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BAYESIAN ANALYSIS OF THE MODEL 
OF H I D D E N PERIODU 

J I Ř Í A N D Ě L 

.'ÍP* 

i f KNIHOVNA J*' 

00054/01 
Consider a model of hidden periodicities Xt = Yt + X^ť-i (a» c o s u ; i * + &ťsina;iť), ť = 

1,. . . , 2m + 1. It is assumed that Yt are i.i.d. i\T(0, a2) variables and that u>i € {Ai,. .. , Am} 
where Ar = 2rr/(2m-\-l). Let a,, 6, and a háve a vague prior distribution and let the vector 
(o/j,. . . ,u>k)' háve a rectangular distribution. The posterior distribution of the parameters 
is derived and its asymptotic properties are investigated. The results can be ušed for 
estimating the number of periodical components k. 

1. TNTRODUCTION 

M*Miy observed time series are directly or indirectly influenced by periodically re-
peated events. One of the most popular models for describing such time series has 
been the model of hidden periodicities 

Xt = Yt + y ^ ( a ; cos u>it + 6,- sinw,-ť), t = 1, N (1.1) 
Í = I 

where Xi,..., XM is the observed time series, {Yt} are i.i.d. N(0, a2) variables with 
a2 > 0 and UÍ E (0,7r] for t = 1,. . . , k. We assume that CJI, . . .,Uk a r e different. 
A basic tool for investigating the model (1-1) is the periodogram 

/(A) 
2TTN 

N 

*c -2 A 

= 2Í77I (X>'cosAť) + Í É ^ s m A M |> A^[M-

The periodogram was introduced by Schuster [30]. Later on, periodicities in dis-
turbed series were investigated by Yule [38]. 

We shall consider only the čase tha t the frequencies Wj are not known. The first 
problém is to test if the periodic component in (1.1) is present or not. It means that 

we want to test H0 : Yli=Áal + bl) = ° against E\ : E L I ( ° ? + bí) > °- T o t e s t 

/; 41 Pi 
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Ho, we can apply the famous Fisher test of periodicity (see [13,14, 2]). It is assumed 
that N is an odd number, N = 2ra + 1. Define 

27rr 
Xr = ——, Ir = I(Xr), r=l,...,m. 

Denote 

1(1) > 1(2) > • • • > 1(m) 

the ordered values of the periodogram. The Fisher test statistic is 

F - / ( 1 ) (1 9̂ 1 

If F exceeds the critical value we reject Ho. 
Modifications of Fisher's test and other tests based on the periodogram were 

proposed in [19,31,22,3,6]. 
The Fisher test has good properties if fe= 1. For k > 1 the power of the test can 

be rather low. In this case the Siegel test can be recommended (see [32]). A formula 
for asymptotic percentage points for Siegel's test was derived in [34]. 

Quinn [27] introduces a method for estimating the number of frequencies k. A test 
of periodicity in multiple time series can be found in [24]. 

A generalization of the Fisher test to the case that {Yt} in (1.1) are dependent 
variables was proposed by Whitt le [36,37]. However, the power of his test is rather 
low (see [26]) and so the problem was further investigated by Hannan [14,15], Priest­
ley [25,26] and Cipra [8]. Not all proposed procedures are based on the periodogram 
directly. For example, a test suggested by Priestley [25,26] is based on the cor-
relogram approach. Kedem [21] also presents a method which does not use the 
periodogram. 

Since the Fisher test looks for the frequencies w, only in the set 

A = {Xi,..., Xm], 

Cipra [7] suggested a modification for the case that w% can be between two Fisher's 
frequencies Xj and Aj+i. Tests of periodicity when some observations are missing 
can be found in Cipra [9]. 

Several papers are devoted to the problem of estimating frequencies u>,- and to the 
asymptotic properties of the corresponding estimates ([36,35,16,17,10,18,5,23,28, 
29]). A review is given by Brillinger [4]. Statistical properties of the maximum of 
the periodogram are described in [1]. 

