

[~xto-xto]vto(t + i) = o, vtez. (2.ii) 
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Since vto(t) ^ 0 for all t G 7L, the equation (2.11) implies Alo = Xto, as was to be 
proved. 

Finally, by absurd, suppose that (2.4) and (2.5) hold, with Xto ̂  0. Replacing in 
(2.4) t by to, and in (2.5) h by 0, one obtains the following relations 

w.0(<o + l) = —A(t0)vto(t0), 
Mo 

0 = A(to)vto(to), 

which imply vto(to + 1) = 0, in contradiction with the hypothesis that vto(t) ^ 
0, VteT. • 

Lemma 4. Let vto(-) G Cn be an w-periodic vector function off € T [which is 
assumed to be differentiable, if T = 1], solution of (2.3) (if T = E) or of (2.4) (if 
T = 7L and Xto ^ 0), from the initial time t = t0 £T. If vto(t) is different from the 
zero vector for some t = t 6 T, then it is different from the zero vector for all t G T. 

P r o o f . The lemma is proved by showing that if vto(t) is equal to the zero vector 
for some t = t G T, then vto(t) is equal to the zero vector for t = t, that is a 
contradiction of the hypothesis of the lemma. By (2.3) (if T = E), or by (2.4) (if 
T = 7L and Xto ^ 0), if vto(t) is equal to the zero vector for t = t, then it is equal to 
the zero vector for all t > t, whence for t = t+ku>, for some k G Z such that t+ku) > t. 
The proof follows by the o;-periodicity of vto(-) that implies vto(t) = vto(t-\-ku)) = 0. 

• 

Let &(t, T, Xto), t,T G T, be the state transition matrix of (2.3) (if T = IR) or of 
(2.4) (if T = Z and At0 / 0), i.e., a matrix such that: 

^ ( t , r, A<0) = [A(t) - AtoJ] *(t, T, Xto), Vt, r G T, t > r, if T = 1 , (2.12) 

$(t + 1, r, A*0) = -—^(<) $( . , r, Ato), Vt, r G T, i > r, if T = Z, Alo 9- 0,(2.13) 
M0 

$(T,T,Xt0) = I, VTET. (2.14) 

By the cj-periodicity of A(-), it is stressed that 

$(t + UJ,T + U>, Xt0) = $(t, T, Xto), V f . r e T , t>T. (2.15) 

The following lemma gives conditions for a complex Xto to be an eigenvalue at 
the initial time t0 G T of A(t), in the cases T = 1 , and T = TL, Xto ^ 0. 

Lemma 5. (See [24] for the case T = E and t0 = 0.) In the case T = 1 , or T = Z 
and A<0 ^ 0, the complex At0 is an eigenvalue at the initial time to G T of A(t) if 
and only if the following relation holds: 

det[$(to+uj,to,Xto)-I) = 0. (2.16) 
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P r o o f . (Sufficiency) By Lemma 2, number Ato G C is an eigenvalue at the 
initial time t0 £ T of A(t) if and only if there exists an w-periodic [differentiable, if 
T = 1] vector function vto(-) G Cn of t G T, v*0(<) ^ 0 for all * G T, such that (2.3) 
holds (if T = E), or (2.4) holds (if T = 1 and Ato / 0). Any solution of (2.3) (if 
T = E), or of (2.4) (if T = 1 and Ato / 0), can be written as follows: 

vto(t) = $(t,t0,\to)vto(t0), Vt€T,t>t0. (2.17) 

One can replace in (2.17) t by t + u>, to obtain (by virtue of (2.15)) 

vto(t+u)) = $(t + u!,tQ,\to)vto(to) 

= $(t + U>,tQ + UJ, \to) $(t0 +u>,t0, \to) vto(t0) 

= $(t,t0,\to)4>(t0+u>,t0,\to)vto(t0), Vt£T,t>t0. (2.18) 

If (2.16) holds, then there exists a vector vto(t0) / 0 such that 

$(t0+cj,to,\to)vto(t0) = vto(t0). (2.19) 

Taking into account (2.19), equation (2.18) becomes 

vto(t + ui) = $(t,t0,\to)vtQ(t0) 
= vto(t), VteT, t>tQ. (2.20) 

The w-periodicity of vto(-) implied by (2.20), and the property that vto(t) ^ 0, for 
all t ET, implied by vto(t0) ^ 0 and by Lemma 4, prove the sufficiency of condition 
(2.16). 

