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KYBERNETIKA- VOLUME 19 (1983), NUMBER 1 

ON BROADCAST CHANNELS WITH SIDE INFORMATION 
UNDER FIDELITY CRITERIA* 

BHU DEV SHARMA, VED PRIYA 

In this paper we define the rate distortion functions for the memoryless broadcast channels 
when side information about the source is provided at both the encoder and the decoder. Basic 
equations and the Variational equations are obtained under two different situations, the most 
general situation being the case of fidelity criterion acting along the main channel only whereas in 
the second situation fidelity criteria act along both the main as well as the side channel. The 
forms of the Variational equations for Gaussian Channel under squared error fidelity criterion 
and the convexity of the rate distortion functions in both the cases have also been discussed. 

1. INTRODUCTION 

The idea of a 'broadcast' channel was first introduced by Cover [3] who defined 
it as a channel involving simultaneous communication of information from one 
source to several receivers. The basic problem in such channels is how to send 
information from a single source to several receivers simultaneously. Cover [3] 
obtained upper and lower bounds on the capacity region of a broadcast channel. 
An inner bound to the general broadcast channels for the three communication 
situations was derived by van der Meulen [5] and Sato [8] obtained an outer bound 
to the capacity region of broadcast channels. Recently Sharma and Priya [9] extended 
the concept of fidelity criterion to Multiple Channels viz. Two-User Channels, 
Broadcast channels and Multiple Access Channels and derived the Basic equations 
for these channels. 

The problem of communication through a channel when side information about 
the source is provided has been studied by many authors. For work in this direction, 
one may refer to Wyner and Ziv [12], Sharma and Priya [11] and Priya [6] etc. 
In this paper we consider the problem of information transmission through a broad-

* This work was supported by a Fellowship awarded to the second author by the Council 
of Scientific and Industrial Research, New Delhi, India. 
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cast channel and define the rate distortion function when side information about the 

source is provided at the encoder and the decoder. In Section 2 Basic equations 

for the broadcast channels are obtained and the convexity of the rate distortion 

function is established when fidelity criterion acts on the main channel only. In 

Section 3 we define a new rate distortion function when the fidelity criteria act 

along the main channel as well as along the side channel and derive Basic equations 

for this case also. The study is then extended to the continuous case in Section 4. 

The Variational equations for Gaussian Channels under squared error fidelity 

criterion are discussed in Section 5. 

2. BASIC EQUATIONS WHEN FIDELITY CRITERION ACTS 

ON THE MAIN CHANNELS ONLY 

A. Preliminaries and Definitions 

We consider a 2-receiver discrete memoryless broadcast channel 

K=[X x Z,Q(yuy2\x,z),Y1 x Y2] 

where X, Z, Yt and Y2 are finite sets and Q(yu )>2 | x, z) are transition probabilities 

defined over Yt x Y2 such that 

Q(BU B2\ A, B) = Y\ Q(ylt, y2t\x„ zt) 
i = i 

for all A = (xlt ..., x„) eX", B = (zu..., z„) e Z" and Br = (yrt,..., yn) e Yr"; 

r = 1,2} n _• 1. Here X is the input alphabet, Z is the side information alphabet 

about X and Y, and Y2 are. the output alphabets, where for n ^ 1, X", Z" and Y" 

denote the set of n tuples A, B and Br (r = 1, 2) respectively. The quantity Q(yi, y2 \ 

| x, z) denotes the transition probability of receiving yx e Y, and y2 e Y2 when xeX 

and z e Z are transmitted through the channel. 

The distortion between the source letter x e X and the reproduced letter yt e Yt 

shall be denoted by Qt(x, >>,), where as usual gt(x, j>,) ^ 0 with equality iff x = j ; 

for ( = 1,2. 