Our paper has two main parts. First, Section 2 contains a Bayesian analysis of 
the model (1.1). It is assumed that there are exactly k periodicities in (1.1) and all 
their frequencies u>t are of the form 27rr,/N. The parameters a,, &,- have a vague 
prior density. The assumption that ut- = 27rr,/N (i = I,... ,k) is rather restrictive. 
On the other hand, in many cases when a routine statistical analysis of real data is 
carried out, the investigator confines himself to Fisher's or Siegel's tests and so, in 
fact, he also considers only fequencies u>{ = 27rr,/N. Then our approach can give 
some additional information. 
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The second main part of our paper (Section 4) deals with asymptotics. Here 
we assume that the length Nj = 2mj + 1 (m;- —* oo) is chosen in such a way that 
the frequencies 27rr;/(2raj + 1) are all of the form 2nr/N for the initial N. This 
restriction has the following reason. If the frequency of a harmonic component falls 
approximately mid-way between the two periodogram ordinates, the height of the 
ordinate is reduced by a factor 4j7r2 (see [36]; cf. [26]). This would be a source of 
difficulties if general sequences {Nj} were allowed. 

A simulation study shows that the derived results can also indicate the number 
k of the periodic components. 

2. BAYESIAN APPROACH 

Consider the model (1.1) and assume that a2 + b2 > 0 for i = 1 , . . . , k. Define 

Afc = {(A*.,..., Xihy : A,x < . . . < Xik are elements of A}. 

Assume that 1 < k < m. Introduce the following notation: 

a = (ai,...,ak)', b = (bi,... ,bk)', u; = (u>i, . . . ,u)k)', 

1 N N 

n = {co1,...,uk}, x = -Y,xt, Q = J2X?> 
t=\ t = i 

N N 

r(\) = Y^XtzosXt, S(X) = J2xtsinXt, P(X) = C2(X) + S2(X), A G A. 
t = i t = i 

T h e o r e m 2 . 1 . Let u> = ( w i , . . . ,tVjb)' € A&. Define 

a. = §C>.). k = ls(ut): (2.1) 

Then the density of the vector X = (X\,..., xjv)' is 

f(x\a,b,u,a) = (2*)-Nl2a~N e x V { - ^ (2.2) 

where 
jfc ifc 

^= f èкa« -âí)2+(*•• - w + Q - Ñ è p^y (2-3) 
г' = l г' = l 

P r o o f . It is clear that 

f 1 N 

f(x \a, b,«, a) = (2*)-Nl2a-N exp { - - ^ £ 2a 
ť = l L г = l 

Xt~22(ai cosu>it + bi sinu>it) 

But for u> G Ajb we have 

N N N N 

y2cos2ujit = Y^sin2u;iť = —, J j cos U{t sin coit = 0 (2.4) 
ť = i ť = i ť = i 
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and 

N N 
} ] COS Wit cos Wjt = > J sin ugt sin u)jt = 0 for i -f. j . (2.5) 
t = l *=l 

After some computat ion we get the assertion of the theorem. • 

The well known problem in the Bayesian approach is the choice of a prior distri­

bution. In our case we investigate the situation when a, b and a have prior density 

cr _ 1 for a > 0 and zero otherwise. The density c r - 1 for a is quite common in the 

Bayesian analysis. It reflects the fact that a > 0. It is supposed that lncr has the 

improper rectangular density on the real line. The vague prior density has some 

advantages, e.g. it "approximates" any other reasonable prior density in such a 

way that the posterior probabilities do not differ too much (see [12, § 10.4, Theo­

rem 1]). Moreover, the modus d, b of the posterior distribution is identical with 

the maximum likelihood estimate (MLE) and the modus a is nearly identical with 

the corresponding MLE. Thus our choice of the prior distribution gives also some 

information about the behaviour of MLE's. 

In our paper the symbols like c(x) denote constants which may generally depend 

on x. 