(Necessity) If the solution vto(t) E Cn, vto(t) -.. 0 for all t G T, of (2.3) (if T = 1) , 
or of (2.4) (if T = % and \to ^ 0), is ^-periodic, then by replacing in (2-17) t by 
t0 + ui, one obtains 

^o(*o) = $(t0+Lu,t0,\to)vto(t0), 

with vto(t0) ^ 0, which implies the necessity of condition (2.16). • 

Example 1. Consider the following w-periodic system of the form (2.1): 

Ax(t) = a (l - cos f—Y\ x(t), (2.21) 

where a is a suitable real. For system (2.21), equations (2.3), (2.4) (with \to ^ 0 if 
T = Z) take the following form, respectively, 

<(t) = (a-\t0-acos(^))vt0(t), ifT = l, (2.22) 

vt0(t + l) = T ^ 1 - 0 0 8 ^ ) ) ^ ) , i fT = Z. (2.23) 
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The s tate transition functions $(t,T, \t0) of (2.22) and (2.23) are, respectively, 

# ( t , r ,A< 0 ) = exp ((a-\to)(t-T)-~ (sin (-?-) - s i n f - ^ j j j , 

t,T£T, t>T, i f T = l , (2.24) 

t-T t - 1 

*fc* -̂(è)'П (---(?)) V U) ) J 
h = T V \ / / 

t,TET, t>T, HT = 7L. (2.25) 

From (2.24), (2.25), one can compute the state transition functions $(to+uj, to, \t0) 

of (2.22) and (2.23) over the period [to,t0 + u) (in the case T = 7L, for the integer 

h E [<0)*o + w ) t h a t is multiple of a;, one has 1 — cos(^-!^) = 0): 

*(-o-rw,<o,A t o ) = e x p ( ( a - A t » , i f T = l , (2.26) 

$(to+u>,t0,\t0) = 0, i f T = Z. (2.27) 

In the case T = E, through (2.26) one can see t h a t the only real Ato such t h a t 
(2.16) holds, is At0 = a; relation (2.16) is also satisfied by the complex number 
Ato = a + j-J--, for all/i £ Z. 

In the case T = Z, through (2.27) one can see tha t (2.16) is not satisfied for all 
complex numbers At0 - ^ 0 ; system (2.21) may have only the eigenvalue \to = 0 . 

In the case T = M, a real w-periodic solution of (2.22) with A<0 = a is 

vt0(t) = exp ( - ^ (sin ( - £ - ) - sin ( ^ ) j ) M * o ) 

for all ^o(^o) 6 1 . 

Let &(t,T), t,T 6 T, be the state transition matr ix of (2.1), i.e., a matr ix such 
that : 

A$(t,T) = A(t)$(t,T), \/t,TET,t>r, (2.28) 

$ ( r , r ) = 7, VT£T. (2.29) 

By the cj-periodicity of A(-), it is stressed that 

$ ( t + w, r + u>) = <!>(t, T), Vt,T£T, t> T. (2.30) 

L e m m a 6. In the case T = E, or T = Z, \to ^ 0, the state transition matrices 

<$(2, r, Ato) and <!>(£, r ) satisfy the following relations: 

fc(-.r.At0) = $ ( * , r ) e - A < o ( < - ) , Vt,T£T, t > T, if T = ffi, (2.31) 

$ ( t . r . A t o ) = $ ( * , r ) A - ( t - r ) , V * , r G T , t > r, if T = Z, A.„ / 0. (2.32) 

P r o o f . By virtue of (2.14) and (2.29), a simple substitution shows that (2.31) 
and (2.32) hold for t = r . 
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Consider the case T = M. One can take the time derivative of both sides of (2.31), 
to obtain (by virtue of (2.28)) 

i * ( « f r , A « 0 ) = e-x<o(t-T)^(t,T)-\to<!>(t,T)e-x<o(t-r) 

= A(t) e - ^ ' - ^ f f , T) - \to$(t, T) e-
A«°(*-r) 

= [A(t)-\toI]$(t,T,\to), V i , r G l , t>T, 

as was to be shown on the basis of (2.12). 
Consider now the case T = Z, \to / 0. One can replace t by t + 1 in both sides 

of (2.32) to obtain (by virtue of (2.28)) 

$(t-rl,T,\t0) = < D ( * + l , r ) A - ( ť + 1 - T ) 

= J_A(*)*(t,r)A-(t-r) 

At0 

= —A(t)$(t + l,T,\to), V . , r € Z , - > r , 

as was to be shown on the basis of (2.13). • 

Remark 2. The analytic computation of <!>(£, r) is not an easy task, in general. 
For the case T = Z, the state transition matrix $(t, T) is simply given by: 

t - i 
<&(t,T)= Y[ A(9), V t , r GZ, t > r + 1. 

For the case T = Z, the state transition matrix <3>(t,r) can be simply computed 
when matrices A(t) and f A(9)d9 commute for all t, r £ K, / > r, in the matrix 
product (see, e.g., [5]), i.e. when 

A(t) I A(9) d9= I A(9) d9A(t), V i , r e l , i > r; 

in such a case, one has 

Ф(ť,r) = exp ( í A( )d 

The following lemma gives conditions for a complex \to to be an eigenvalue at 
the initial time to £ T of A(t). 

