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K Y B E R N E T I K A — V O L U M E 31 ( 1 9 9 5 ) , N U M B E R 1, P A G E S 9 9 - 1 0 6 

ALGEBRAIC ANALYSIS OF LPC+Ch CALCULUS 

E S K O T U R U N E N 

The paper deals with Mattila's LPC+Ch Calculus (cf. [2]). This fuzzy inference system 
is an attempt to introduce linguistic objects to mathematical logic without defining these 
objects mathematically. LPC+Ch Calculus is analyzed from algebraic point of view and 
it is demonstrated that suitable factorization of the set of well formed formulae (in fact, 
Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning 
of the paper. On its basis, all the theorems presented in [2] and many others can be proved 
in a simple way which is demonstrated in the Lemmas 1 and 2 and Propositions 1-3. The 
conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no 
formal semantics for it is given. 

1. INTRODUCTION 

Even since Zadeh in 1965 introduced his study Fuzzy Sets' [5], various aspects of 
fuzziness has been investigated in many papers. Since a unique Fuzzy Set Theory 
does not yet exist, it is necessary to continue research in this field. Different sci­
ences have their special methods and approaches even to same topic. A philologist 
studies fuzziness from a different point of view to a scientist on engineers. Lakoff's 
approach [1] is linguistic. Matti la 's [2], Rhodes's and Menani's [4] studies are more 
mathematical in nature . Zadeh himself writes in [6]: 

'In the spirit as well as in substance, fuzzy logic and approximate reasoning 

represent a rather sharp departure from the traditional approaches to logic 

and the mathematization of human reasoning. Thus, in essence, fuzzy logic 

may be viewed as an attempt to accommodation with the pervasive reality 

of fuzziness and vagueness in human cognition. In this sense, fuzzy logic 

represents a retreat from what may well be an unrealizable objective, namely 

the construction of a rigorous mathematical foundation for human reasoning 

and rational behavior.' 

Literally, he means that fuzzy logic can not be regarded as mathematics at all, since 
rigorousness is one of the fundamental features in mathematics. Nevertheless, the 
most important methods in obtaining results in various fuzzy logical inference sys­
tems are mathematical ; hence, the author tends to assume that fuzzy logic is a new 
idea rather than a real rival to mathematics and, therefore, can be mathematicized. 
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Another reason for this conclusion is that mathematical reasoning on fuzzy inference 
systems, the metamathematics of fuzzy logic, is classical Boolean logic. Statements 
concerning fuzzy logic are either true or false, they are not vague. 

From the mathematical point of view it is relevant to set the question: is fuzzy 
logic an exact theory of fuzziness or may the theory itself be somehow fuzzy? The 
deep conviction of the author is that , to be mathematically acceptable, fuzzy logic 
must be an exact theory. Fuzzy logic is the logic of inexact phenomena, but the 
metalogic of fuzzy logic is two-valued. 

Here we study as an example an investigation on hedges (such as 'very', 'more 
or less', ' rather ' , etc.) called L P C + C h Calculus (cf. [2]), which is an a t tempt to 
introduce linguistic objects to mathematical logic without defining them mathemat­
ically. Similarly as the problems of classical logic can be reduced to the examination 
of Boolean algebras, the discussion of any new type of non-classical logic leads to 
the examination of an adequate type of abstract algebra. We prove that the alge­
bra corresponding to L P C + C h Calculus is an abstract algebra which we call, for 
want of anything better, ET-algebra (the letters ET standing for Extra Terrestri­
al, since L P C + C h Calculus, being two valued, is somewhat unusual in the fuzzy 
framework). We give another proof for the results in [2] and establish many others. 
After our algebraic analysis we compare L P C + C h Calculus with three other studies 
on hedges. Because of the lack of mathematical exactness on the foundations of 
L P C + C h Calculus, quite odd results arise. 

A symbol := which we often use abbreviates a frase 'is defined by' and iff abbre­
viates 'if and only if. 