If P(x, z) denote the joint probability of xeX, zeZ then clearly the average 

distortion for the ith output may be defined as 

(1) dt(Q) « I P(x, z) Q(yi, y2 | x, z) Qi(x, yt) (i = 1, 2) 
x,z,yi,yz 

Further for D1 ^ 0, D2 ^ 0, we define M(D^ D2) as the set of transition pro­

bability distributions Q(yt, y2 | x, z), xeX,zeZ, yt e Yx and y2 e Y2 satisfying 

(2) P(x, z, Уl, Уz) = P(x, z) Q(Уl, y2 | x, z) 

(3) P(x, z)=Y P(x, z, Уl, У2) 
Уí,Уl 
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and 

(4) dt(Q) £ D{ (i = 1, 2) 

We first confine ourselves to the case of fidelity criterion acting along the main 
channel only with side information about the source provided at both the encoder 
and the decoder. We define the rate distortion function Rx\z(Di, D2) as 

(5) Rx\z(Di, D2) = min l(X; Yt, Y2\Z), 
Q(yi,y2\x,z)eM(Dl,D1) 

where I(X; Yu Y2 \ Z) is given by 

(6) I(X;YL,Y2\Z) = X P(x,z)Q(yi,y2\x,z)\ogQ^l'y2\X'*} 
*,z,yi,y2 Si\yi, }'l I z) 

is the mutual information which Yx and Y2 provide about X when side information 
Z about the source X is provided, Q(yu y2 \ z) being the transition probability 
of receiving y\ £Yuy2eY2 when z e Z is transmitted. 

B. Evaluation otRx\z(Dv D2) 

Our problem is to minimise l(X; Y,, Y2 | Z) subject to the constraints: 

(7) Q(yt, y2 | x, z) 2g 0 

(8) I Q(yi, )'21 x, z) = 1 
yi,y2 

and 

(9) £ P(x,z)Q(yl,y2\x,z)Qi(x,yi) = Di (i = 1,2) 
*,z,yi,)>2 

We shall employ the technique of Lagrange multipliers for obtaining a solution 
to this problem. 

Ignoring the constraints (7) temporarily, we form the augumented function 

J(Q) = I(X; Y„ Y2 [ Z) - £ «(x, z) £ fi^,, y2 | x, z) -
*,z yi,)'2 

- I s , X P(X,z)e(y1,y2 |x,z)e i(x,y i) 
i = l x,z,y,,y2 

where u(x, z) and S; (( '= 1,2) are Lagrange multipliers. Taking log X(x, z) = 
= u(x, z)jP(x, z), we can rewrite / (Q) as 

(10) 

J(Q)= Y P(x, z) Q 0 l t y2 | x, z) log Jtouy* K z ) - £ Sl Qt(x, yt) 
M J I * 4*> Z) QOtl. ^2 I Z) ' = 1 

For stationary points, we must have 

dJ(Q) . — = 0 
d Ѕ(Уi, У2 | x, z) 
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which gives 

L A(x> z\Q(yi> y* I z ) i _1 J 

and consequently 
2 

(11) Q(yi, Vi I *> z) % < ) Qtj'i. J'2 I z)exp(_XS ; <?,(*,,;,.)) 

Now summing (11) over yit y2 and using the constraints (8); we get 

(12) A(x, z) = [ I GO'i. J2 | z) exp ( J S, <>,(:-, , ,))] -
yi,y2 i - l 

Further equations (9) and (11) give 

(13) D, = I <?,(*, _v,)P(x, * M * . z) Q^i.-^ | -) exp ( Z S . e , ( x , >-,)) 
x,z,y,,y2 ' _ 1 

Moreover from (11)- we also have 

(14) log QiZ-llhll) = iog X(Xt z) + £ 5 ; e,(x, ,,) 
eivi.-vj I-•) 

so that (6) and (14) yield 

/ ( * ; Y1( Y2 | Z) = £ S,/), + £ P(x, z) log A(x, z) 
i 1 x.z 

Thus the minimum of l(X; Yu Y2 | Z) is given by 

(15) Rm(Dlt D2) = £ S,D, + X P(x, z) log % z) 
i 1 x.z 

Equations (13) and (15) are the Basic equations when side information about 
the source is provided at the encoder and the decoder with fidelity criterion acting 
along the main channel only. 

When side information about the source is not provided at the encoder and the 
decoder, then Basic equations (13) and (15) reduce to 

->. = I <?.(*, yd P(x) *(x) Q(yu y2) exp ( £ S, 6i{x, >-,)) (i = 1, 2) 
x . y i . y z i - l 

and 

where 
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Лx = ľ,SlD, + j:P(x)ìogÅ(x) 
i = l X 

Чx) = [ I ß(Уi, J'2) exp ( £ S, Єl(x, j,))]-1 

V..V, i - 1 



which are the Basic equations for broadcast channels obtained in [9] when no side 

information is provided. 