Lemma 7. (See [9] for the case T = 7L.) The complex Ato is an eigenvalue at the 
initial time to 6 T of A(t) if and only if (only if, in the case T = 7L and A<0 = 0) the 
following relation holds: 

det[$(*o+w,*o)->7.oII=0> (2-33) 
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where r)to := eA'o" (if T = E) or r]to := A?o (if T = %). 

P r o o f . For T = Z and Ato = 0, the proof is trivial since (2.33) reduces to 
det[$(*0 + w,t0)] = 0, which is implied by (2.5) for h = 0, i.e., by detL4(t0)] = 0. 

For T = E, and for T = Z, Xto ^ 0, the lemma is proved by the following relations, 
which are yielded by (2.16) and (2.31), (2.32), taking into account that r)to ^ 0: 

0 = det[<l(*0 + u;,<o,A t o)-/] 

= det[$(f0 + o;,to)ryro
1-/] 

= i C d e t [ S ( * 0 + - M o ) - * „ - ] . (2-34) 

By virtue of (2.34), if T = 1 , or T = Z, Xto ^ 0, then r?to ^ 0 and therefore 
relation (2.16) implies, and is implied, by relation (2.33). • 

Definition 2. (See [24] for the case T = 1 , t0 = 0, and [9] for the case T = Z.) 
The polynomial 

Pto(rit0) :=det[<f>(t0 + u,t0)-ntoI} (2.35) 

is referred to as the characteristic polynomial at the initial time t0 of the cj-periodic 
matrix A(t), and the n roots r)to!i, i = 1, 2 , . . . , n, of pto(r)to) = 0 are referred to as 
the characteristic multipliers at the initial time t0 of A(t). 

Lemma 8. (See [9] for the case T = Z.) The characteristic multipliers at the 
initial time t0 of the a;-periodic matrix A(t) are independent of the initial time t0. 

P r o o f . Consider the case T = E, and T = Z, Xto ^ 0. If nto is a characteristic 
multiplier at the initial time t0 of matrix A(t), then equation (2.33) implies the 
existence of a nonzero vector vto(t0) such that 

[$(t0 +u,to) - VtoI\vto(t0) = 0. (2.36) 

The solution vto(t) of (2.3) (if T = E), or of (2.4) (if T = 7L, \to £ 0), from the 
initial time t = to and such an initial condition vto(t0) is a right eigenvector at the 
initial time t0 of A(t) with characteristic multiplier r)to. 

For any t\ 6 T, t\ > t0, one can left multiply (2.36) by matrix $(t\ +u;,t0 +UJ), 
to obtain (by virtue of (2.30)) 

0 = mtl+u,to)-Vt0^(t1+u},to + to)}vto(t0) 
= [#(*! +U)t1)$(t1,to) - T]to$(ti,to)] vto(t0) 

= Mh + uM-VtoWi), (2.37) 

where v(ti) := $(ti,t0)vto(t0). If v(t\) ^ 0, then (2.37) implies that 

det[$(tl+u,t1)-r)toI] = 0, (2.38) 
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namely that r)to is a characteristic multiplier at the initial time ti of A(t), as to be 
shown. If T — HI, then ${t\,t0) is non-singular, whence vt0(to) 5- 0 implies t)(<i) 7̂  0. 
If T = _., 77i0 7̂  0, suppose, by absurd, that v(£i) = 0. Then, 

$(t1,t0)vto(t0) = 0. (2.39) 

From (2.39), one obtains 

______ 
vt0(ti) = 77<o " $(ti , t0)v.0(to) = 0 

which is a contradiction of the property that if r)to is a characteristic multiplier at 
the initial time t0 of matrix A(t), then the following vector function 

_ ' - t o 

*>.oC0 = Vt0
 w $(t,t0)vto(t0), tez, t>t0, 

is an eigenvector at the initial time t0 G T of -A(^), with characteristic multiplier r)to. 
Consider the case T = 7L, \to = 0. Since 

Ы - 1 

det[$(t0 + uj,t0)]= Y[det[A(k% Vť0 G Z, 
jfc = 0 

the property det[$(*0 + _>,f0)] = 0 for some t0 = i0 £ T implies that det[$(i0 + 
w,t0)] = 0 for all to G T, i.e., r)to = 0 is a characteristic multiplier of .A(2) at each 
ô G Z., as was to be shown. D 

Remark 3 . By the proof of Lemma 8, one has obtained the following properties. 
In the cases T = R, and T = Z, \to / 0, if \to is an eigenvalue at the initial time t0 

of A(t) for some t0 = t0 (z T, then it is an eigenvalue at the initial time t0 of A(t) 
for all t0 G T. In the case T = 7L, \to = 0, if \to = 0 is an eigenvalue at the initial 
time t0 G T of A(t) for some 20 = t0 _ T, the property that A*0 = 0 is an eigenvalue 
at the initial time t0 £ T of .4(2) for all t0 G T, is not necessarily true (the property 
det[A(/0)] = 0 for some t0 = t0 G T does not imply the property det[.A(/0)] = 0 for 
alH0 GT). 