2. ON ET-ALGEBRAS 

Def in i t ion 1. An abstract algebra A = (A, A, V, -i. —•, I, Fi , F 2 , . ..) such that A = 
= (A,A,V,->,—>) is a Boolean algebra and the operations I, F i , F 2 , . . . , defined on 
A, fulfil the axioms 

1(a) = a, (1) 

Wk(aAb) = Wk(a)AWk(b), (2) 

Wk+1(a)<Wk(a)<---<a, (3) 

F fc(l) = 1 (the unit of A), (4) 

for any a, b £ A, k G N, is called ET-algebra. We omit index and write F for Wk 

when this causes no confusion. The dual F* of an operation F is defined by 

F*(a) = -.lF(-.a) for any a £ A. (5) 

If for an operation F holds 

F(F(a)) = F(a) for any a £ A, (6) 

we say that F is idempotent. 
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Remark 1. A direct consequence from (2), (3), (4) and (6) is that for any idempo-
tent operation F, the algebra A = (-4, A, V, -». —>, F) is a topological Boolean algebra. 
F is the interior operation and its dual F* is the corresponding closure operation. 

Next, we list some properties of ET-algebras. All of them are trivial or almost 
trivial but it will turn out that each of them has a counterpart in [2]. 

Proposition 1. In ET-algebra A hold 

1(a) = T(a) (7 

a<T(a), (8 

F(a)<F*(a) , (9 

if a = 1, F(a) < 6 , then F(6) = 1, (10 

if a = 1, F(a) < F(6), then F(6) = 1, (11 

if a = 1, F(a) < 6, then 6 = 1, (12 

if F(a) = 1, a < F(6), then F(6) = 1, (13 

H(a)<F*(a), (14 

-.P"(-.a) < 1(a), , (15 

n(a)<rn(a), (k<n), (16 
F is isotone, i.e., if a < 6, then F(a) < F(6) (17 

F(a -> 6) < F(a) -> F(6), (18 

F(--a) = -F*(a), (19 

-iF(a) = F ( - . a ) , (20 

- iP (aV6) = -.F*(a)A-iP(6)> (21 

F*(a)VF*(6) = F*(aV6), (22 

F(a) VF(6) < F(a V6), (23 

F* is isotone, (24 

F*(aA6) <F*(a)AF*(6), (25 

if a = 6, then F(a) = F(6), F*(a) = F*(6), (26 

if a = 1, then F(6) = F(a A 6), F*(6) = F*(a A 6), (27 

ff(Aie/^)<Aie/%0. (28 
-"(A,€j«0<A,€/-r*(«i). (29 
Viei*M<X{\/iei°i)> (30 

F(0) = 0 (the zero of A), (31 

¥n(a)<Wk(a), k<n, (32 

(T)k(a)< (F*)n(a), k<n, (33 

F(Fn(a)) < F(F*(a)), F*(Fn(a)) < F*(F*(a)), k < n, (34 

I F ( 6 ) A F ( V i G / a 0 = ] F ( V i G / ^ A a l ) ) , (35 
r ( 6 ) V F * ( A i 6 / a 1 ) = F * ( A i G / ( 6 V a J ) ) , (36 
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where a, b, ai g A, (i El, I an index set), F, Wk, Fn are operations on A and 
F*, F£, F* are their duals, respectively, F 1 : A \ A are defined recursively by 
Fx(a) = F (a ) , . . . , Ffc+1(a) = F(F*(a)), (k, n £ N) and the infinite joins and meets 
in (28), (29), (30), (35) and (36) are assumed to exist in A. 

P r o o f . In Boolean algebras hold a = -r-»a and a < b iff -i& < -ia. Thus, (7) 
and (8) hold. (9)-(16), (19), (20), (26), (27) and (31) are trivial. Let a < b. Then 
a = a A b and hence F(a) = F(a A b) = F(a) A F(6) < F(o). So (17) holds. By (2) 
and (17), F((a -> b) A a) = F(a -> b) A F(a) < F(6), which is equivalent to (18). 
In Boolean algebras holds --(a V 6) = -̂ a A -^6. This implies (21) and (22). Since 
a, b < a V b, we have F(a), F(6) < F(a V b). Therefore, (23) holds. Let a < b. Then 
a V b = b and F*(a) < F ( a ) V F(6) = F*(a V 6) = F (6 ) . Hence, (24) holds. Since 
a A 6 < a, 6 we have F*(a A 6) < F*(a), F*(6) and so (25) holds. Let A; e / a i e x i s t i n 