C. Convexity ofRx[z(Di, D
2) 

We now consider the convexity property of Rx\z(Di, D
2). For any pair of distor­

tion values (D\, D'2) and (D'[, D2) and any number X e [0, 1] we shall show that 

RX\Z(XD\ + (1 - X) D'[, XD'2 + (1 - A) D'2) = 

g XRMZ(D\, D'2) + (1 - X) Rxlz(D'[, D'2). 

Let Q'(yi, y2 | x, z) and Q"(yu y2 \ x, z) achieve the points (D\, D'2; RX]Z(D\, D2)) 
and (D'[, D"2i RX{Z(D'[, D"2)) respectively and let 

(16) Q*(yu y2\x,z) = X Q'(yv y2 | x, z) + (1 - X) Q"(yi, y2 \ x, z) 

It is easy to see that {Q*(y\, y>2 \ x, z)} is a bonafide transition probability distri­

bution. Also we have 

(17) RX]Z(XD\ + (1 - X) D'[, XD'2 + (1 - X) D"2) g l(Q*(yi, y>2 | x, z)) 

where 

(18) i(Q*(yi, y21 x, z)) = 

= _, P(x, z) [X Q'(yi, y2 \ x, z) + (1 - X) Q"(yu y2 | x, z)] 
x,z,yi,y2 

X Q'(yi, J_ 1 x, z) + (1 - 1) _ _ _ _ y2 | x, z) 

A Q'(yi, y21
z) + (i - ^Q ' '^!, y 2 1 z ) 

For a > 0, b = 0; we have the inequality 

(19) log (a + b) g; log a + -

a 

with equality iff b = 0. 

We shall use the inequality (19) for the set of values at, b2 and a2, bx given by 

(20) Q W ^ M . y (y i , y a | * , - ) 

fe _ (1 - X) [Q'(yu y2 | z) _ _ _ _ >>2 _ _ _ _ _ g___ >>2 | z) 6'(y t, y2 | x, z)] 

Q'O'i, J>2 |
 z) ^ G'(j>i, J 2 |

 z ) + (1 - A) Q"0i, y2 | z)] 

and 

fc _ A[(2"(>'1, >>2 | z) _ _ _ , >>2 | x, z) - _ _ _ _ j 2 | z) g _ j _ , y2 | x, z)] 

e"0i, Ja | z) [A e'Cd, j-21z) + (i - A) e"(yi, y21
z)] 
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Now in view of (19) and (20) equation (18) gives 

I(Q*(yuy2\x,z))^ X£ P(x, z) Q'(yu y2 \ x, z) log Q ' ^ y> 1 *' z ) + 
x,z,yi,yi Q(yu y2\z) 

+ (1 ~ Q [Q"()'i> y2 | x, z) Q'(yu y2\z)- Q"(yu y2 \ z) Q'(yu y2 \ x, z)] + 

Q'iVu yi | *, z) [A Q'(yu )'2 \z) + (l- X) Q"(yu y2 | z)] 

+ (1 - X) X P(x, z) Q"(yu y2 | x, z) log ^ l i I l l ^ A + 
*.*.>-..y2 Q(>i,J'2|z) 

, A[g"(>'i, )'z 1 z) Q'(j>i, )>i \x,z)- Q'(yu y2 | z) O/Q;,, >>2 | x, z)] ^ 

Q"(>'i, >2 | x, z) [X Q'(yu y2 \ z) + (l - X) Q"(yu y2 \ z)] 

- AJtojO'i, >2 I x, z)) + (I - A) /(e"(>'i, >2 I *, z)) 
i.e. 

(21) /(e*(y1( y2 | x, z)) ^ M(Q'(yu y2 | x, z)) + (1 - A)/(Q"(>'x, >2 | *, z)) = 

= A R ^ D ; , £>2) + (1 - A) RX1Z(D';, D'i) 

Combining equations (17) and (21) we obtain that RX]Z(DU D2) is a convex function 
of D1 and D2. 

In the next section we consider the situation when the side information about the 
source is provided at the encoder and the decoder and in addition to the fidelity 
criteria Dx and D2 acting along the side channel also. 