Lemma 8 allows the following definition to be introduced. 

Definition 3. (See [24] for the case T = 1 , and [9] for the case T = Z.) The 
following polynomial 

p(rj) :=det[_>(w,0)-lyi] 

is referred to as the characteristic polynomial of the _>-periodic matrix A(t), and the 
n roots of p(r)) = 0 are referred to as the characteristic multipliers of A(t). 
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Example 2 . The characteristic polynomial of (2.21) is 

p(n) = eauj-r], i fT = E, 

p(n) = -n, \iT=1. 

The characteristic multipliers of (2.21) are 

T) = eaw, i f T = M, 

rj = 0, i fT = Z. 

3. ANALYSIS OF C J - P E R I O D I C INHOMOGENEOUS LINEAR SYSTEMS 

Consider an w-periodic inhomogeneous linear system described by the following 
equations 

Ax(t) = A(t)x(t) + B(t)u(t), (3.1) 

y(t) = C(t)x(t) + D(t)u(t). (3.2) 

Assumption 1. The complex number a G C (a / 0, if T = Z) is such that 
a := eauJ (if T = E), or a := aw (if T = Z), is not a characteristic multiplier of A(t). 

Definition 4. (See [4] for the case T = M. and a = 0.) Under Assumption 1, the 
vector function (t0(-) oft € T, which is defined as follows 

( st-We***-*), v<er, *>*„, ifT = m, 
CtoOO == < , w , , , 3.3 

[ zto(t)a<'-*°>. VZGT, *><„, i fT = Z, 

where t0 G 7L, zto(-) £ Cn is an a;-periodic [differentiable, if T = 3R] vector function 
of t £ T, is an exosolution at the initial time to of (3.1) if and only if it is the 
solution of (3.1) from the initial time t = to corresponding to the following input 
vector function 

f w(t) e ^ - ' o ) , V* € T, t>t0, if T = 1 , 
u(t) := ^ (3.4) 

[ ^(fja^-H v t e r , *>*0, ifr = z, 

where u>(-) £ Sp, and 5 P is a set of complex-valued w-periodic [continuous, if T = 
Z] p-dimensional vector functions of t G T; vector 2t0(tf) is referred to as a right 
exovector at the initial time to of (3.1) corresponding to the input vector function 
(3.4). 

Lemma 9. Let zto(-) G C" be an o;-periodic vector function of t G T [which is 
assumed to be differentiable, if T = E]. Then, under Assumption 1, the vector 
function Cto(') of / £ T defined in (3.3), is an exosolution at the initial time to G T 
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of (3.1) corresponding to the input vector function (3.4) if a n d o n i y if the following 
relations hold: 

zto(t) = [A(t) - al] zto(t) + B(t) w(t), Vi € T, t > tQ, if T = 1 , (3.5) 

zto(t + 1) = -A(t) zto(t) + -B(t) w(t), VteT, t> t0, if T = Z. (3.6) 
a a 

P r o o f . (Necessity) If the vector function Ct0(') of t £ T defined in (3.3) is the 
solution of (3.1) from the initial time t = to £ T corresponding to the input vector 
function (3.4), then the following relations hold 

zto(t) ea(t~t°) + azto(t) e a ^ " t o ) = A(t) zto(t) ea^-to) + B(t) w(t) ea^-to), 

W £ T , t >t0, if T = E, (3.7) 

zt0(t + 1) a(t+l-t°) = A(t) zt0(t) a^t-t°) + B(t) w(t) a^*), 

Vf £ T , t > t 0 , if T = Z. (3.8) 

Relation (3.5) is obtained from (3.7), taking into account that e a ( t _ t ° ) ^ 0 for 
all t 6 1R, while relation (3.6) is obtained from (3.8), taking into account that (by 
Assumption 1) a ^ _ t ° ) / 0 for all t € Z. 

(Sufficiency) If the w-periodic [differentiable, if T = IR] vector function zto(-) of 
t 6 T satisfies (3 .5 ) - (3 .6 ) , then relations (3.7), (3.8) hold, whence ( t o ( 0 defined in 
(3.3) is a solution of (3.1) from the initial time t = to G T corresponding to the input 
vector function (3.4). n 

It is now possible to state the following corollary to Lemma 9. 

