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K Y B E R N E T I K A ČÍSLO 5, R O Č N Í K 2/1966 

A Syntax Directed Translation Algorithm 
for ALGOL-like Languages 

JAN VINAR 

This paper deals with the translation of ALGOL-like languages using well-translatable 
grammars in the sense of [1], [2], The notions and symbolism of these papers will be used 
without explicit reference. A translation algorithm is presented which, while giving essentially the 
same results as the translation algorithms of [1], [2], is simpler and better suited for computer 
usage. An example is used to clarify its function. 

DEFINITIONS AND NOTATION 

We shall be concerned with a pair of grammars G = (Vt, V, 9t> and G* = 
= <V*, V*, 9i*>generating the languages L<E, S> and L* = <£*, S*> respectively. 
We suppose that G is well-translatable into G*, i.e. that there exist two mappings 
i : F p U V„~* V* U V* and <P : 9? -> 91* such that: 

(i) x(vp) c v*, r(V„) <= V,r, 

(2) if a0 : : = bQCi^bx ... akbk is the standard form of a rule r e 9?, then the rule <£(r) 
has the standard form c0 : : = d0Cidx ...ckdk where c0 : : = t(a0) and there 
exists a permutation n of the set {1,2, ..., k\ such that c„(;) = i(a;) for i = 
l,2,...,k, 

(3) if x ;eG (a ; ) , where a ; e V„ and yt e G*(c,) where c; e V* and S(.x;) = S*(y,-), 
then 

S(fc0.v161 ... xkbk) = S*(d0y1d1 ... ykdk). 

THE CANONICAL REDUCTION SEQUENCE [3], [4] 

Suppose that eQ is a string, e0 e E. Then there exists a sequence (c0, e,, ..., e,„) 
of strings with the following property: for i = 1, 2 , . . . , k there exists a rule r = 
= (x '.'. = v) e SR and two strings vh w; (possibly empty) such that e,_1 = y,vw;, 



e; = vtxwt. Moreover, e„, 6 V„. This sequence is a derivation of e0 in G). The operation 
which produces e; from e;_j is called the reduction of e ;_x to e; bj; rhe rule x. If 
there exists a rule r by which we can reduce the string c to string d, we say that c is 
immediately reducible to _" (co0d). The relation Q (reducibility) is the transitive 
closure of Q0. 

A sequence of reductions which produces a derivation of e0 in G is a reduction 
sequence of e0. A pair of reductions of ei_1 to e; by the rule r = xt ".'. = yt and 
of e; to ei + 1 by rule r = x2 '.'. = y2 is termed canonical if e;_j = I'IJ^WJ, e; = 
= v1x1wl = r2y2w2, e ; + 1 = y2x2w2, /(y2) ^ l(vj. 

Among all reduction sequences of e0 there exists at least one in which every two 
adjacent reductions form a canonical pair. This is a canonical reduction sequence 
of e0. 

Note: a) The canonical property of the reduction sequence has the following simple meaning: 
every reduction is applied to the leftmost substring of e0 that can be reduced, i.e. every initial 
substring is reduced as far as possible before proceeding to the next symbol. 

b) A string e0 which has more than one canonical reduction sequence is an ambiguity of L. 

THE TRANSLATION ALGORITHM 

The translation algorithm consists of three parts: 

1. Table construction algorithm which produces a table of correspondence used 
by the actual translation algorithm. This table is produced once for ever, then the 
other two parts are used independently. 

2. Syntactic analysis algorithm. 
3. Actual translation algorithm. 

Table construction algorithm 

a) Let the rules r e 9. and <P(x) e 9t* have the standard forms described in (2). 
We define the following operation of bracketing: 

(5) We number the symbols of the right part of r (including auxiliary symbols) by the 
numbers 1, 2, ...from right to left, starting with the last symbol, which is thus 
numbered by 1. 

(6) To bracket the rule _>(r) we substitute for c.(;) the bracket {C„} where n is the 
number assigned to a ; in (5). 

b) The correspondence table has two columns and r rows (r being the number of 
rules in iR). In the left column we place the rules r., x2, ..., rr in any given order; 
in the right column, the bracketed rules ^(r^, ..., $(xr) are placed in the same order. 

c) The rules of 9i are divided into three groups: 

(I) The rules whose right part consists of one terminal symbol while the right part, 
of <P(x) contains no symbols from V*. 



(II) The rules r such that the right part of the bracketed rule 4>(x) contains only 
brackets {CJ in the same order as the corresponding symbols of the right part 
ofr. 

(III) The rules r such that in the right part of the bracketed rule $(r) either the order 
of brackets is different from that of the corresponding symbols in the right 
part of r (i.e., the permutation % mentioned in (2) is not identical), or symbols 
from V* are introduced. 

Syntactic analysis algorithm 

We will assume the existence of an analysis algorithm with the following pro­
perties: 

a) for every e0e E it produces a canonical reduction sequence of e0 and the 
corresponding derivation (e0, ex, ..., e,„) 

b) this reduction sequence is produced in exactly m steps, i.e., no steps need be 
retraced. 

