Kybernetika

Jan Vinaf
A syntax directed translation algorithm for ALGOL-like languages

Kybernetika, Vol. 2 (1966), No. 5, (389)--396

Persistent URL: http://dml.cz/dmlcz/124960

Terms of use:

© Institute of Information Theory and Automation AS CR, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124960
http://project.dml.cz

KYBERNETIKA CISLO 5, ROCNIK 2/1966

A Syntax Directed Translation Algorithm
for ALGOL-like Languages

JAN VINAR

This paper deals with the translation of ALGOL-like languages using well-translatable
grammars in the sense of [1], [2]. The notions and symbolism of these papers will be used
without explicit reference. A translation algorithm is presented which, while giving essentially the
same results as the translation algorithms of [1], [2], is simpler and better suited for computer
usage. An example is used to clarify its function.

DEFINITIONS AND NOTATION

We shall be concerned with a pair of grammars G = <{V,, V,, R) and G" =
= (V¥ V¥ R*) generating the languages L<E, S) and L' = (E, S*) respectively.
We suppose that G is well-translatable into G, i.e. that there exist two mappings
TV, UV, -> ViUV and &:R —> R" such that:

(W) (V) = Vi, V) = Vi

(2) if ao :: = boayby ... acb, is the standard form of a rule r € R, then the rule &(r)
has the standard form ¢, i1 = doe(d, ... c,d, where ¢y 1 = 1(ay) and there
exists a permutation m of the set {1,2, ..., k} such that c,, = t(a;) for i =
1,2,...,k,

(3) if x;€G(a;), where a;eV, and y, e G'(c;) where ¢;e VF and S(x;) = §7(»)),
then
S(box,by ... x,by) = S(doy,dy ... vidy) -

THE CANONICAL REDUCTION SEQUENCE [3], [4]
Suppose that e, is a string, e, € E. Then there exists a sequence (e, g, ..., €,

of strings with the following property: for i = 1,2, ..., k there exists a rule v =
= (x::=y)eR and two strings v, w; (possibly empty) such that e, = v;yw,

390

e; = vxw;. Moreover, e,, € V,. Thissequence isa derivation of e, in G). The operation
which produces e; from e;_; is called the reduction of e, to e; by the rule v. If
there exists a rule r by which we can reduce the string ¢ to string d, we say that ¢ is
immediately reducible to d (cgod). The relation ¢ (reducibility) is the transitive
closure of g,.

A sequence of reductions which produces a derivation of e, in G is a reduction
sequence of e,. A pair of reductions of e;_; to e; by the rule r = x; ;. = y, and
of e; to e;4{ by rule x = x, ;. = y, is termed canonical if ¢;_;, = vy W, €; =
= VX Wy = Uy)aWa, €4q = U3XWa, [(v;) 2 (o).

Among all reduction sequences of ¢, there exists at least one in which every two
adjacent reductions form a canonical pair. This is a canonical reduction sequence
of e,.

Note: a) The canonical property of the reduction sequence has the following simple meaning:
every reduction is applied to the leftmost substring of e, that can be reduced, i.e. every initia}
substring is reduced as far as possible before proceeding to the next symbol.

b) A string e, which has more than one canonical reduction sequence is an ambiguity of L.

THE TRANSLATION ALGORITHM

The translation algorithm consists of three parts:

Table construction algorithm which produces a table of correspondence used
by the actual translation algorithm. This table is produced once for ever, then the
other two parts are used independently.

. Syntactic analysis algorithm.

Actual translation algorithm.

—_

w N

Table construction algorithm

a) Let the rules re R and &(r) e R* have the standard forms described in (2).
We define the following operation of bracketing:

(5) We number the symbols of the right part of r (including auxiliary symbols) by the
numbers 1,2, ... from right to left, starting with the last symbol, which is thus
numbered by 1.

(6) To bracket the rule ®(xr) we substitute for c,; the bracket {C,} where n is the
number assigned to q; in (5).

b) The correspondence table has two columns and r rows (r being the number of
rules in ER) In the left column we place the rules ry, r,, ..., r, in any given order;
in the right column, the bracketed rules cb(r,), e ¢(r,) are placed in the same order.

¢} The rules of R are divided into three groups:

(I) The rules whose right part consists of one terminal symbol while the right part
of &(x) contains no symbols from V.