Coro l lary 1. Under Assumption 1, a [differentiable, if T = IR] vector function 
zto(') G C n of t G T is a right exovector at the initial time to G T of (3.1) corre­
sponding to the input vector function (3.4), if and only if it is an w-periodic solution 
of (3.5), (3.6) from the initial time t = to. 

The following three lemmas specify the conditions under which a right exovector 
is unique, is independent of the initial time to G T, and exists. 

L e m m a 10 . Under Assumption 1, if there exists a right exovector zto(t) at the 
initial t ime t0 £ T of (3.1) corresponding to the input vector function (3.4), then it 
is uniquely determined. 

P r o o f . By absurd, suppose there exist two cj-periodic vector functions zto(-) and 
zto(-) of t £ T [which are assumed to be differentiable, if T = IR], such that (3.5), (3.6) 
hold with zto(-) = zto(-) and zto(-) = zto(-). By subtraction of the equations thus 
obtained, one obtains 

ito(t) = [A(t)-aT\zt0(t), V t € T , t>t0, i f T = l , (3.9) 

zt0(t + l) = -A(t)-zto(t), VtET,t>t0, HT = 7L, (3.10) 
a 
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where zto(t) := zto(t) - zto(t). Since, by Assumption 1, the complex number a is 
such that a = eauj (if T = E ) , or a = a w (if T = _ ) , is not a characteristic multiplier 
of A(t), Lemmas 2, 3 and 4 imply t h a t ~z~t0(t) = 0 for all t _ T. • 

L e m m a 1 1 . Under Assumption 1, if zt0(t) is a right exovector at the initial t ime 
t0 of (3.1) corresponding to the input vector function (3.4) for some t0 = i0 £ T, 
then it is a right exovector at the initial time t0 of (3.1) corresponding to the input 
vector function (3.4), for all t0 € T. 

P r o o f . By Lemma 9, equations (3.5),(3.6) hold for t0 = i0. Since, by Assump­
tion 1, e«( t - t°) ^ 0 for all t € T, t > t0 (if T = 1 ) , or _(*-*") -£ 0 for all t 6 T, t > t0 

(if T = _ ) , with t0 being an arbitrary element of T, one can multiply both sides 
of (3.5) rewritten with t0 = i0 for eQ r( t - t°), and both sides of (3.5) rewritten with 
*o = *o for a ( t - 1 ° ) . The resulting equations imply that the following vector function 

m . _ / **o(*)ea(t-H VteT, t>t0, i f T = l , 

\ **0(*)a<«-*»>. V i G T , ^ > i 0 ) i f T = „ , 

is a solution of (3.1) from the initial t ime t = t0 corresponding to the input vector 
function (3.4). The arbitrariness of t0 proves the lemma. • 

Lemmas 10 and 11 allow the term exovector to be used, instead of the term 
exovector at the initial time t0, to represent an u;-periodic solution of (3.5), (3.6), 
which (if any) is uniquely determined. From now on, subscript t0 will be omitted in 
the representation zto(t) of a right exovector. 

Under Assumption 1, the following relation: 

d e t [ _ - _(f + u;,<)0--1] = a-ndet[<rl- $(t+uj,t)] 

^ 0, VteT, 

where _ (t, T) is the state transition matr ix of (2.1), implies tha t matr ix [I — „ (t + 
u>,t)o--1] is non-singular for all t ET. 

L e m m a 12 . (See [4] for the case T = 1 and a = 0.) Under Assumption 1, the 

exovector z(t) of (3.1) corresponding to the input vector function (3.4) exists and is 

given by: 

z(t) = [I-^t + u^e-™]'1 

" ^(t-Tco,T)e-a(t+u'-^B(T)w(T)dT, i f T = f f i , (3.11) 
't 

z(t) = - [ _ - _ ( * + _,<)_' 
a 

í + w - l 
] Г Ф(t-rUJ,т)e-^t+ш-^B(т)w(т), i f T = _, (3.12) 

r-t 
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for all t £ T. 

P r o o f . Consider the case T = JR. Any solution of (3.5) can be written as follows 
for an arbitrary t0 £ E: 

-(*) = ^(t,t0)e-a(t-toh(t0) 

+ I $(t,T)e-<t-^B(T)w(T)dT, t£R,t>t0. (3.13) 
Jt0 

(Necessity) Assume that the vector function z(-) in (3.13) is w-periodic. Replac­
ing in (3.13) t by t0 +u>, and taking into account (by virtue of the hypotheses of the 
lemma) that matrix [I — $(u>, to)e~au] is non singular and that z(-) is an w-periodic 
vector function of t £ M, one obtains that the following relation 

Z(U+LO) = <f>(t0+LO,to)e-auJz(to) 

+ f° $(t0+uj,T)e-a(-to+"-r)B(T)w(T)dT, (3.14) 
Jt0 

implies condition (3.11) for t = to- The arbitrariness of to £ E completes the proof 
of the necessity. 