3. BASIC EQUATIONS WHEN FIDELITY CRITERIA ARE OVER MAIN 
AS WELL AS SIDE CHANNEL 

A. Definition of RX]Z(DU D2; du d2) 

For D± ^ 0, D2 ^ 0, dt ^0,d2^ 0; let M(DU D2; du d2) be the set of transition 
probability distributions Q(yu y2 \ x, z) satisfying 

I Q(x, .v,.) P(x, z) Q(yu y2 | x, z) g D, 
x,z,yi,yi 

Y Q'{z, yt) P(x, z) Q(yu y2 \x,z)S d, (i = 1, 2) 
x.z.yi.yi 

where Q\(Z, >',) is the distortion between z'eZ and y ; e Y; (i = 1, 2). 
We define the rate distortion function RX\Z(DU D2; du d2) with fidelity criteria 

over the main channel and side channel as 

(22) Rx|z(£i, D2; du d2) = min I(X, Yu Y2 \ Z) 

QO'i,:V2|x,z)eitf(0i,D2;<'i,d2) 
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where I(X; Yt, Y2 j Z) is the ordinary Shannon's mutual information between the 
source X and reproduced alphabets Y, and Y, when side information Z about the 
source X is prescribed. 

B. Evaluation of Rx\z(Dt, D2; dt, d2) 

Our problem is to minimise I(X; Yt, Y, | Z) subject to the constraints (7), (8) and 

(23) £ Qt(x, yt) P(x, z) Q(yu y2 | x, z) = A 
*,Z>>'l,J>2 

(24) £ Q\(Z, yt) P(x, z) Q(y, ,y2\x, z) = dt (i = i, 2) 
x,z,y,,y2 

As earlier ignoring the constraints (7); we form the augmented function J(Q) as 

J(Q) = 1(X; Ylt Y2 | Z) - £ P(x, z) £ Q(yt, y2 \ x, z) -
*,Z J ' i .J '2 

- ZSt £ C^.J',)P(*,z)eO'1..Ka|*.2)-
1 = 1 X.Z.J ' i .J 'z 

- £ s ; £ e;(z,^)p(x,z)o.(j1,j2|x,z) 
1 = 1 X,Z,J,,,J>2 

where /?(x, z), S ; and S; are Lagrange multipliers. Taking log t](x, z) = /?(x, z)/P(x, z); 
we may rewrite J(Q) as 

-/(G) = £ P(x,z)Q(yt,y2\x,z)\^ - G O ^ l J *• z ) 
X>Z,J>J,>>2 

log 
»7(x, z) e(yi, y2 I z) 

- £ s, *?,(*, yt) - £ S; e;(z, >>;)] ,=i ,=i j 

Now for stationary points, we must have 

dJ(Q) 

deOi, )'i | x, z) 

= R(x, z) [log Q(^^ix,z) _ £ _ £ -I _ Q 

L *.(*> z) Q(yt, y2 I z) ,= 1 ,= 1 J 
or 

2 2 

(25) Q(yt, y2 | x, z) = ^(x, z) Q ^ , , y2 | z) exp [ £ S ; e,(x, >-,) + £ SJ e;(z, j,,)] 
, = i i = i 

In view of equations (23), (24), (6) and (25) we now obtain 

(26) Dt = £ Qi(x, y) P(x, z) r,(x, z) Q ^ , j , 2 | 2) e x p [ £ S, Qi(x, >•,-) + 

+ is'tQ't(z,yt)] 
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(27) d, = £ e;(z, yi) P(x, z) r\(x, z) Q(yu y2 | z) exp [ £ S, <?<(*, .V«) + 
x,z,yi,yi I _ 1 

+ Es;#, j i ) ] 
i = l 

and 

1(X; Yu Y2 | Z) « £ P(x, z) log ,j(x, z) + £ S,D, + £ S.<*i 
x,z i = l i = l 

where 

(28) r,(x, z) = [ £ G(y., y2 | z) exp [ £ S ; <?,(*, j,,.) + £ S{ e',(z, J , ) ] ] " ' 
yi.»j i = l i = l 

Clearly, RX[Z(DU D2; du d2) which is the infimum of I(X; Yu Y2 | Z) satisfies 

(29) Rm(Du D2; du d2) = £ P(x, z) log t,(x, z) + £ S,T>; + £ S ^ ; 
*,Z i = l i = l 

These equations (26), (27) and (29) are the required basic equations for the case 
under consideration. 

Remark. It can be easily seen that the results of Section 2 follow as a special case 
of the above equations. 