A. Since F is isotone, we have F ( A ; e / a 0 < ^(ai) for each i g I. If Aie/-^0*) e x i s t 

in A, then trivially (28) holds. By a similar argument also (29) and (30) are valid. 
(32LLollows (3) and (17). (33) we establish by using (8) and (24). Similarly (34). 
Since 6 A (V; e / a i ) — V;e/(frAa.) holds in Boolean algebras, (35) is easy. Similarly 
(36). The proof is complete. D 

3. THE ALGEBRA OF LPC+Ch CALCULUS 

In this section have a better look at LPC+Ch Calculus. The set W of well formed 
formulae of LPC+Ch is constructed such that (i) if A is a wff of LPC, then A is in W, 
(ii) if A, B € W, x is a variable and T : W \ W is a modifier, then T(A), V x A, ~vt 
and A =>- B is in W. (iii) There are no other formulae in W than those defined by (i) 
and (ii). The set of (substantiating) modifiers X < T\ < Ti < . . . is denoted by O 
(for the order relation, cf. [2]). Again we omit index and write T for Tk when there 
is no fear of confusion. The connectives fl, U, ^ , and the quantifier 3 are defined 
in the usual way. The dual T* of a modifier T is a (weakening) modifier defined by 
T*(A) := ^T(-iA), A E W. For these modifiers holds . . . < T*k < • • • < T* < 1. 
Note that A, V, -i. —>, I, F are operations on ET-algebra A, while fl, U, -», =>, 1, T 
are logical symbols in the language of LPC+Ch. The axiom schemata of LPC+Ch 
are the axiom schemata of LPC enriched with the following schemata 

h T(A) => n(A) where T, H are modifiers such that % < T. (AxCh) 

h T(.4) O A, where X is the identity modifier. (Axld) 

The rules of inference of LPC+Ch are those of LPC and the following 

A => B, T(A) h T(B), where T is a modifier or its dual, (MMP) 

h A implies h T(A), where T is a modifier. (RS) 
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Remark 2. We take here the axiomatization of LPC from [3] and not that men­
tioned in [2]. This treatment does not cause, of course, any restriction, since a wff 
A of LPC is theorem in one axiomatization of LPC iff it is theorem in any other 
axiomatization of LPC. We proceed as in [3], pp. 469-473. 

Define on W a relation < such that 

, 4 < I 5 i f h . 4 = > I 3 i n LPC+Ch, (37) 

and, moreover, a relation R.s such that 

A « B if h A => B and h B => A in LPC+Ch. (38) 

Then w is a congruence in W with respect to the connectives n, U, -»,=>. Denote by 
| A | the equivalence class containing A £ W and denote the factor set {|.4| | A £ W} 
by W/ « . Then the algebra A = (W/ « , < , A, V,->,-->), where 

\A\ <\B\ iff h A => 13 in LPC+Ch, (39) 

| A | = |I3| iff Ml < | £ | and |B| < IA|, (40) 

(residuation) are defined 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

Then A is a Q-algebra (i.e., the infinite joins and meets in (45) and (46) exists in 
W/ « ) . Moreover, \A\ = |1 | (the unit of W/ « ) iff h A in LPC+Ch and - . | 1 | := |0| 
is the minimum of W/ « . 

Thus far everything said can be found in [3]. The new part comes in the following. 

Theorem 1. The algebra ACh = (W/ « , <, A,V,- i , -» , I ,Fi ,F 2 , . . . ) , where the 
operations I, F* : (W/ w) -> (W/ « ) are defined by 

I( |A | ) := | J (A ) | and Wk(\A\) := | ^ ( A ) | , A € W, JF* € O, k £ iV, (47) 

is an ET-algebra. 

P r o o f . First we have to show that fm is a congruence also with respect to any 
T GO. Assume A « B, A, B € W. Then h .4 => 5 and h B => .4 in LPC+Ch. 
By (RS), h ^(>1 => 5) and h ^(/5 => A) in LPC+Ch. By equation (18) in [2], 
h T(A => I3) => (-E(^) => .T(I3)) and h ^ ( 5 => A) => (V(B) => .F(A)) hold. 
By Modus Ponens, h JTfyt) => ^ ( 5 ) and h T(B) => ^(>t), hence TY.4) m .F(5). 
Accordingly, the definition (47) is correct, i.e., the operations F on W/ « are well-
defined. Then we establish the ET-axioms. 

and the operations Л (g.l.b), V (l.u.b), -i 
by 

\A\Л\B\ 

\A\W\B\ 

Ы\ 
\л\ - \в\ 

^complement), -

= |AПI3|, 

= \AUB\, 

= Ы\, 
= \л=>в\, 

is a Boolean algebra. Define 

Л ť is a t e r m И l j 

Vť is a t e r m И l ' 

]| := |VxЛ|, 

11 := |Зa?A|. 
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1°: By (Axld), h 1(A) => A, h A => 1(A), so by (39), \1(A)\ < \A\ and \A\ < 
\1(A)\. By (40), \1(A)\ = \A\. This, together with (47), implies I(\A\) = \A\ 
for any \A\ <G W/ » . 