(Sufficiency) The following relations (which are obtained through (2.30), (3.11), 
and the u>-periodicity of w(-)) will be useful for the sufficiency proof: 

^(t + Lj^er^+^-^z^o) 

= $(t + u>,to+u) e-^-'0) $(t0 + W | to)e-aU) z(t0) 

= $(t + Lu,to+u)e-a(t-toh(t0) 

/

to+UJ 

<f>(t+u>,t0+ LO) $(<0 + w, r) e-a^+ w-T)H(r)w;(r) dr 

= $ ( t , t o ) e - ^ - t o ) 2 ( i 0 ) 

- f° ^(t+Lo,T)e~a(t+u'-^B(T)w(T)dT, (3.15) 
I*n 

/ Ф(ť -f- w, r) e- a( í + w- т )H(r)t í ; ( r ) dr 
Л0+w 

/ Ф(t + ш,т + ш) e - a ( ť - т ) H ( r + w) Ц r + ш) dт 
Л 0 

/ Ф ( ť . r ) e - a ( ť - т > Я ( r ) Ц r ) d r . (3.16) 
Л 0 

/ Ф(t + ш,т) e~a(t+ш-т^B(т)w(т) dт 
Л 0 
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V . " 

= [° " <f>(t+uj,T) e-<t+u,-T^B(T)w(T) dr 
J t0 

+ I $(^ + o; , r )e- a ( t + w - T )H ( r )u; ( r )dr 
Jto+W 

= f° $(t+uj,T) e-a(t+w-T^B(T)w(T) dr 
J to 

+ / *(i ,r)e- a(*-T>.B(r)ti ;(r)dr. (3.17) 
I*o 

One can replace in (3.13) t by t + w, to obtain 

*(*+cu) = $(t + uj,t0)e-a(t+"-toh(t0) 
pt+U) 

+ / $ ( t+w, r )e - a ( t + w - T )H ( r )w; ( r )d r . (3.18) 
Jt0 

From (3.18), taking into account (3.15)-(3.17), one obtains that z(t + w) = z(£) 
for all t G E. Relation (3.11) is obtained from (3.18) by replacing t0 by t. 

Consider the case T = It. Any solution of (3.6) can be written as follows for an 
arbitrary t0 E Z: 

z(t) = ^(t,t0)a-^-toh(t0) 
t-i 

+ £*(t , r )e- 0<*-T> .B(r) i i / (T) , t € Z , - > - o + l. (3.19) 

(Necessity) Assume that the vector function z(-) in (3.19) is cu-periodic. Replac­
ing in (3.19) t by t0+ui, and taking into account (by virtue of the hypotheses of the 
lemma) that matrix [I — $(u),t0) a_UJ] is non singular and that z(-) is an w-periodic 
vector function of t £ 7L% one obtains that the following relation 

z(t0+uj) = ^(t0+u>it0)a-uz(t0) 
1 to+w-l 

+ - Y $(t0 + uj,T)a-(to+"-T)B(T)w(T), (3.20) 
a '-—-' 

T = t0 

implies condition (3.12) for t = t0. The arbitrariness of to 6 2 completes the proof 
of the necessity. 

(Sufficiency) The following relations (which are obtained through (2.30), (3.12), 
and the w-periodicity of w(-)) will be useful for the sufficiency proof: 

$(t + uj,t0)a-(t+u-toh(t0) 

= $(t + uj,t0 + uj) a-(*-*°)$(<o + w, t0) a-"z(t0) 

= $(t + uj,t0 + uj)a-(t-toh(t0) 
to+W-l 

J2 $(t-T",to+u)Ht0+uj,T)a-(-t+u,-r)B(T)w(T) 
T = t 0 
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= ^(t,to)a-^-toh(t0) 

1 t o + W - l 

- - Y $(t+u,T)a-(t+"-T^B(T)w(T), (3.21) 
a *—? 

T = t0 

t+W-1 

Y Ф(t + u,т)a-(t+ш-т)B(т)w(т) 
т=ť 0 +w 

ť - 1 

Yф(t + Lű,т + ш) a _ ( ť _ т ) H ( r + LO)W(T + ш) 
т=t0 

t-1 

Y *(*> ' ) <*~{t-т)B(т) w(т), (3.22) 
т = ť 0 

t+w-1 

Y $(t+uj,T)a-(t+ul-T)B(T)w(T) 
T = t0 

tp+W-1 

= Y, ^ ^ + ^ , - ) a - ( t + w - T ) H ( r ) t i ; ( r ) 
T = t0 

t+W-1 

+ Y, ®(t+uj,T)a-(t+w-T^B(T)w(T) 
T=t0+w 

t0+w-l 

= Y $(t-TU,T)a-(t+ul-T)B(T)w(T) 
T=t0 

t-1 

+ Y^(^T)a~{t~T)B(T)w(T)- (3-23) 
T = t0 

One can replace in (3.19) t by t +LO, to obtain 

z(t+Lo) = $(t+u,to)a-(t+"-toh(to) 
t+w-l 

+ Y $(t + u,T)a-(t+"-T)B(T)w(T). (3.24) 
T = t0 

From (3.24), taking into account (3.21)-(3.23), one obtains that z(t + LO) = z(t) 
for alH G 2 . Relation (3.12) is obtained from (3.24) by replacing t0 by t. • 