T h e o r e m 2.2. Let a, b, u>, a be independent vectors and variables. Let a, b, a 

have prior density a~l for a > 0 and zero for a < 0. Let u> 6 Ajt have the rectangular 

distribution on Ak. Then the modus d, b, co, a of a, b, u, a is given by the following 

rules: 

(a) CJ is the element of Ajt which maximizes the sum P(u>i) + . _ . . + P(u>k). 

(b) a = ( a 1 ; . . ., dk)', b = (&i, . . ., bk)' where 

2 - 2 
hl = N C ( ^ ' bi = NS^' 

M *2 = тàт Q-wŁ P{Ъ) 
г' = l 

P r o o f . From the Bayes theorem we get the joint posterior density 

g(a,b,ui,a\x) = c0(x)a~N~1 exp <̂  ~y^ f (2-6) 

for a > 0 and for w G A,t; otherwise g vanishes. The variable Z is given in the 

formula (2.3). • 

The modus of the posterior distribution can be used as an estimator of the un­

known parameters . 
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T h e o r e m 2.3. The marginal posterior density h(u>\x) of the vector u? with respect 
to the counting measure on A* is 

h(ш\x) = c(x) 
2 Л P(ШІ) 

ì--Y IVf-Г Q 

r-+k 

where the expression c(x) is determined from the condition 

£ h(w\x) = 1. 
W£A* 

P r o o f . We use the formula (2.6). First of all we calculate the marginal posterior 
density 

9\ 
/•OO 

(a,b,u)\x) = f g(a,b,ív,cr\x)d(r = C\(x)Z~ 
Jo 

It gives 

h(u>\x) = / I gi(a,b,u)\x)dadb = c(x) 
j i f c Jmfc 

2 Л P(ШІ) 

M Z_-' NU Q i 

•+k 

3. A MODIFICATION 

The computation of h(u>\x) is difficult when N and k are large. Thus we propose a 
modification of the above results. Define 

p(ui)=exp<—— V. 

Instead of h introduce now the posterior density 

v(u\x) = Co(x)p(u)1)p(to2) • • -p(vk), w € Ajfc 

where CQ(X) is determined from the condition 

J2 v(u>\x) = 1. 
WGAfc 

The function V(UJ\X) can be considered as an approximation of the function h(u>\x). 
In Section 4 we prove that the asymptotic properties of the both functions h and v 
are the same. 

But P(u)i)/Q can be very large, in a limit case it can reach even the value N/2. 
Denote 

j^max = max{P(u;i) , . . . , P(u>m)}, q(ut) = exp j Q \ • 
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Then 

If we put 

Sk 

v(ш\x) = C(x)q(шi)q(u2) . . .q(u>k). 

] V ç(wiMw2)...g(wjb) 
{a-! ,... )w fctw1,...,l.. fc 

are different elements of A} 

then C(x) = k\/sk- The values Sk can be namely calculated using the tables pub­
lished by David, Kendall [11]. If we use the same notation as that in the cited paper, 
viz. 

(г) = X>Ыľ 
г " = l 

then it holds 

s2 = -(2) + ( l ) 2 , 

s3 = 2 (3)-3(2)( l ) + ( l ) 3 , 

s4 = -6(4) + 8(3)(l) + 3 ( 2 ) 2 - 6 ( 2 ) ( l ) 2 , 

S5 = 24(5) - 30(4)(1) - 20(3)(2) + 20(3)(1)2 + 15(2)2(1) - 10(2)(1)3 + ( l ) 5 , 

s6 = -120(6) + 144(5)(l) + 90(4)(2)-90(4)(l) 2 +40(3) 2 -120(3)(2)(l)+40(3)(l) 3 

-15(2) 3 + 45(2)2(1)2 - 15(2)(1)4 + ( l ) 6 . 

The tables by David and Kendall enable to extend these formulas to the expression 
for «i2. 

4. ASYMPTOTICS 

In this section we investigate the limit behaviour of the posterior probabilities and 
related variables for the case that m —* oo. We assume that k is fixed and that 
flC A for all sufficiently large m. Generally, Q may depend on m but we do not 
denote it explicitly. It would be also possible to consider a fixed set Q, where H c A 
for some m = mo and then to deal with a sequence mo < mi < m2 ... such that 
0, C A for every m,j, j > 0. 