C. Convexity of the function Rx\z(Dx, D2; du d2) 

We now show that R^i^Dj, D2; du d2) is a convex U function of Du D2; d ^ n d d j . 
Let the transition probabilities Q'(yu y2 | x, z) and Q"(yu y2 \ x, z) achieve the 

points (D[, D'2, d[, d'2; RX{Z(D[, D'2; d[, d'2)) and (D'[, D"2, d"u d"2; RX\Z(D\, D"2; 

d'[, d2)) respectively and let for any scalar X e [0, 1], 

Q*(Vu y2 \x>z) = X Q'(yu y2 \ x, z) + (1 - X) Q"(yu y2 | x, z) 

It easily follows that Q*(yu y2 \ x, z) is a bonafide transition probability distribu­
tion and that D{(Q*) and dt(Q*) are linear functions of D1 ,D2 and du d2 respectively 
so that 

Q*(yi> y2 | x, z) e M(XD[ + (1 - X) D'[, XD'2 + (1 - X) D"2; Xd[ + 

+ (1 - X) d"u Xd'2 + (1 - X) d"2) 

Next we have 

RX\z(Wl + ( - - > • ) Dl> W'2 + I1 _ X) D2> M'l + (- ~ A) d"i> M'2 + 

+ (l-X)d'2)^l(Q*(yuy2\x,z)) 

where I(Q*(yu y2 \ x, z)) is given by equation (18). 

Again, using the inequality (19) for the values av &i5 a2, b2 as given by equation 
(20), we have 

i(Q*(yu y2;
 x> -)) ^ u(Q'(yi, vi I x>z)) + (i~ >)KQ?(yu y21

 x> -)) 
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Thus 

Rx\z(Wi + (1 - X) D'[, XD'2 + (1 - X) D"2; U'x + (1 - X) d'[, Xd'2 + (1 - X) d2) = 

< X RX]Z(D\, D'2; d'u d'2) + (l- X) Rxlz(D'[, D"2; d'[, d"2) 

Hence RX\Z(DU D2; du d2) is a convex U function of Du D2, dx and d2. 

4. CONTINUOUS CASE 

We now extend the above investigation for the continuous case. 

A. Definitions 

Let us denote the source X by the infinite sequence {...,Xt„1,Xt,Xt+1,...} 
( - c o < t < oo): the side information Z about the sourceXby {..., Z , _ 1 , Z , , Z r + 1 , . . . } 
(—oo < t < oo);the message received bythe receiver Yx by {..., ylt-u ylt, yit+u •••} 
(-00 < t < oo) and the message received by the receiver Y2 by {..., y2t-u y2t, 
j 2 ( + 1 , . . . } ( — oo < t < oo). We shall denote the probability density function (p.d.f.) 
of the source letter x e X by P(x), the p.d.f. of the side information letter zeZ 
by P(z), the joint p.d.f. of x e X and z e Z b y P(x, z), the transition p.d.f. of receiving 
y1 e Yj, y2 e Y2 when xeX and zeZ are transmitted through the channel by 
Q(yu yz | x> z ) a n d the joint p.d.f. of x e X , y1eY1, y2 e Y2 and z e Z by 
P{x, z, yu y2). 

Now as usual, the distortion between the source letter xeX and the reproduced 
letter yt e Y; (i = 1, 2) will be denoted by Qt(x, yt) where Q{X, yt) = 0 with equality 
iff x = yt for i = 1, 2. 

Also the average distortion dt(Q) between the source alphabet X and the reproduced 
alphabet Y; is defined by 

(31) d{Q) = f (Tfdx dz d j , dy 2 P(x, z) Q(y1; y 2 | x, z) 0 ;(x, y ;) (i = 1, 2) 

The transition p.d.f. Q()'u y2 \ x, z) is said to be Dt admissible if 

(32) dt(Q) < Dt (i = 1, 2) 

We shall denote the set of all Dt admissible transition probabilities Q(yu y2 \ x, z) by 

(33) M(DU D2) = {Qiyuy2 \ x, z) : d{Q) <Dt;i = 1, 2} 

Further, the mutual information between the source alphabet X and the reproduced 

alphabets Y1 and Y2 when side information Z about the source alphabet is pre­

scribed is given by 

(34) I(X; Yu Y2 | Z) = 
Q(yu y21 x, z) 

dx dz dyi dУl P(x, z) Q(Уu Уг \ x, z) log 
Ô(Уi> Уi | z ) 
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We now define the rate distortion function Rx\z(Dt, D2) of the source X when side 
information Z about the source is provided at the encoder and the decoder and there 
is fidelity criteria acting only over the main channel as 