The following lemma gives conditions for the exosolution of (3.1) corresponding 
to the input vector function (3.4) to be attractive. 

Lemma 13. Under Assumption 1, let z(t) 6 C n be the exovector of (3.1) corre­
sponding to the input vector function (3.4). Let ((t) G Cn be the solution of (3.1) 
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from the initial t ime t = to £ T, from an arbitrary initial state C(^o) = XQ, and 
corresponding to the input vector function (3.4). The function ((t) := (,(t) — (t0(t), 
with (t0(t) being defined in (3.3), exponentially goes to zero for all xo € Mn, if and 
only if all the characteristic multipliers of A(t) have modulus smaller than 1. 

P r o o f . It is easy to see that ((t) satisfies the following equation 

A((t) = A(t)((t). (3.25) 

Function ((t) exponentially goes to zero for all C(^o) G Mn, if and only if all the 
characteristic multipliers of A(t) have modulus smaller than 1, as was to be proved. 

• 

The definition of steady-state solution of an cu-periodic system of the form (3.1) 
given in [4] for u;-period input vector functions, is extended for input vector functions 
of the form (3.4), by the following definition. 

Def in i t ion 5 . Under Assumption 1, let (t0(t) be the exosolution at the initial t ime 
io G T of system (3.1) corresponding to the input vector function (3.4). Vector func­
tion (t0(t) is referred to as the s ta te steady-state solution of (3.1), (3.2) corresponding 
to the input vector function (3.4) if and only if re[a] > 0 (if T = M), or \a\ > 1 (if 
T = Z) , and all the characteristic multipliers of A(t) have modulus smaller than 1. 
The output solution of (3.1), (3.2) corresponding to such a Cto(^) i s referred to as the 
output steady-state solution of (3.1), (3.2). 

The notion of blocking zero that has been given (see, e. g., [5]) for time-invariant 
linear systems, is extended for oi-periodic systems under the following assumption. 

A s s u m p t i o n 2 . The set Sp of the o;-periodic [continuous, if T = M) functions w(-) 

has a p-dimensional base 

Bp := {w0(-),wi(-), ...,wp-i(-)}, 

for some p £ Z,p > 0, i.e., for each w(-) E Sp there exist p complex numbers 
CQ,C\, ..., Cp-.\ such that the following relation is satisfied 

w(t) = c0w0(t) + clWl(t) + . . . + Cp.xWp.^t), \ft E T. (3.26) 

R e m a r k 4 . Assumption 2 does not seem to be restrictive. 
Consider the case T = IR. For i = 0,1,... ,u> — 1, consider the u-periodic function 

uvi(-) : 7L —* {0,1} that is defined as follows 

Wi(h + ku;) :=6(h-i), h E {0,1,... ,to - 1}, keZ, 

where 6(-) : Z —• {0,1} is such that 

f 1, t = o, 
6(t) = { 

1 0, t^0. 
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For each u/-periodic function w(-), define u> complex numbers as follows: 

Ci := w(i), i = 0 , 1 , . ..,u> - 1. 

Then, it is easy to see that (3.26) holds with p := u>. 
Consider the case T = M. and a £ M. Assume that the input vector function 

(3.4) is the output free solution from the initial time t = to 6 B& of the following 
cj-periodic system (which is usually referred to as the exosystem): 

xu(t) = Au(t)xu(t), 

u(t) = Cu(t)xu(t), 
(3.27) 

(3.28) 

where xu(t) £ Mp is the state, Au(-) and Cu(-) are real matrices that are u;-periodic 
functions oft E l . Assume that Au(t) is reducible (see, e.g., [4]) in the sense of 
Floquet-Lyapunov to the diagonal constant matrix A = al, through the cj-periodic 
Lyapunov transformation matrix W(t). Then, the input vector function (3.4) can 
be expressed by 

u(t) = Cu(t)W(t)cea^-to\ (3.29) 

where c £ IRP is a vector dependent on the initial conditions of (3.27). By comparing 
(3.4) with (3.29), one obtains 

w(t) = Cu(t)W(t)c; 

whence condition (3.26) is satisfied once the p column vectors of Cu(t)W(t) are 
taken as the base functions IU.-(-), i G {0,1,... ,u> — 1}, of Bp, and the p entries of 
vector c are taken as the coefficients c., i € { 0 , 1 , . . . ,u> — 1}. 