First, we remember a definition. A sequence of random variables {Un,n > 1} is 
said to converge completely to a constant c if 

oo 

y ^ P[\Un - c\ > e] < oo for each e > 0. (4.1) 
wr-l 

This definition is due to Hsu and Robbins [20]. It is well known that the condition 
(4.1) ensures that Un —* c a.s. but the converse does not hold (see [33, p. 11, 
Theorem 2.1.1]). 
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T h e o r e m 4.1. Let {a m , i > l ,n > 1} denote a matrix of real numbers. Let 
£l»&!> •... be i.i.d. random variables. Define 

^n — / j ^nii -n — / , ^nisi • 

i = l i = l 

Let £ | £ i | 2 / a < oo for some 0 < a < 1, E& = 0, 

| a m | < Kn~a for i < n and some A' < oo 

and 

Cn = o ( 
\ l n n 

Then Tn converges completely to zero as n —> oo. 

P r o o f . See [33, p. 226, Theorem 4.1.3]. • 

Lemma 4.2. Let {cm , i > 1, n > 1} be a matrix of real numbers such that | c m | < 1 
for i < n. Let £i,£2, • • • be i.i.d. random variables with E£\ — 0, E£2 < oo. Define 

1 .A Tn = -У> n ť&. (4.2) 
Гł • • П 

i = l 

Then Tn converges completely to zero as n —> oo. 

P r o o f . The assertion follows from Theorem 4.1 when we put a = 1 and a m = 
cni/n. • 

L e m m a 4.3. If {Xt} is given by (1.1) and if u; 6 A^ for all sufficiently large m 
then 

k 
1 1 

—Q -* H = a-2 + - ^ ( a - + 62) a.s. as N -> oo. 
^ 2 i=i 

P r o o f . Using (2.4) and (2.5) we get 

N N k k 

Q=J2Y2 + 2j2Yt £)(<-. «*<".- + 6t- sin^Ej + — £](a2 + b2). 
t=l t=l i = l i = l 

Since we assume that {Yt} are i.i.d. N(0,cr2) variables, the remaining part of the 
proof follows from Lemma 4.2 and from the strong law of large numbers. • 
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Lemma 4.4. We have 

«>TÍEW 
i-\ 

P r o o f . The inequality follows from the known formula 

N n ™ 

E(*--*)2 = дам 
í = i І=I 

(see [2, p. 85, Theorem 7.4]) because 

JV 

Q > J2(Xt - xï 
ť = l 

D 

Lemma 4.5. Let N —> oo. If u>i £ A then 

JßP(Шi)-*l(a? + bђ a.s. 

If A £ A and A ^ f i c A then 

- P ( A ) - + 0 a.s. 

P r o o f . Using (2.4) and (2.5) we obtain 

C(A) = 

N 
\Ncii + J2 Yt cos u>{t for A = u>i £ fž C A, 

ť=i 

N 
J2 Yt cos Ať 

^ t-í 
for A Є Л, Л $ Q c Л, 

S(A) = 

JV 

| N 6 i + JI Yt sinwťť for A = wť E fž C A, 
í = i 

£Y.s inA* 
t=i 

for Л Є Л, A ţ Q c Л. 

From here we get the assertion. D 

Lemma 4.6. If 0, C A then for any e > 0 and for all sufficiently large m we have 

E jj-JW < 5 ťг + Є a.s. 
{ Í :AÍGA,AÍ^ Í Í} 
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P r o o f . Lemma 4.4 gives 

^ ? > 2 E ^ ( л . ) + 2 E jpҢ* 
{i:Л.ЄSÌ} {г':Л,бЛ,Лt^П} 

Now, we use Lemma 4.3 and Lemma 4.5. 