2°: By equation (20) in [2], it holds that h (F(A) H T(B)) => T(A n B) and 
h T((A n B) => jT(^) n F(B)) in LPC+Ch. By (39) and (40) we have 

\T(AnB)\ = \T(A)nT(B)\. (48) 

The^W(\A\K\B\) = W(\AnB\) = \T(AnB)\ = \T(A)nT(B)\ = \T(A)\N\T(B)\ = 
F(|A |) A F(|B|) holds for any \A\, \B\ G W/ w and for any operation F. 

3°: By (AxCh), h T(A) => 1(A) in LPC+Ch, hence \T(A)\ < \1(A)\ = \A\. By 
(47), we have 

W(\A\) < \A\ for any \A\ 6 W/ « , any operation F. (49) 

Let ^ , J f n e O b e such that Tk<Tn. Then fc < n. By (AxCh), h Tn(A) => 
Tk(B) \ft\Tn(A)\ < \Tk(A)\ iffFn(|yl|) < F*(|.4|), \A\ € W/ « , which together 
with (49) implies .. .F f c + i( |^ |) < F*(|.4|) < • • • < |A | , |.4| € W/ » , fc 6 N. 

4°: Let |.4| = |1 | . Then h A. By (RS), h T(A). Hence, |J"(.4)| = |1 | , i.e., F(|A |) = 
|1 | . That is to say F(|l|) = |1 | for any operation F. 

The proof is complete. Q 

Lemma 1. All the (correct) propositions in [2] can be proved using the Theorem 1 
and Proposition 1 only. 

P r o o f . Let us prove as a model the LPC+Ch theorem 

\-r*(AnB)=>(F*(A)nr*(B)) (50) 

Indeed, (50) holds iff \F*(A n B)\ < \T*(A) n T*(B)\ iff W*(\A n B)\) < \T*(A)\ A 
\F*(B)\ iff F*(|A |A|5|) < W(\A\)AW*(\B\), which holds true by (25). The rest part 
can be proved similarly using (7)-(18), (21)-(24), (26), (28)-(34), respectively. • 

Lemma 2. The following are LPC+Ch theorems 

\-F(-iA)&-*r*(A), 
h-^F(-v*)^- i . r ( -v l ) , 
if h .4 , then \~ T*(B)<=>T*(AnB), 

h (F(B) n F(3 x A)) <=> T(3 x(A nB)), x does not occur in B, 

h (T*(B)UT*(MxA))^>Jr*(^x(A^B)), x does not occur in B. 

They follow easily by (19), (20), (27), (35) and (36), respectively. 

The advantages of the algebraic treatment of LPC+Ch are obvious. For example 
one needs 36 steps long deduction for 

h (T(B) U F(A)) => T(A U B), (51) 

which is almost trivial; indeed by (23), F(|.4|) V F(|/5|) < T(\A\ V |5|) iff 
|F(.4) U T(B)\ < \T(A U B)|, which is equivalent to (51). 
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Propos i t ion 2. Let A, B £ W, T e ©. Then 

h (.EL4) U .E(£)) <-> ̂ ( A U B), (52) 

h (;F(.4) => T(B)) <=> T(.4 => 5), (53) 

h CT*(.4) n :F*(ff)) &T*(An B) (54) 

are LPC+Ch theorems if and only if T is identity modifier. 

P roo f , h (l(A)Ul(B))&l(AUB) iffI(L4|)Vl(|#|) = II(L4|V|#D, which is the 
case by (1). Conversely, let (52) hold, A € W, B = - \4 , j7 G O. Then, it holds that 
F(|.4U-»A|) = lAU-nAI = |1 | . By (52), we have that h (T(AU~^A) <=> (T(A)UT(^A)) 
iffIflAU-.Ai) = F(|A |)VF(|-.A |) iff F(| .4|)VF(K4|) = |1 | i f f -^H .4 | ) A-IF(|.4|) = 
10[ iff F(L4|) < — F(J4|) = F(L4|)). But because F(L4|) < \A\ < F(L4|) , we 
conclude that IF(|.4|) = |.4|. The last condition is equivalent to h T(A) <=> A, which. 
is (Axld). Hence, T is identity modifier. 

