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K Y B E R N E T I K A - V O L U M E 23 (1987), N U M B E R 1 

EXISTENCE CONDITIONS FOR STABILIZING AND 
ANTISTABILIZING SOLUTIONS 
TO THE NONAUTONOMOUS MATRIX RICCATI 
DIFERENTIAL EQUATION 

SERGEJ S. VOJTENKO* 

Several necessary and sufficient conditions for the existence of stabilizing and antistabilizing 
solutions of the nonautonomous matrix Riccati differential equation are presented. Some proper­
ties of these solutions are investigated. The results are applied to the optimal stabilization problem. 

1. INTRODUCTION 

In this paper several necessary and sufficient conditions for existence of stabilizing 
and antistabilizing solutions to the nonautonomous matrix Riccati differential 
equation (RDE) are presented. The conditions are reduced to existence of a solution 
to the corresponding Riccati type matrix inequality, or to existence of exponential 
dichotomy for the associated Hamiltonian linear differential system, or to con­
vergence of the Newton type iterative algorithm for construction of the stabilizing 
or antistabilizing solution. 

Existence of extremal solutions to the nonautonoms RDE is a well-known fact 
(history of the problem and a list of references may be found in fundamental papers 
[1], [2]). In the present paper it is shown that, in the class of all bounded solutions 
to the nonautonomous RDE, the stabilizing solution is the maximal solution and 
the antistabilizing solution is the minimal one (for the autonomous RDE these 
properties of extremal solutions were reported in [3], [4]). Asymptotic properties 
of the extremal solutions to the nonautonomous RDE are investigated in the paper 
and the sets of the associated attracting solutions are indicated. 

The stabilizing or antistabilizing solution to the RDE turns out to be very useful 
in many optimal control design and identification problems [5 — 10]. We shall apply 
the obtained results to the linear nonstationary control system optimal stabilization 
problem under a quadratic performance criterion of arbitrary form. This problem is of a 
great interest in the theory of optimization and invariance of linear control systems 

* The work was performed while the author was visiting the Institute of Applied Mathematics 
and Computer Technique, Comenius University, Bratislava, Czechoslovakia. 
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(cf. [7]). It is also useful for practical optimal controller design, for example, in 
the minimum energy ship steering problem (see [8]). 

As it was shown in [9] (see also [10]), existence of an optimal stabilizing non-
stationary feedback control (with respect to indefinite quadratic functional) is equi­
valent to existence of a stabilizing solution to the RDE. In [9], [10] a method of 
successive approximations for finding the stabilizing solution to the RDE and the 
nonstationary optimal stabilizing control is proposed, but its convergence was 
proved only for performance criterion of positive definite form. The method, also 
known as the Newton-Raphson iterative method (cf. [5]), results in constructing 
successive iterations defined as a unique bounded solution to the corresponding 
matrix Lyapunov differential equations. For a special case the method was suggested 
independently in [11] and developed in [12], [3]; see [5], [13] for further references. 

The obtained necessary and sufficient conditions show the universal character of 
this iterative algorithm in the sense that convergence of the stabilizing iterations is 
equivalent to existence of an optimal stabilizing control (in the case that the criterion 
is of indefinite form). So convergence of this algorithm can serve not only as a criterion 
on existence of an optimal stabilizing control, but also as an effective method how 
to construct it. Another useful property of the obtained conditions is the possibility 
to characterize the class of all quadratic functionals for which an optimal stabilizing 
control exists. The family of these quadratic functionals consists of all functionals 
with such quadratic form that can be represented as a sum of positive definite form 
and derivative along the system trajectories of another quadratic form. 

2. NOTATIONS AND DEFINITIONS 

Let C„,„ denote the set of real continuous n x m matrix functions, bounded 
on R1, and C„: = C„„.The matrix inequality Z ^ 0 for ZeCn denotes that Z = ZT 

and xTZx ^ 0 for all xeR", teR1. The inequality Z ^ Yfor Ye C„ means that 
Z — Y2j 0. The symbol T denotes vector and matrix transposing. /„ is the unit 
n x n matrix. 