L e m m a 4 .7. If m —+ oo then 

max -ттñPi^i) —* 0 a.s. 
{i.Л.ЄЛ.Л.gП} N2 

P r o o f . Since N = 2m + 1, we can denote the variables 

{]v-FP(A*)> A , e A , A i £ Q J 

shortly by 

sm,1 > • • • i s,m,m—k • 

The variables {C(Ai), S'(Ai), Ai G A,Aj $• Q} have joint normal distribution and 
because of (2.4) and (2.5) they all are uncorrelated. Thus £m,i,... ,Cmtm-k are 
inc* spendent. Lemma 4.6 gives that for all sufficiently large m we have 

£m,l + • • • + £,m,m-k < <? a. S. 

Then for all * = 1 , . . . , m — k we obtain 

and thus 

P Cm,i > Г = 0 

2 

max{£ m . i , . ..,tmtm-k} < r a .s . (4.3) 
m — k 

Now, we let m —> oo. • 

Introduce variables Ai = aj + bf, i = 1, , k. Further define A% = 0 for i > k and 
A = A i + - . . . + Ah- In our Bayesian approach we assume that a\, b\,... ,a&,&* are 
independent and have the vague prior density which is equal to 1 on M2k. Then all the 
variables A\,..., Ak will be different. To simplify the next derivation we shall assume 
that the frequencies U\, ...,&% are ordered in such a way that A\ > A2 > . . . > A%. 

T h e o r e m 4 . 8 . Let {71, . . . ,ji} C A where 1 < £ < m. Put 7 = (71 , . . . ,ji)'. 
Define 

t ч íP(ъ 
p(ji) = exp <̂  — ^ -
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and 

h(7\: 
L .Ì _ 1 

•%+k 

v(y\x) = C(æ)p(7i)p(72) • • -P(7г) 

where c(„) and C(x) are positive constants determined from the conditions 

_T] /I(T^I-C) = 1 and __] f(7 |«) = 1, 

7 € A , 7£A< 

respectively. Assume that m —• oo. 
Let I < k. If {71 , . . . ,71} = {_i,.. .._•/} then h(~i\x) —> 1 a.s. and v(y\x) —> 1 

a.s.; if {71 , . . . ,71} 7̂  {_i,... ,u>i} then h(*y\x) —> 0 a.s. and v(*y\x) —•* 0 a.s. 
Let£>fc. Then h(-y\x)^>0 a.s. and t>(7|cc)—>-0 a.s. for arbitrary {71 , . . . , 71} C A. 

P r o o f . In the first part of the proof we deal with the assertions concerning the 
function h. Assume I < k and {71 , . . . , 71} — {_i,..., u>i}. Then we have 

h(шi,...,шŁ\x) = 
1 + D 

where 

D = E 
{-ti,...,yt:P(yi)>->P(-yt)> 

{•>l,...,TťÍ4-í<-J "/}} 

- # - * 
l _ _. V̂  p (^ ') £ г = l 

1-4 
1 ЛГ 

£ 
i _ l 

___. 

It follows from Lemmas 4.3, 4.5 and 4.7 that 

E P(_i) Лi + . . . + AŁ 

N- Q 
г = l 

2<т2 + Л a. s. 

A E 
Л! Z - ' 

___) 
N ^ Q 

tends a.s. to a non-negative limit which does not exceed 

Ax + . . . + i4/-i +i4/ + i 
2<r2 + A 

Thus for any arbitrary small e > 0 and for all sufficiently large m we have a. s. that 

I 

2<r2 + A - .4i - . . . - At 
1 _ _. V p ^ ' ) 

W Z_ Q 

0 < i_ï < 
1_ _ .y-_ í__ 
x ЛГ Z _ ö 

2a2 + A - Ai M-i - A. 
+ є = a. 

Ł+i 
N ._> Q 

г = l 
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We can choose such a small e that a < 1. Then for all sufficiently large m we have 

L>< „ 2 * —» 0. 