(IT) The rules v such that the right part of the bracketed rule &(r) contains only
brackets {C;} in the same order as the corresponding symbols of the right part
of r.

(III) The rules r such that in the right part of the bracketed rule &(r) either the order
of brackets is different from that of the corresponding symbols in the right
part of r (i.e., the permutation 7 mentioned in (2) is not identical), or symbols
from V¥ are introduced.

Syntactic analysis algorithm

We will assume the existence of an analysis algorithim with the following pro-
perties:

a) for every e, € E it produces a canonical reduction sequence of ¢, and the
corresponding derivation (eg, €y, ..., €,

b) this reduction sequence is produced in exactly m steps, i.e., no steps need be
retraced.

(The analysis algorithm of [2], working as it does on the trial — and — error
principle, does not satisfy condition b), but it can form a basis for the necessary
algorithm. Namely, the reduction sequence can first be obtained in the usual way
and stored, then supplied step by step.)

Let us now consider the i-th step of the algorithm, in which e;_, is reduced to e;
by the rule r,. We define ¢; = I(v;) + 1, m; as the length of the right part of r,,.

The reduction sequence produced by the algorithm can thus be characterized by
the sequence (e, €, ..., €,) and/or by the sequence of number pairs (py, q,).
(P2 42)s -+ s (Pu> 4m)- There is, however, no need to store all of these. (This is one of
the differences between our algorithm and the algorithm of [2]). In fact, at any given
time only one string ¢; and one pair (pj, gq;) will be stored. Let us consider the i-th
reduction of the canonical reduction sequence. This reduction reduces e;_; to e;
by the rule r,,. For reasons of convenience we will divide this step into two substeps.
marked i, and i,. In step i, the string e;_, is searched and the numbers p;, g; and
m; determined. In step i, the string e; is formed and supplants the string €;_,. Thus,,
after the step i,, the string e;_; and the numbers p,, g, are available; after step i,.
there are available the string e; and the pair p;, g;.

The string e; = x;x, ... x, (for j = 1,2,...,n,x;€ V) will be termed the input
string for the translation algorithm. Since, as we have shown, only one such string
is available at any time, there is no danger of confusion.

The actual translation algorithm
This algorithm is actuated alternately with the analysis algorithm. It performs:
mainly the following two functions:

a) The marking of the input string, i.e., assigning to each symbol x, (k =
=1,2,..., n) a superscript (r,, s;) where r, and s, are either both natural numbers.

39%

392

or both zeroes. The result of this operation is the marked input string x{=9 ...

. xi’k,sk)‘

b) Introducing and rearranging symbols in the output string. This is a sequence
Y1¥2)s3 ... of symbols from ¥} produced and manipulated by the algorithm. To be
precise, we shall regard the output string alternately as a sequence of symbols or as
a sequence of “empty places” to put symbols into.

Putting a string x into the output string b means filling the necessary number of
empty places yyyyq ... with the symbols of this string (f is the number of the first
unfilled place) and updating f. Any substring of the output string will be also termed
an output string. All of these conventions will hold also for the temporary storage
string z,z,23 ... used by the algorithm.

Two other notions will serve to simplify the description of this algorithm. Let
e;,_y = vbw, ¢; = vaw (i.e., t,, = (a 1. = b)). Suppose that in the marked input
string, the symbol a has been assigned the superscript (r, s). Then y, ... y, is

1. the output string assigned to a (A(a)),
2. the output string corresponding to b (C(b)). We shall now give a detailed descrip-
tion of the translation algorithm:

1. ey is the input string, I(e;) = n. Put ry =s; = ... =r, =58, =0 Put i=1.

2. Perform step i, of the analysis algorithm.

3. If the rule 1, belongs to group (I), put (x,,) into the output string. Perform step i,
of the analysis algorithm and put r,, = s5,, = f— 1. Go to step 6.

4. If the rule r,, belongs to group (II), find

=min (rys oo Piam=1) > b = MaX (S0 oo Sgihm,—1) -

Perform step i, of the analysis algorithm and put r,, = a, s,, = b. Go to step 6.
5. If the rule 1, belengs tc group (III), then the bracketed rule &(r,,) has the form

w(ag) 17 = do{Cy} dy ... {C,} dy.
Perform the following operations:

a) Put d, into temporary storage.

b) Forj = 1,2,..., k do the following:
ba) Put A(xq:+un—t,) into temporary storage.
bb) Put d; into temporary storage.