The Euclidian norm |z | for a symmetric matrix Z is the absolute value of the 
numerically largest eigenvalue of Z. Thus for every Z = ZT eC„ we have —sln :£ 
^ Z(t) ^ sl„, t e R1, where 5 = sup \Z(i)\. By 

t 

D„+ := {Z e C„ | 3c e (0, + oo) : c/„ ^ Z(t), t e S1} , 

D~ : = { Z e C 9 | 3 d e ( - o o , 0 ) : Z(t) g dl„, teR1} 

we denote the sets of positive definite and negative definite on R1 matrix functions 
respectively. 

Let V~p(t, a) and V„+«(t, a) be real continuous n x n matrix functions defined 
by the following conditions: There exist constants f, g, p, qe (0, + oo) such that the 
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matrix inequalities 
Vn~% of V~p(t, a) ^ jexp (-p(t - a))I„ , 

g exp (q(t - a)) /„ g V+q(t, a)T V+q(t, a) 

hold for all a e Rl and te[a, + oo). 
Let XF(t, a) be a transition matrix of a linear differential system with the coefficient 

matrix E defined by equations 

— Xp(t, a) = F(t) Xp(t, a) , Xғ(a, a)=In, aє 
åt 

tє[a, + co). 

By 

£+в 

ЙГ-P. + 4 

= {.Р б С„ | Хр(1, а) = Р7'(<, а)} , 

= {РвСп\ХР(1,а)= у*%а)}, 

= {РеСп\ ХР(1, а) = у-% а) + У+% а)} , 

we denote the sets of matrix coefficients of the exponentially stable, exponentially 

antistable and exponentially dichotomy nth order linear differential systems respect­

ively. 

The pair of matrices A e C„, D eC„>m is called a stabilizable (antistabilizable) pair, 

if there exists a matrix function M e C,v„ such that A + DMT e E~p (A + DMT e 

e E+q respectively). 

We consider the nonautonomous matrix RDE 

(2.1) K[Z] (t) = 0, tefí1, 

K[Z] : = — + ATZ + ZA + ZJ5Z + C, 
1 J dř 

and the associated Hamiltonian linear differential system 

dz 
(2.2) J — = H(t)z, tє, 

dř W 

J : = 
0 - / „ 
/„ 0 

Я : = 
C A1 

A 5 

where x, y e R", A,B,Ce C„ and B = BT, C = CT. 

The matrix function Z e C„ is called a stabilizing (antistabilizing) solution of the 

RDE (2.1), if K[Z] (t) = 0,te R1, and A + BZ e En

p (A + BZ e E+q respectively). 

3. FORMULATION OF THE MAIN RESULTS 

Theorem 1 (cf. [9]). Let C e D+, B = -DDT, D e C„,„ and (A, D) is a stabilizable 

pair (antistabilizable pair). Then there exists a sequence of matrix functions Zk e D+ 

(Zk e D~), for every k = 1, 2, 3,.. ., defined as a unique (bounded on Rl) solution 
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of the matrix Lyapunov differential equation (LDE) 

(3A) _?[Z] (») = 0 , teR1, 

Lk[Z] := ~ + (A + BZk_,yz + Z(A + BZk^) + C- Z.^BZ,., = 
at 

= *£ + (A + DMT_,)T Z + Z(A + DMT_,) + C + Mk_, M T _ , , 
at 

where Mk:= —ZkD, k= 1 ,2 ,3 , . . . , and M0eC,lym is an arbitrary stabilizing 
(A + DMje£ , ; p ) (resp. antistabilizing (A + DMT

0 e £+*)) matrix function. The 
sequence Zk has the following properties 

(3-2) Zk+1(t)SZk(t) (Zk+1(t)^Zk(t)), teR1 

A + BZke £„_p (A + BZk e £+«) , 

Zk(t) -> Z(t), as k -> + oo 

where the convergence is uniform on every finite subinterval of R1, and the limit 
matrix function Z e D„+ (Z e D„~) is a stabilizing (resp. antistabilizing) solution to 
the RDE (2A). 