Now, consider the case £ < k when {71, . . .,71} ?- {^1, • • . , _ _ } . We get 

M7І-) = - - _ 

where 

i _ 2 Г _ _ _ 1 лT z_ o 
L> = 

.v .- Q 
г = l 

{/»! ßt:P(ßl)>...>P(ßt)> I 1 — _ . У _ ( _ _ 

^ 7 ) ' " ^ ű 

— k 

N /— Q 
í s l 

For sufficiently large N we obtain 

D>Z%-k 

where 

Z-

Ł—1 
1 _ _ . V P ( ы ' ) _ 2 _ _ _ _ _ 
1 ЛГ Z_ Q N Q 

i = l  

l _ i f ____ 
1 !V ._v Q 

г = l 

If N —• 00 then 

2<r2 + _4 - _4i - . . . - _4/_i - .4/+1 
Z —> --— : ; —: — > 1 a.S. 

2<72 + A _ _ _ _ - . . _ - .4, 

and thus L> —• 00 a. s. 
The case ._ — k, {71, •. .,7*} / {_i,... ,_jfc} can be treated analogously using 

lemmas 4.3 and 4.5. 
Now, assume £ > k. For large m the maximum of ti(-y|a;) is reached at a point 

7 — (_ i , . . . , wjfc, 0k+i, • • •, /#_)' where $,• are some frequencies from A. Then 

h(ui,...,ujk,l3k+i,...,/3i) 
1 + L> 

where 

L> E 
j - _ 2 -p _ _ _ _ _ x ү> ___} 

•v.-ť Q IV. 4Г_1 Q 
г = l г=/fc+l 

«•-* 

{•Yl T _ - , ( T _ ) > - > . - , ( T « ) . 
{T_.-••* it )#{-*i .•••»«*„> # „ + i 0*H 

1 _. JL ү* £___ 
1 N JL, Q N ._ - Q 

г = l 

> E 
Í T „ + l . . . . » 7 í . * > ť T k + I » - > , * í ' Г í ) . - У f c + l * 0 . - » T ř . ť O , 

{"ľfc+i •••->_};»ЧØ„+i >•••>/**}} 

/fc 

£ 
ť s ł 

1 _ 2 -p _ _ _ _ _ _, p 
1 лt .-_ Q Лt . - - Q 

£ " . 2 

_____ 
- J f c 

i=/fc + l 
/fc £ 

1 _ _ . y _ _ _ ! _ _ . y _ _ _ . 
x Лt Z_ Q Лt —_ Q , 

i = l i=/fc + l ^ _í 
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« • - * 

> 
m — k 
t-k 

N .-*• <Э 
г = fc + l  

,_i.f___l 
1 J V _-< г = l 

From Lemmas 4.3 and 4.5 we get 

1 _| f_M_ 1 _4 > 0 
A/ Z—/ N^ Q 

г = l 

2H 

and (4.3) yields 

2 *--, P(A) 
f£^f<2(/--)„^ 

ѓ = ifc + l 

<x2 N 2(£-к)(т2 1 
m — к Q R m — к 

Thus D —* oo. 
Now, we prove our assertions for v(j\x). Let, £ < k. Then we can write 

v(u>i,.. .,W£fas) _= 1/JD where 

£> = £ ^{_-h--lj.,Mp(_Mi--i} 
t7ii-,7<:-*(7i)> .>i*(7<)} 

For sufficiently large m we have P(c-i) > • . . > P(u>i) > ... > P(w„). Then 

£>=! + E ^(i__i^l...^(___b^}<1+0l 
(T1)>...>P(T,), ^ ^ J I W J {т i , . . ,-Г г :P 

(•ү ï , . . . , -Уť}-M-l,...,_*}} 

where 

Dl £ 
(>i yr-P(.yi)>->p(yt): 

(Ti Tť }#{-!,..-,«<}} 

f gfa) - P(q.ŕ; 
P l Q 

The sum L>i has ( ? ) — 1 terms. It follows from lemmas 4.3 and 4.5 that for sufficiently 
large m we have 

Di <\(™)- 11 e x p { - c ( ^ - At+i)N} 

where c is a positive constant. Thus Di —> 0 a. s. as m —> oo and the assertion is 
proved. 