(The analysis algorithm of [2], working as it does on the trial — and — error 
principle, does not satisfy condition b), but it can form a basis for the necessary 
algorithm. Namely, the reduction sequence can first be obtained in the usual way 
and stored, then supplied step by step.) 

Let us now consider the i-th step of the algorithm, in which ei_1 is reduced to ec, 
by the rule rpj. We define qt = l(v,) + 1, m; as the length of the right part of xpi. 

The reduction sequence produced by the algorithm can thus be characterized by 
the sequence (e0, ex,..., e,„) and/or by the sequence of number pairs (px, qx),, 
(p2, q2), ..., (p„, qm). There is, however, no need to store all of these. (This is one of 
the differences between our algorithm and the algorithm of [2]). In fact, at any given 
time only one string e,- and one pair (pJt q}) will be stored. Let us consider the i-th 
reduction of the canonical reduction sequence. This reduction reduces e,_x to e-v 

by the rule xpr For reasons of convenience we will divide this step into two substeps 
marked ia and ib. In step ia the string e,_x is searched and the numbers ph qt and 
m, determined. In step ib the string e( is formed and supplants the string e,-x. Thus,, 
after the step ia, the string e,_x and the numbers p,, q-, are available; after step ib„ 
there are available the string e; and the pair ph qv 

The string e-, = xxx2 ... x„ (for j = 1, 2, ..., n, Xj e V) will be termed the input 
string for the translation algorithm. Since, as we have shown, only one such string: 
is available at any time, there is no danger of confusion. 

The actual translation algorithm 

This algorithm is actuated alternately with the analysis algorithm. It performs-
mainly the following two functions: 

a) The marking of the input string, i.e., assigning to each symbol xk (k = 
= 1,2,..., n) a superscript (rk, sk) where rk and sk are either both natural numbers. 



or both zeroes. The result of this operation is the marked input string x ( / ' ' s i ) . . . 
v(r,,,st) ... xk 

b) Introducing and rearranging symbols in the output string. This is a sequence 
yty2y$ ••• of symbols from V*produced and manipulated by the algorithm. To be 
precise, we shall regard the output string alternately as a sequence of symbols or as 
a sequence of "empty places" to put symbols into. 

Putting a string x into the output string b means filling the necessary number of 
empty places yfyf+i ... with the symbols of this string ( / is the number of the first 
unfilled place) and updating/. Any substring of the output string will be also termed 
an output string. All of these conventions will hold also for the temporary storage 
string z1z7z3 ... used by the algorithm. 

Two other notions will serve to simplify the description of this algorithm. Let 
-,-_. = vbw, et = vaw (i.e., rp. = (a ;; = b)). Suppose that in the marked input 
string, the symbol a has been assigned the superscript (r, s). Then yr... ys is 

1. the output string assigned to a (A(d)), 
2. the output string corresponding to b (C(b)). We shall now give a detailed descrip­

tion of the translation algorithm: 

1. e0 is the input string, l(e0) = n. Put rt = s t -= .. . = r„ = s„ = 0. Put i = 1. 
2. Perform step ia of the analysis algorithm. 
3. If the rule rp. belongs to group (I), put %(x9) into the output string. Perform step ib 

of the analysis algorithm and put ra. = sa. = f — 1. Go to step 6. 
4. If the rule rp. belongs to group (II), find 

a = min(r4J, ..., r(J. + ,„._1), b = max(s,., ..., sa. + m._1). 

Perform step ib of the analysis algorithm and put rq. = a, sa. = b. Go to step 6. 
5. If the rule rp. belongs tc group (III), then the bracketed rule ->(*-,) has the form 

< _ . ) : : =d0{ctl}di...{ctk}dk. 

Perform the following operations: 

a) Put d0 into temporary storage. 
b) For j = 1, 2 , . . . , k do the following: 

ba) Put A(xa.+„,,._,.) into temporary storage. 
bb) Put dj into temporary storage. 

c) Put f = a = min( r . i + m i + t l , ..., r i i + m ._ ( f t). Put the temporary storage string 
into the output string. 

d) Perform step ib of the analysis algorithm and put 

'"«.• = «. s«, = / - 1 • 

6. If the syntactical analysis has been completed, then terminate. A(em) is the required 
translation. Otherwise raise i by 1 and go to step 2. 



EXAMPLE 

The operations described are really simple but rather hard to visualize from the formal de­
scription. The following example will serve to illustrate the process of translation. 