Theorem 2. Let B = - DDT, D e C„>m, and (A, D) be a stabilizable pair (anti-
stabilizable pair). Then the following statements are equivalent: 

1) A stabilizing (resp. antistabilizing) solution to the RDE (2.1) Z = ZT e Cn 

exists, defined by condition A + BZ e E~v (A + BZ e E+"). 
2) There exists a matrix function Y = YT e C,„ satisfying condition K[Y~\ e D„+ 

(X[Y]eD,7) . 
3) The Hamiltonian linear differential system (2.2) possesses an exponential 

dichotomy, i.e. J ^ I f e £ 2 7 ' + p ( J _ 1 H e £ 2 7 ' + 9 ) . 
4) For every matrix function M0 e C„_m such that A + DMT

0 e £„"" (A + DMT
0 e 

e £+ 4) the sequence of matrix functions Zk = ZT e C„ exists, where for every k = 
= 1, 2, 3 , . . .the matrix function Zk(t) is a unique bounded on R1 solution to the LDE 
(3.1), satisfying conditions (3.2), for which the matrix function Z = Z e C„ is a stabi­
lizing (resp. antistabilizing) solution to the RDE (2.1). 

Theorem 3. Let the conditions of Theorem 2 be fulfilled and let the matrix function 
Z = Z T eC„ be a stabilizing (antistabilizing) solution to the RDE (2.1). Then the 
following statements are true: 

1) For any bounded on B1 solution to the RDE (2.1) Z = ZT eC„, the matrix 
inequality Z(t) g Z(t) (Z(t) ^ Z(t)) holds for all teR1. 

2) For any solution to the RDE (2.1) Z = ZT, defined on the semiaxis ( — oo, a] 
([a, + oo)) and satisfying for some r > 0 the matrix inequality 

(3.3) (Z- Z)B + B(Z - Z) ^ 2p(r - 1) /„ , t e R1 , 

((Z - Z)B + B{Z - Z)S 2q(r - 1) /„ , te R1) , 
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W e h a V £ lim (Z(() - Z(()) = 0 (lim (Z(t) - Z(t)) = 0) . 
t -»~CO f-» + CO 

Theorem 2 gives three different necessary and sufficient conditions for existence 
of stabilizing or antistabilizing solution to the RDE. Statement 4) has a constructive 
nature and can be checked practically. It describes an iterative algorithm for construct-
ing the stabilizing or antistabilizing solutions and shows that its convergence may 
be used as a criterion of their existence. 

Indeed, let for some stabilizing matrix function M'0 stabilizing iterations Z'k con­
verge for k —> co to the matrix function Z, satisfying the stable condition A + BZ e 
e E;p. Then Z is a stabilizing solution to the RDE. In the opposite case, if iterations 
Z'k do not converge, or if the limit matrix function does not satisfy the stable condition, 
the stabilizing solution to the RDE does not exist. Actually, if we suppose that the 
stabilizing solution Z exists, then from .condition 4) we conclude that iterations Zk 

must convergence to Z for every initial stabilizing matrix function M0, including M'0, 
and so we get a contradiction. 

This iterative Newton type algorithm is known to have a quadratic rate of con-
vergency (cf. [1], [5]), but its computational efficiency depends on the availability 
of an initial stabilizing matrix function and on the method of the numerical solution 
to the LDE [12—15]. The same conclusions are valid if we replace the stabilizing 
solutions by antistabilizing ones. 

Theorem 3 confirms that the stabilizing and antistabilizing solutions, if they exist, 
are the maximal and minimal bounded on M1 solutions to the RDE respectively. 
Moreover, the stabilizing solution attracts other solutions for t —> - c o , while the 
antistabilizing does so for t ~* +oo. Observe that the matrix inequality (3.3) will be 
fulfilled for any solution Z(t) of the RDE (2.1) such that Z(a) ^ Z(a) for some 
initial moment a e R1, if Z(f) is a stabilizing solution, or Z(a) :£ Z(a), if Z(t) is an 
antistabilizing solution respectively. 