¢) Put f=a = min(ry w1 - Fgomi~s)- Put the temporary storage string
into the output string.

d) Perform step i, of the analysis algorithm and put

Foo=a, sg=f~—1.

6. If the syntactical analysis has been completed, then terminate. A(em) is the required
translation. Otherwise raise i by 1 and go to step 2.

EXAMPLE : 393

The operations described are really simple but rather hard to visualize from the formal de-
scription. The following example will serve to illustrate the process of translation.

The languages L — the usual arithmetical expressions with dyadic numbers (containing only
“+ and “x”) and L" — the corresponding expressions in the Lukasiewicz notation, but read
from right to left — are generated, respectively, by the grammars G and G* defined as follows [2]:

Vp={0,1, +,x} Vi="Y
V=) vi- {3
Vo= {p o rs) R N

[.pi

2.p

3.q:

4. g :

S.r i +

6.r =X

1. s =

8. s I = [srs]

It can be shown (cf. [2]) that G is well — translatable into G". The correspondence table (table 1
needs no explanations. Now table 2 describes the whole process of translation of the string
[10 X [110 + 1]). In row O we see the input string ¢, marked in accordance with the first step
of the translation algorithm. ¢, is reduced to ey by the group (1) rule x, = (p : = 1). In accord-
ance with step 3, 7(1) = 1 is put into the output string and the symbol p in ¢, is marked accord-
ingly. Next, e; is reduced to e, by the group (II) rule g ' = p. No change results in the output
string (see step 4), and the symbol q in e, will have the same superscript as p in e;. In fact, the
only changes produced by group (II) rules take place when m; > 1. Then the new symbol
replaces more than one symbol; the strings assigned to them are immediately adjacent and,
by definition, their order need not be changed. Thus the siring assigned to the new symbol is

Table 1.

Number Group T Bracketed &(r)

1
I

n
TTE

@w v o= 50 .0 T

N I Y N
—

, ,
| |
xivjolt |+ 1lole | 1|m s|c | , |
+ . ot X rioluls |y , [iens Lyt | m::.:u o
Tl ol , ol e'w® oo len® o 81
Vel 7 o lx “ ,M ” M L ro.ovﬁ ool lee’ W:,Su oS To.on GO ﬁﬁ.”.m,mm,m“i L1
X etk el 1 L @ol ool [es? wo' o (ool et @ns ool 91
e W R w S.SM S,EW sod ot io.im ro,on &e TN,:LS.OV: st
S . . . s 3
R O R O o |0 Bm (0 eﬁ 0ol ﬁ: L) ic »° ol feol (@S ool ¥
1ii]o x| | o ||y le io.ou wol (ol ol on® :o.on (s'e)! :N.:m;o.ef €1
SRS A L R _,a.sﬂ s.eﬂ wol rcénﬂ_sic 0ol leer lens| l| T
Ly iitsdroluls s | Mm,mwﬁ :che_ e M L Tmiw ,e,on el @od| ol 1T
HEMHHEEME leor DRV 8+ 0tlend nPlool jeer ,.uh:ia_ef o1
, S TS D A e [ol ol 00T |00 |0 0)0 :mﬁu Pl lee? ,Q.:m,aé: 6
, IR L Toé:s.eﬁs.oz 00000 ool |wnd fo,on ol s ool 8
7 <ol 18l S.SM wollool |00 (0'0)0 ?o,o: ,?in ol e fN.:m.S.oz L
e E S,QVH ol oot wotend ol ool ool Jee! ;N.:m;o'oi 9
PN A ool ool ool koot ool Lot fo.oz 0'0) % S,:L ol ¢
ol Vit ¥ 786; ol ol 00T)00 ool [oelloe! lwoX|lo?wol| ¥
i ' € loolloo ! ool o™ lon® ol wol |woel 0o Xizad :,:58.8: €
e MAN Q,SM Toéﬁ @ollonT 00 (ool vl |ooed s.exvs.eo anPlel| T
e woy iséﬂ S,eﬁ S.SH 00 ool Dl ool _aéx-séo and) %21 !
0 . < < ‘, . 0 ! |
v 7 ool looljoon ,8 0 T 000 Jo:)l ool | (ool _i,thaéo wollonll 0
, ,] | T i ,
ot 64 80| Lo T 7 ¢ . * |
| « . R N N B T I IR NN B A * ex | Ty ,ﬁ T | ;
S | td ﬁ h ! i | K | i
o] : :
5
3
uys ynding Surns jndur payien
T AqeL
b:S

formed simply by concatenating these strings and the superscript is formed accordingly. The
reductions 2, 3, 8, 13, 16, 17 are all of this type.