The languages L — the usual arithmetical expressions with dyadic numbers (containing only 
" + " and "X ") and L — the corresponding expressions in the Lukasiewicz notation, but read 
from right to left — are generated, respectively, by the grammars G and G defined as follows [2]: 

VP 

va 

v„ 

= {0, 1, +, x} 
= {u} 
= {P, q, r, s} 

K = VP 

K = {;} 
V* = {a, b, c, d} 

1. p :: = o a :: = o 
2. P :: = 1 a :: = 1 

з. q :: = p ь :: = a 

4. q :: = qp ь :: = ab 

5. r :: = + c :: = + 

6. r :: = x c :: = x 

7. s :: =  d :: = ь 

8. s :: = [srs] d :: = d;dc 

It can be shown (cf. [2]) that G is well — translatable into G*. The correspondence table (table 1) 
needs no explanations. Now table 2 describes the whole process of translation of the string 
[10 X [110 + 1]]. In row 0 we see the input string e 0 marked in accordance with the first step 
of the translation algorithm. e0 is reduced to et by the group (I) rule x2 = (p '•'. = 1). In accord­
ance with step 3, T(1) = 1 is put into the output string and the symbol p in el is marked accord­
ingly. Next, ex is reduced to <?2 by the group (II) rule q ','. = p. No change results in the output 
string (see step 4), and the symbol q in e2 will have the same superscript as p in et. Tn fact, the 
only changes produced by group (II) rules take place when mi > 1. Then the new symbol 
replaces more than one symbol; the strings assigned to them are immediately adjacent and, 
by definition, their order need not be changed. Thus the string assigned to the new symbol is 

Table 1. 

Number Group Г- Bracketed Ф(t) 

1 
2 
3 
4 
5 
6 
7 
8 

11 
III 

11 
III 

p : 
p : 
q : 
q : 
r ; 
r ; 
s ; 
s ; 

: = o 
: = ì 

: = p 
: = qp 
: = + 

: = q 
; = [srs] 

a ; 
a : 
ь : 
ь : 
c ; 
c ; 
d ; 
d ; 

: = {c,} 
: - {q} 
: = {c,} 
: = {c,}{c2} 
: = {c j 
: = {c,} 
: = {CЛ 
: = {c2};{c4}{c3} 
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formed simply by concatenating these strings and the superscript is formed accordingly. The 
reductions 2, 5, 8, 13, 16, 17 are all of this type. 

Let us now consider the reduction 4 using the rule £4 = (q :: = qp), where the bracketed 
<£(?4) = (b :: = { c j {c2})- Step 5 of the translation algorithm puts A(q) and A(p) into tempo­
rary storage and then puts them into the output string again, but in the same order as the corre­
sponding brackets in the bracketed rule #(£4), i.e., A(p) A(q). In other reductions of this type 
(e.g. 18), symbols from V* are introduced in appropriate places. Finally, e19 e Vn. This terminates 
the translation process and yr ... y10 is the required translation. 

Note: It is clear that the same procedure could be used for group (II) rules; but the process 
would thereby be unnecessarily complicated. 

JUSTIFICATION 

It remains to be shown that 

(a) the required operations can always be performed 
(b) the result is a translation in the sense of [1], [2]. 

To justify assertion (a), it is sufficient to show that for a group (III) rule r = 
= (a0 : : = bga^i ... akbk) (with $(r) = (c0 : : = d0c1 ... ckdk) (no parts of the 
output string except A(a1),..., A(ak) are erased in forming A(a0). This follows readily 
from the canonical property of the reduction sequence produced by the analysis 
algorithm; for any such strings would have to follow A(at),..., A(ak) and thus be 
the product of subsequent reductions. 

Note: There are thus only two reasons for demanding that the reduction sequence be canonical: 
to ensure that the aforementioned operation can be performed and to justify the simplified 
procedure for group (II). If we modify the algorithm so as to use the full procedure for group (II) 
and to include a suitable relocation of symbols threatened with erasure, any reduction sequence 
can be used. 

To justify (b), let us consider various types of rules used in the reduction sequence. 
For a group (I) rule x . : = y clearly C(y) = x(y) (step 2), so that S\C(y)) = S(y). 
Suppose now that a group (II) or (III) rule has been used in a reduction. First let 
ai G Vt for i = 1, 2, ..., k. Then the conditions of (3) are satisfied and S*(C(b0at ... 
... akbk) = S(fe0

ai ... akbk). Now let ay, ...,ak be nonterminal symbols once removed 
from their terminal equivalents. For all of then the requirements of (3) are satisfied 
(the method of proof being similar to that used for group (I) rules) and therefore 

S*(C(Vi ••• «A) ) = S'(A(a0)) = S(b0xt ...xkbk), 

where xu ..., xk are the said equivalents. 
The rest follows by induction on the distance of symbols from their terminal 

equivalents. 
(Received September 22nd, 1965.) 
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Syntakticky řízený překladač pro jazyky typu ALGOL 

JAN VINAŘ 

V práci je vylíčena modifikace Čulíkova překládacího algoritmu z [1], [2], která 

pracuje místo s grafy s posloupnostmi symbolů, nepoužívá vůbec neterminálních 

symbolů cílového jazyka a má menší nároky na paměť, čímž se zdá vhodná pro 

případné strojové použití. Je uveden příklad překladu a je ukázáno, že algoritmus 

je vždy proveditelný a dává správné výsledky. 

Jan Vinař, prom. mat., katedra matematiky University P. J. Šafárika, nám. Februárového 
víťazstva 9, Košice. 
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