4. PROOF OF THE THEOREMS 

Lemma 1. (cf. [14] p. 20). Let A e E;p (A e £„+9) and C = CT e C„. Then the LDE 

(4.1) L[Z](r) = 0 , teR1, 

L[Z] : = — + ATZ + ZA + C, 
dt 

has the unique bounded on R1 solution Z = ZT e Cn, defined by the formula 

Z(t) = f " XA(s, tf C(s) X/s, t)ds, teR1, 

(Z(t) = I" XA(s, tf C(s) XA(s, t)ds, te R1). 
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For any other solution to the LDE (4.1), say Z(t), we have Z(t) - Z(t) -> 0 as t ~* 
-* - c o ((-» +co resp.). Moreover, if CeD*, then Z e D„+ (ZeZ>~ resp.), and 
if C e D,7, then Z e D,7(Z e £ + resp.). 

Lemma 2. (cf. [10] p. 62). The condition A e E~"p holds if and only if there exist 
matrix functions C e D* and Ze D* satisfying the LDE (4A). 

Lemma 1 contains, in the form needed below, some known facts about the LDE 
solutions. The proof is evident and may be found, for example, in [14, p. 20], Lemma 
2 is the well-known Lyapunov lemma on an exponential stability, see [10, p. 62] or 
[14, p. 16]. 

Theorem 1 for the case (A, D) is a stabilizable pair and a more special form of the 
RDE were proved in [9. p. 217], see also [10, p. 176]. In the case that (A, D) is an 
antistabilizable pair Theorem 1 can be proved in an analogical way. For the same 
reason Theorems 2 and 3 will be proved only for the stable case. 

Proof of Theorem 2. We shall prove at first the implication 2) =>4)=>1) =>2), and 
then the equivalence of statements 1) and 3). 

Let statement 2) be true, i.e. the matrix function Y = YT e C„ exists, which satisfies 
condition K[Y] e D„+. Let us consider the following auxiliary matrix Riccati differen­
tial equation (ARDE) 

(4.2) KY[V] (t) = 0 , t e W 1 , 

KY[V] := — + (AT + YB) V + V(A + BY) + VBV + K[Y] . 
dt 

As (A, D) is a stabilizable pair, there exists matrix function M e C„ for which 
A + DMTeE;p. Then for Mr := M + YD we have (A + BY) + DMT

Y = A + 
+ DMT e E;p, and (A + BY, D) is a stabilizable pair, too. 

We see now that all conditions of Theorem 1 are fulfilled for the ARDE (4.2), so 
the sequence of matrix functions Vk exists, which for every k = 1,2, 3, ... is the 
unique bounded on ff1 solution of the auxiliary LDE 

Liy[V] (t) = 0 , teR1 , 
dV 

4 ( 7 ] := — + (A + BY+ BVk.1fV+ V(A + BY+ BVk.,) + K[Y] - Vk^BVk.t, 
dt 

and Vk -* Fa s k -> +co. Here Fe D+ is a stabilizing solution to the ARDE (4.2) 
that means 

(4.3) KY[V] (t) = 0 , ( e f l 1 , A + B(Y + V)e £„"p . 

It is not difficult to check that KY[V] = K[V + Y] and Lk
y[V] = Lk[Y + V]. 

Denoting Z := Y + F and Zk := Y + Vk, k = 1, 2, 3 , . . . , we can see from (4.3) 
that Z is a stabilizable solution to the RDE (2.1), and statements 4) and 1) of Theorem 
2 are proved. 

The next step is to prove statement 2), when statement l) is true and the stabilizable 
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solution to the RDE (2.1) Z exists. As A + BZe En ", then according to Lemma 1 
the LDE 

dW 
(4.4) 

dí 
+ (A + BŻ)T W + W(A + BZ) + I„ = 0 , tєR1, 

has a unique bounded on M1 solution We D„+. Let Y: — Z — cW for arbitrary positive 

number c. Then using that Z is a solution to the RDE (2.1) and W is a solution to the 

LDE (4.4), we have 

c\W 
K[Y] = K\Z] - c — - c(A + BZ)T W - cW(A + BZ) + c2WBW = c{I„ + cWBW). 

dt 

From here we conclude that for small enough positive c it will be K[Y] e ©*, and 

statement 2) is proved. 