Definition 6. Under Assumptions 1 and 2, the complex a is a blocking zero of 
system (3.1), (3.2) from the input u(t) to the output y(t) if and only if the output 
steady-state solution of (3.1), (3.2) corresponding to the input vector function (3.4) 
is constant and equal to zero for all the w-periodic vector functions w(-) £ Sp. 

The following lemma gives necessary and sufficient conditions for a complex a to 
be a blocking zero of system (3.1), (3.2). 

Lemma 14. Under Assumptions 1 and 2, the complex a is a blocking zero of 
system (3.1), (3.2) from the input u(t) to the output y(t) if and only if the following 
conditions hold for i = 0 , 1 , . . . , p — 1: 

Im 

Im 

/ ; + w $(t + w, T) e-a^~T)B(T)wi(T) ÚT 
D(t)wi(t) 

Vť eT, if T = m, 
E t l r 1 *(- + w. T) e-°«-')H(r) WÍ(T) 

D(t)Wi(t) 
V* (ET, \ÍT=Z. 

C І m 

C І m 

Ф(ť+u>,ť)-/e°" J 

C(t) 

Ф(t-гu,t)- IoЃ 
C(t) 

(3.30) 

(3.31) 



642 A. TORNAMBĚ 

P r o o f o f L e m m a 14. Since, by Assumption 1, e a t £̂ 0 and a1 / 0 for all 
t ET, the complex a is a blocking zero of system (3.1), (3.2) if and only if the output 
response of the following system (if T = M) 

z(t) = (A(t)-aI)z(t) + B(t)w(t), (3.32) 

y(t) = C(t)z(t) + D(t)w(t), (3.33) 

or of the following system (if T = 7L) 

z(t + \) = -A(t)z(t) + -B(t)w(t), (3.34) 
a a 

y(t) = C(t)z(t) + D(t)w(t), (3.35) 

to each input vector function w(-) E Sp, is constant and equal to zero in correspon­
dence to the unique solution of (3.32) (if T = E ) , or of (3.34) (if T = 7L), tha t 
is cj-periodic. In view of Assumption 2, the linearity of systems (3.32), (3.33) and 
(3.34), (3.35) implies tha t the complex a is a blocking zero of system (3.1), (3.2) if 
and only if the output response of (3.32), (3.33) (if T = M), or of (3.34), (3.35) (if 
T = Z), with w(t) = Wi(t), i = 0 , 1 , . . . ,p — 1, is constant and equal to zero in 
correspondence to its unique state solution that is w-periodic. Through a reason­
ing similar to the one used in the proof of Lemma 12, the unique u;-periodic state 
and output solution of (3.32), (3.33), with w(t) = Wi(t), i = 0 , 1 , . . . ,p — 1, can be 
rewritten as follows for a l H G M.: 

/

t+jO 

<^(t+uj,r)e-a{-t+ul-^B(T)wi(r)dT, (3.36) 

y(t) = C(t)z(t) + D(t)wi(t), (3.37) 

and the unique cj-periodic state and output solution of (3.34), (3.35), with w(t) = 

Wi(t), i = 0 , 1 , . . . , p — 1, can be rewritten as follows for all t E%>'-

1 t + w - l 

z(t+Lo) = <S>(t+uj,t)a-u,z(t) + - V m + oj,T)a-{-t+w-T^B(T)wi(r),(Z.?»%) 
a -—-' 

T-t 

y(t) = C(t) z(t) + D(t) Wi(t). (3.39) 

(Necessity) If y(t) = 0 for all t E T, then equations (3.36), (3.37) imply the 
necessity of condition (3.30), while equations (3.38), (3.39) imply the necessity of 
condition (3.31). 

(Sufficiency) Since both sides of relations (3.30), (3.31) are w-periodic functions 
of t E T, then conditions (3.30), (3.31) imply the existence of an cj-periodic vector 
function z(t) such that (3.36), (3.37) (if T = 1 ) , or (3.38), (3.39) (if T = 7L), hold 
with y(t) = 0 for all t E T. Since the exovector z(t) is uniquely determined, the 
sufficiency proof is completed. • 

4. CONCLUSIONS 

In this paper we have analysed a class of linear periodic systems, both discrete-time 
and continuous-time. For these systems, we have introduced well known notions 
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for linear time-invariant systems, such as the concepts of eigenvalue, eigenvector, 
characteristic multiplier, steady-state response, and of blocking zero. Future work 
will regard the possibility of using such notions for the statement of an algebraic 
version of the internal model principle for periodic linear systems. 

(Received February 14, 1996.) 
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