Rx\z(Du D2) = Inf I(X; Y1; Y2 | Z) 
Q(yi,yi\x,z)eM(Di,D2) 

B. Evaluation of R*|Z(£>i, D2) 

We now proceed to evaluate the function Rx\z(Dt, D2). Our problem is to minimise 
I(X; Yu Y2 | Z) subject to the constraints: 

(36) Q(>'i,>'2|x,z)^0, 

(37) (Tdy, dy2 Q(yi, y2 | x, z) = 1, 

and 

(38) Ijljdx dz dyi dy2 P(x, z) Q(yi, y2 | X, z) Qi(x, yt) = D, (i = 1, 2) 

In order to solve it, we shall employ the classical methods of multipliers and the 
calculus of variations. As usual, ignoring the constraints (36) temporarily, we form 
the augumented function 

J(Q) = I(X; y., Y2 | Z) - ffdx dz u(x, z) fid}'! dy2 Q(yu y2 \x,z)-

~ I Si \\\UX dZ ^ 1 d ^2 P ( X ' ^ fifr-' ^2 I *» ^ Qi{?> ^ = 

- JXf |d . dz dyi dy2 P(x, z) Q(yi, y2 | x, z) [ log J ^ ^ ~ 

-isieix,ytj\ 

where u(x, z) and Sjs (i = 1, 2) are Lagrange multipliers and log A(x, z) = 
= u(x, z)\P(x, z). 

Let us consider a perturbation Q*(>'i, y2 | *, z) a b o u t G^i. J2 | *. z) given by 

(39) e*(y1; y2 | x, z) = Q(yt, v2 \x,z) + e n(y\, y2 \ x, z) 

where r\(yu y2 | x, z) is such that 

(40) fldy. dy2 ^(y,, y2 | x, z) = 0 

For stationary points, we must have 

dJ(Q*) 
de 

36 
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and so 

iïdx dz P(x, z) iïdУl dy2 n(Уl, y2 | x, z) Jlog QЬx>Уг\x< 
JJ JJ l X(xtz)Q(Уl,У, 

~ í s i в i ( x , У i ) \ = 0. 
-) 

It now follows from (40) and a Fundamental Theorem of the Calculus of Variations 
(cf. [2]) that 

(41) log TT^-f^k - -- 5 ; « * * ' * > = ^ Z ) 
A(x, z) Q(>i, 3>2 | z) i = i 

where f(x, z) is a function of x and z only. 
Rewriting the equation (41) as 

(42) Q(yi, y2 | x, z) = oj>i> j 2 | z) X'(x, z) exp { £ 5, e,(x, y,)} 
i = l 

where 
X'(x, z) = A(x, z) exp {/(*, z)}, 

and using (42) the equation (38) gives 

(43) Dt = fjjjdx dz dyt dy2 Q,(x, y,) P(x, z) Q(yu y2 \ z) X'(x, z) . 

• exp { £ si <?;(*> y,)} • 
i = l 

Further (34) and (42) together yield 

I(X; Ylt Y2\Z)= jTdx dz P(x, z) log X'(x, z) + | S,D, 

and consequently Rx\z(Di, D2) is given by 

(44) Rxlz(Di, D2) = j jdx dz P(x, z) log A'(x, z) + £ S , D , 

where 

(45) A'(x, z) = Pffd-Vi d>'2 6(jti, ^2 | z) exp [ J St Qi(x, y,)]l 

Equations (43) and (44) are the required forms of the Variational equations when 
side information about the source is provided at the encoder and the decoder and 
there is fidelity criteria acting along the main channel only. 

C. Definition and Evaluation of Rx\z(Pu D2; dlt d2) 

We now consider the situation when in addition to the fidelity criteria Dt and D2 

acting on the main channel, there aie fidelity criteria dt and d2 acting on the side 
channel also. 
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For # ! ^ 0, D2 ^ 0, d! _g 0, d2 ;> 0, we define M(DU D2; du d2) to be the set 
of transition probability density function Q(yu y2 \ x, z) satisfying 