Now we shall prove an equivalence of statements l) and 3). The proof is based 

on well-known results (cf. [2], [6]) binding solutions to the RDE (2.1) and the 

Hamiltonian system (2.2), and is reduced according to the scheme for autonomous 

case. 

Let statement 1) be true and Z = ZT e C„ be a stabilizable solution to the RDE 

(2.1). Then, it is a known fact (cf. [2], [6]) that the transition matrix X(t, a) defined 

by the equations 

— X(t, a) = (A + BZ)X(t,a), X(a,a)=I„, o e f i 1 , te[a, + o o ) , 

and the matrix function Y(t) : = Z(t)X(t), generate n linearly independent solutions 

to the Hamiltonian system (2.2) z\(t),..., z l(t), which are 2n-vector columns of the 

In x n matrix function | J ( r ) T , Y(0T||T- Due to conditions A + BZeE~p and 

ZeC„, the vectors zL(r),..., z"_(t) form a family of exponentially decreasing so­

lutions to the system (2.2). 

To get the family of exponentially increasing solutions, let us consider the linear 

transformation z = Sw with the Lyapunov matrix function S (S is called a Lyapunov 

matrix function, if S, S'1, dSJdt e C„) where 

M, V Є , 
h o \u 

S • = , w = 
z In\ I v 

Then the transformed system (2.2) takes the form 

(4.5) ~ = (A + BZ)u + Bv, 
dř V 

= - (A + BZ)r v, tєR1 . 

The second equation is independent of the first variable u and has a coefficient 

matrix, conjugated with the exponentially stable matrix function A + BZ. Therefore 

— (A + BZ)TeE^p, and the second equation gives rise to n linearly independent 
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exponentially increasing solutions w\(t),..., w+(f) to the system (4.5). Due to the 
properties of the Lyapunov matrix function S(t), the same will hold for the solutions 
zl

+(t) = S(t)_1 w+(f) of the Hamiltonian system (2.2). 
The exponentially decreasing solutions zL(f) and exponentially increasing solutions 

zl
+(t), i = 1, . . . , n, form a basis for the solutions to the linear differential system 

(2.2). Therefore every solution to (2.2) may be written as a sum of linear combinations 
of these two families of solutions, and its transition matrix in the formZj-in(t, a) = 
= V2-n

p(t, a) + V2\
p(t,a), hence J-'He E2

P-+P. 
In the opposite side, let statement 3) be true and the system (2.2) have an exponen­

tial dichotomy. It is easy to see that if z(i) = |x(f)T, J ,( t)T |T 1S a s°lu t ion to the system 
(2.2), then w(t) = | | -y(r)T , x(f)T||T is a solution to the conjugate system dw/df = 
= - ( J _ 1 H ) T w , teR1. As both solutions satisfy the following equality for their 
Euclidian norms |z(f)|2 = |w(f)|2, t e R1, the system (2.2) together with every ex­
ponentially increasing solution must have the corresponding exponentially decreasing 
solution. 

Therefore n linearly independent exponentially decreasing solutions of (2.2) z'_(f), 
i = 1,...,« exist, which form the 2n x n matrix function |zL(f), . . . . z_(f)|| = : 
= : \\X-(t)r, Y-(t)T|T. Let X_(f) and Y_(f) be the upper and lower n x n blocks 
of this matrix function. Suppose that det X_(t) + 0, t e R1. Then the matrix function 
Z(t) := Y_(t) X_(f)_ 1 e C„ is a solution to the RDE (2.1) (cf. [2], [6]). 