Let £ < k and {71, . . ., 7^} / {u>i,... ,toi}- Assume first that £ < k. Then for 
large N 

v(ji,---,Ji\x) = l/D 

where 

D = £ 
{0X,...,fit: 

P ( S 1 ) > . . . > P ( ^ ) , / 3 = Í 7 } 

җ(-_Ш}.,щ(--y!-
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^ f P(M -p(u,,)\ f _ _ _ _ f _ _ i 

" , ~ , expl 5 r ^ « 
P(fiiy>...>P<.0thfi*rf) 

f__________ 
xexpj 

> e x p { P ^ - g
P ^ + l ) } ^ o o a . , 

If £ = fc then analogously 1/(71,..., 7/|as) = 1/L> where 

g>exP{p%-p( / ? )}, ^6A,^a 

Again we can see that L> —• 00 a.s. 
Let £ > k. For sufficiently large m the maximum of v(t\x) is reached at a point 

7 = (uj1,...,ujk,(3k+1,..., pi)'. Then u(wi, . . . ,uk, (3k+1,. • •, fa\x) = \/D where 
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Using Theorem 4.8 we can estimate, at least asymptotically, the number A: of the 
periodic components. The next theorem shows that the periodogram itself cannot 
give such an estimate. 

Theorem 4.9. Let A1 > A2 > . .. > Ak > 0 be fixed numbers. Define 

__ / ( ! ) + ••• + _ _ 
1 h + ...+ Im ' 

Then for arbitrary £ we have F f - ^ l a . s . as m —» oo. 

P r o o f . The assertion can be proved in a similar way as Theorem 4.8. • 

5. RESULTS OF SIMULATION 

A process 
3 

Xt = Yi + _~ ( a i cos w..-* + 6j s'mojit), t = 1 , . . . , N 
i=i 
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where Yt ~ N(0, 2) was simulated with parameters introduced in Table 5.1. 
Table 5.2 shows results of analysis of one realization for several values of the 

length N. Remember that Ui are Fisher's frequencies such that 

27rrг-

~N~ 
i= 1,2,3. 

Table 5.1. Parameters used in a simulation 

І ШІ UІ bi Л = a 2 + 62 

1 1.197 0.8 0.9 1.45 
2 1.496 0.6 1.0 1.36 
3 2.394 0.5 0.7 0.74 

Table 5.2. Results of a simulation 

N = 21 N 
Fisher test: F = 0.28, H = 0.49 Fisher test: F 

v(d>\, 

1 4 8 0.47 
2 5 2 0.11 
3 8 9 0.02 
4 - 5 0.00 

N: = 189 
Fisheг test: ғ = 0.15, H = 0.00 

І Гi ћ v(ш\ ,...,Wi|aв) 
1 36 45 0.99 
2 45 72 0.57 

3 72 36 0.44 

4 6 0.00 

63 

v(ú\,. ..,Qi\x) 

1 12 24 0.68 
2 15 15 0.20 
3 24 25 0.02 
4 - 12 0.00 

N = = 567 
Fisher test: F -= 0.12, P = 0.00 

i Гi Ѓi v(ш\ . , . . . , w.-jæ) 

1 108 135 0.98 
2 135 108 0.90 
3 216 216 0.50 
4 62 0.00 

Since u>\, ui2 and UJ3 we keep fixed, the values r\, r^ and r 3 are different for 
different values of N. The estimates r; introduced in Table 5.2 are defined in such a 
way that P(r\) > P(r2) > • • •• For information the value F of the Fisher test given 
in (1.2) and its significance P are also introduced. 

The difference between A\ and A2 is small and so even for N = 567 the frequency 
U>2 was found more significant than uj\. For £ < k the convergence v(u\x) —> 1 is 
not very fast, especially for the values of £ which are near to k. But for £ > k 

the convergence v(u)\x) —* 0 seems to be quite good. Similar numerical evidence 
was obtained also from other simulations which are not reported here. Thus v(u>\x) 
could be used for detection of the numbers of periodicities; if max V(LO\, ... ,W$|as) 

u> 
is small then the number of periodicities is smaller than £. 
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