Let us now consider the reduction 4 using the rule ¥4 = (q ! = gp), where the bracketed
D(ry)= (bl = fcl} {cz}). Step 5 of the translation algorithm puts 4(q) and A(p) into tempo-
rary storage and then puts them into the output string again, but in the same order as the corre-
sponding brackets in the bracketed rule @(xy), i.e., A(p) A4(q). In other reductions of this type
(e.g. 18), symbols from Vf are introduced in appropriate places. Finally, e; ¢ € V,,. This terminates
the translation process and y; ...y is the required translation.

Note: Tt is clear that the same procedure could be used for group (II) rules; but the process
would thereby be unnccessarily complicated.

JUSTIFICATION

1t remains to be shown that

(a) the required operations can always be performed
(b) the result is a translation in the sense of [1], [2].

To justify assertion (a), it is sufficient to show that for a group (III) rule r =
= (ap :: = boayby ... a,b) (with &(x) = (¢; i1 = doey ... ¢d,) (no parts of the
output string except A(a,), ..., 4(a,) ate erased in forming A(a,). This follows readily
from the canonical property of the reduction sequence produced by the analysis
algorithm; for any such strings would have to follow A(ay), ..., A(a,) and thus be
the product of subsequent reductions.

Note: There are thus only two reasons for demanding that the reduction sequence be canonical:
to ensure that the aforementioned operation can be performed and to justify the simplified
procedure for group (II). If we modify the algorithm so as to use the full procedure for group (II)
and to include a suitable relocation of symbols threatened with erasure, any reduction sequence
can be used.

To justify (b), let us consider various types of rules used in the reduction sequence.
For a group (I) rule x :: = y clearly C(y) = 1(y) (step 2), so that S*(C(y)) = S().
Suppose now that a group (II) or (III) rule has been used in a reduction. First let
a;eV, fori=1,2 ...,k Then the conditions of (3) are satisfied and S*(C(boa; ...
.. apb) = S(boa, ... ab,). Now let ay, ..., a, be nonterminal symbols once removed
from their terminal equivalents. For all of then the requirements of (3) are satisfied
{the method of proof being similar to that used for group (I) rules) and therefore

S*(C(bﬂal e agby)) = S‘(A(“o)) = S(box; ... xby) s

where x, ..., x, are the said equivalents.
The rest follows by induction on the distance of symbols from their terminal
equivalents.
(Received September 22nd, 1965.)

395

396

REFERENCES

[1] K. Culik: Semantics and Translation of Grammars and ALGOL-like Languages. Kyber-
netika I (1965), 1, 47—49.

2] K. Culik: Well-translatable Gramrars and ALGOL-like Languages. Mimeographed.

(3] J. Eickel: Generation of Parsing Algorithms for Chomsky Type-2 Languages. Bericht
nr. 6401, Tech. Hochschule Miinchen. .

[4] J. Eickel et al.: A Syntax Controlled Generator of Formal Language Processors. CACM 6
(1963), 8, 451 —455.

VYTAH

Syntakticky fizeny pfekladac pro jazyky typu ALGOL

JAN VINAR

V prdci je vyli¢ena modifikace Culikova pfeklddaciho algoritmu z [1], [2], kterd
pracuje misto s grafy s posloupnostmi symbolli, nepouZivd vibec netermindlnich
symbold cilového jazyka a md mensi ndroky na pamdf, ¢imz se zdd vhodnd pro
piipadné strojové pouZiti. Je uveden piiklad ptekladu a je ukdzdno, Ze algoritmus
je vZdy proveditelny a ddvd sprdvné vysledky.

Jan Vinaf, prom. mat., katedra matematiky University P. J. Safdrika, ndm. Februdrového
vitazstva 9, Kosice.

		webmaster@dml.cz
	2012-06-04T12:54:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