Consequently, the matrix function X_(t), consisting of exponentially decreasing 
solutions to (2.2), satisfies the equation 

— = (A + BZ) X , teR1 . 
At v 

Hence A + BZ e E~P, and Z is a stabilizable solution to the RDE (21). 
To justify the assumption det X„(t) + 0, we note that if there exists a nonzero 

vector c e R", such that X^(t) c = 0, then from the system (2.2) we can conclude that 

— = -ATw, DTw = 0, teR1, 
At 

where w(t) := Y_(i) c. The last equalities are in contradiction with the assumption 
on stabilizability of the pair (A, D). • 

P roof of T h e o r e m 3. To prove statement 1) we note that from Theorem 2 
follows existence of a sequence of the matrix functions Zk = Z[e Cn, which are the 
solutions to the LDE (3.1) and satisfy conditions (3.2). If Z = ZT e Cn is a solution 
to the RDE (2.1), then the difference Zk — Z will be a solution to the following LDE 

L\Zk-\ - K[Z] = I (Zk - Z) + (A + BZ^f (Zk - Z) + 
at 

+ (Zk-Z)(A + BZk.1) + Tk = 0, 
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teR1, k = 1,2, 3, . . . . Here Tk := (Zfc_. - Z)r DDr(Zk_l - Z) = 0, teR1, and 
A + BZk_x e £„"". From Lemma 1 we conclude thatZ t - Z^0,teR1,k = 1, 2, 3, 
.... Then \im Zk - Z = Z - Z ^ 0, t e R1, and statement l) is proved. 

H - + CO 

Let now Z = ZT e C„ be a stabilizing solution and Z = ZT e C„ be an arbitrary 
solution to the RDE (2.1), and inequality (3.3) hold. Firstly observe that the diffe­
rence Z — Z is a solution to LDE 

(4.6) L[Y] : = — + (A + \B(Z + Z))T Y + Y(A + \B(Z + Z)) = 0, teR1 . 
dr 

Hence, to prove statement 2) it suffices to show that A + \B(Z + Z) e En
p and use 

Lemma 1. 
From the condition A + BZeE~p and Lemma 2 we conclude that a matrix 

function Z+ = Z\ e Dn exists, which is a solution to the LDE 

— + (A + BZ)r Y+Y(A + BZ)+In = 0, teR1, 

and satisfies the matrix inequality Z+(t) ^ zln, where z e ( 0 , ljp). This equation 
can be also written as 

(4.7) L[Y] + T[Y] = 0 , teR1. 

where L[Y] is defined by (4.6), and T[Y] := \((Z - Z) BY + YB(Z - Z)) + /„. 
From inequality (3.3) for Y= Z + we have 

T[Z+] ^ iz((Z - Z)B + B(Z- Z)) + /„ ^ (zp(r - l) + 1) /„ ^ r /„ , 

teR1, 

that means T[Z+] e D„+. 
Now we have two matrix functions Z + , T[Z+] £ D + , which satisfy the LDE (4.7). 

From Lemma 2 we conclude that A + \B(Z + Z)e E~~, and statement 2) is proved. 

D 

6. THE OPTIMAL STABILIZATION PROBLEM 

Let FeCn, GeC„;„, and S.7>ra := {Me C„>ra | F + GMTe £„~p} be the set of 
stabilizing matrix functions. Using Lemma 1, for every M e S~m we can construct 
the unique bounded on R1 solution to the following parametric LDE 

L[Z, M ] := — + (Fr + MGT) Z + Z(F + GMT) + C[M] = 0 , t e f l 1 , 
dr 

defined by the formula 

Z[M](»= r°0XF+GMr(s,t)TC[M](s)XF+GMT(s,t)ds, teR1, 

where C[M] := P + QMT + MQr + MRMr, P = P T e C,„ Q e C„;H1, R = RT e Cm. 
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We shall focus our attention on searching an optimal stabilizing matrix function 
M, which delivers minimum (in the sense of matrix inequalities) to the solutions 
Z[M] on the set §~m. It is easy to see that this problem is equivalent to the standard 
linear quadratic infinite time optimal regulator problem. 