It is easy to see that if T is identity modifier, then (53) holds. We have to 
establish only 

if h (T(A) => T(B)) => T(A => B), then T is identity. (55) 

This is because h T(A => B) => (J"(A) => ^(5) ) holds by (18). Let A, B E 
W, .E G O, be such that h - £ . Then -. |£ | = |-i#j = |1 | and F(|B|) = \B\ = |0|. 
V/e have h (T(A) => JF(5)) => :F(.4 => £) iff W(\A\) -> F(|5|) < FflAj -> |/3|) 
iff F(|A |) -> |0| < F( |A | - |0|) iff -F(|.4|) < 1?HA\) iff - F H A I ) < F(iAj) iff 
F ( | A | ) < F(|.4|). Again we conclude that T fulfils (Axld), i.e., is identity modifier. 
(54) the the dual statement of (52). 

• 

Proposi t ion 3. Let A 6 W, T G O. Then 

h A if and only if h T(A), (56) 

if h A then \- T*(A), (57) 

if h A thm h / ( > ( ) n r ( 4 (58) 

if h .4, then <r T(A)nA, (59) 

if h .4. thru h . 4 n F ( , I ) . (60) 

P roof . Let h .T(.4). Then 11 j = |jF(.4)| = F(L4j) < | A | < |1 | . Hence, |4j = | l | , 
i.e., h .4. The other part of (56) is rule (RS). To establish (57), assume h A. 
Then | A | = | l j , so h.4j = -i\A\ = |0| and, hence, ^ H A j ) = |0j, or, equivalently, 
->T(-*\A\) = | 1 | The lasl condition is equal to |^*(.4)| = |1 | , which implies h T*(A). 
To demonstrate (58), let r A. "l)\ (56), (57), h T{A), h T*(A). Hence, |.4| = 
\T(A)\ = \T*(A)\ = \l\t which implies \T*(A)C T(A)\ = \T*(A)\ A\T(A)\ = \1\. We 

conclude that h T(A) n.F*(.4) So (58) holds. Similarly we demonstrate (59) and 
(60). • 
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C o r o l l a r y . If -i is a modifier or a dual of a modifier, then LPC-f Ch is inconsistent. 
(Note that the third last line on page 195 in [2] stating that LPC-fCh Calculus is 
consistent is not correct.) 

4. CONCLUSION 

We have studied fuzzy logic inference system called LPC-f-Ch Calculus from a purely 
mathematical point of view. Theorem 1 states that the algebra ofLPC+Ch is an ET-
algebra, hence, all the problems in LPC-fCh can be solved algebraically. This does 
not, however, make LPC-fCh Calculus nonproblematic. Since no formal semantics 
for LPC-fCh Calculus, nor a list of modifiers (the basic notion!) is given, we do not 
have any mathematical definition for such basic concepts as modifier operator or 
hedge (this criticism partly applies to Rhodes's and Menani's study [4], too). They 
rest only on intuitive ideas (for this kind of treatment, see [3], pp. 144). To see what 
kind of difficulties arise let us take three examples. Lakoff [1] and Zadeh [6] studied 
hedges, too, 'anything but ' , 'very likely' and 'very unlikely' among them. Are they 
modifiers also in LPC-fCh Calculus? If so, then e.g. 

'very likely(.4implies.4) and very unlikely (.4implies.4)', 
'(.4imp]ies.4) and anything but(.4implies.4)' 

are deducible statements in LPC-fCh, which sounds very odd. In the study of 
Rhodes and Menani [4] 'not/ is considered as a modifier. The acceptance of this 
modifier into LPC-fCh Calculus has, by the Corollary of Proposition 3, fatal conse­
quences as 

'A and non-,4' 

is a deducible statement in LPC-fCh in that case. We conclude that LPC-fCh 
Calculus as well as fuzzy logic in general must have solid mathematical foundations 
if considered as non-classical mathematical logic. 

(Received March 31, 1993.) 
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