Indeed, let us consider the control system 

(51) ~ = F(t) x + G(t)u, teR1 , x e R", u e Rm , 

dt 

with the stabilizing feedback controls 

(5.2) u = u(t, x) = M(t)T x, Me §~m 

and the performance index 

(5.3) J(t0, x0, u) := P [x(t)T P(t) x(t) + x(t)T Q(t) u(t) + u(t)T Q(t)T x(t) + 
J «0 

+ u(t)T R(t) u(t)] dt. 

The value of the performance index (5.3) on stabilizing control (5.2) can be ex­
pressed by a quadratic form with the Z[M] matrix: 

J(t0, x0, MTx) = f+=° x(t)T C[M] (t) x(t) dt = 
J (o 

f+ 0° 
= x0 XF+GMT(t, t0)

T C[M] (t) XF+GMT(t, t0) dt x0 = xT
0 Z[M] (t0) x0. 

J to 

Therefore to search the minimum of the performance criterion (5.3) on the set of 
stabilizing control (5.2) is equivalent to searching the matrix function M e §~in, 
for which the matrix inequality Z[M] S Z[M] is satisfied for all M e §~m. 

The following theorem contains two necessary and sufficient conditions for the 
solution of the above problem. The first condition is a consequence of the Bellman 
optimality principle. The second one, existence of the stabilizing solution to the 
corresponding RDE, is well-know. For the first time it has been proved in this form 
for nonstationary case apparently in [9]. 

Theorem 4 (cf. [14]). Let R e Om and (E, G) be a stabilizable pair. Then the 
following statements are equivalent: 

1) An optimal stabilizing matrix function M e §~m exists such that Z[M] (t) _ 
g Z[M] (t) for all M 6 §~m and teR1. 

2) Matrix functions M e S~m and Z = ZT e C„ exist such that L[Z, M] (f) = 

= L[Z, M] (t) = 0 for all M e §~m and teR1. 
3) The stabilizing solution Z of the EDR (2.1) with the matrix coefficients A = 

= F - GR-^ 1" , B = GR~iGT, C = P - QR~1QT exists. 
The optimal stabilizing matrix function is unique and defined by the formula M = 
= -(ZG + Q) R-\ besides Z = Z[M]. 
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Statement 3) of the theorem allows to use any condition reported in Theorem 2 

to check whether the optimal stabilizing control exists. From statement 4) of Theo­

rem 2 we get an iterative algorithm for constructing the optimal stabilizing control 

called the Newton-Raphson method in control theory (cf. [5], [6]). As it has been 

mentioned above, the algorithm turns out to be a criterion on existence of a non-

stationary optimal control at the same time, in the sense that the stabilizing iterations 

convergence is equivalent to existence of the optimal stabilizing control. 

Statement 2) of Theorem 2 highlights positivity of the functional (5.3), which is 

usually supposed to be fulfilled in the optimal regulator problem [ 3 - 6 ] , [13]. 

Indeed, let us consider the functional 

x(t)т Y(t) x(t) dř = 
(5.1) 

(5.4) JY(t0, x0, u) : = J(t0, x0, u)+ \ -
Jfo d i 

' x(t)T K[Y] (t) x(t) + \u(t) -(YG+ Q)T x(t)\RW At, 

where |y|« : = vTRv for v e Rm, and d/df^s.!) denotes derivative along the solutions 
of the system (5.1). 

From one side, 

(5.5) JY(t0, x0, u) = J(t0, x0, u) - xl Y(t0) x0 , 

hence for every matrix function Y = YT eCn the new functional (5.4) takes the 
minimal value in « at the same point as the initial functional (5.3). From the other 
side, if conditions of Theorem 2 are fulfilled and Y' = YT e C„ is such a matrix 
function that K [ i * ] e D + , then the corresponding functional (5.4) has a positive 
definite form under its integral sign. 

So always when optimal stabilizing control exists, there exists a functional with 
positive definite quadratic form, which is equivalent to the initial functional (in the 
sense of (5.5)). Now we can describe the family of functionals for which optimal 
stabilizing control exists. The family is defined by the formula (5.4) and consists 
of all functionals whose form may be represented as a sum of positive definite form 
and derivative along system solutions of another quadratic form. 
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