[[[[dx dz dy, dy2 Qi(x, yt) P(x, z, yu y2) ^ D, 

IJ JI dx dz dyt dy2 Q\{z, y,) P(x, z, yu y2) ^ dt 

where Q\(z, y{) is the distortion between z e Z and yt e Yt (i = 1, 2). 
Also we define the rate distortion function Rx\z(E>i, P>2; du d2) with fidelity criteria 

acting on the main as well as the side channel, as 

(46) Rxlz(Du D2; du d2) - Inf l(X;YuY2\Z) 
QCyi.yzlx.z^MiDuDr.dLdz) 

where l(X; Yu Y2 I Z) is the ordinary Shannon's mutual information given by (34). 
Our problem is to minimise l(X; Yu Y2 \ Z) subject to the constraints (36), (37), 

(38) and 

(47) f f (Tdx dz dyi dy2 Q\(Z, yt) P(x, z) Q(yu y2 \x,z) = dt (i = 1, 2) 

Ignoring the constraints (36) temporarily, we form the augumented function 

J(Q) = I(X; Yu Y2 | Z) - fI dx dz u(x, z) j jdy. dy2 Q(yu y2 \ x, z)-

- i Si (TITdx dz dyi dy2 P(x, z) Q(yu y2 \ x, z) Qi(x, yt) -

- i S\ I fffdx dz dyi dy2 P(x, z) Q(yu y i | x, z) Q\(Z, yt) = 

= [[[\dx dz dn dy2 P(x, z) Q(yu y2 \ x, z) flog <&*' ^ 1 *' Z 

г) Q(УІ, Уг | -) 

- І ЅІ Qi(x, Уi) - i S; в\(z, УІ)] 
І=I І=I j 

where u(x, z) and S;, S\ (i = 1, 2) are Lagrange multipliers and log X(x, z) = 
= u(x, z)jP(x, z). 

Now proceeding on lines considered in substitutions above, we arrive at the 
following stationary point tiansition probabilities 

(48) G O . , yt I x > z ) = 

= fiOi. >'2 I z) n(x, z) exp [ X Si Qi(x, y) + £ S. e'.(z, *)] 
> ' = 1 i = l 

where ;/(*, z) = /l(x, z) exp {a(x, z)}; #(x, z) being the function of x and z only. 
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Thus we obtain 

(49) Dt = f f (Tdx dz d.Vi dy2 Qi(x, y() P(x, z) Q(yv y2 | z) r,(x, z ) . 

• exp { f S, Q{X, >>,) + I S ; Q\(Z, >>.)} , 

(50) </, = [TjTdx dz dy, d>2 Qiz, y) P(x, z) Q(y,, y2 \ z) r,(x, z) . 

. exp { £ s , <?.(*, y.) + Es.e',(-, >>,)}, 
; = 1 > = 1 

and 

(51) RA|Z = f fdx dz R(x, z) log n(x, z) + f S;D; + f s;rff 

where 

(52) r,(x, z) = 

= rffdy, d>2 Q(yu y2 \ z) exp {gS, 3i(x, >,) + ^ S ; e;(z, >;)}1 

Equations (49), (50) and (51) are the required forms of the Variational equations 
when side information about the source is provided at the encoder and the decoder 
and there are fidelity criteria acting along the main as well as the side channel. 

5. GAUSSIAN CHANNEL 

We now examine the forms of the Variational equations for Gaussian channel 
when fidelity criteria are acting along the main channel only. 

Let X be the source with mean zero and variance a2, Z be the side information 
about the source provided at the encoder and the decoder with mean zero and 
variance a2, and Y; be the message received with mean zero and variance ayj (i = 1, 2). 
Let the joint p.d.f. of X and Z be given by the following gaussian distribution 

where Qxz is the coefficient of correlation between x and z. Let us suppose that the 
outputs are statistically independent. The conditional gaussian distribution of output 
Y; when side information Z about the source is given, may as well be considered 
to be given by 

(54) Qi(yi \ z) = — i — e x p j - — - - i -(yiaz - Qzyiza2
y)\ 

ayi V(2Tt(l - ozyi)) { 2Kazan(l - Qzy) J 

where Qzyi is the coefficient of correlation between y ; and z (i = 1, 2). 
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We shall use the above forms of p.d.f. 's in determining the values of D ;and Rxl7i 

as provided by (43) and (44) for the case when the distortion between x and y, is 
given by 

(55) Qfayd = (*-yF 0 = 1.-) 
i.e. when there is the squared error fidelity criterion acting on the main channel. 

For distortion measure _,-(x, y() and the transition p.d.f. Qt(y( \ z) as given by (55) 
and (54) respectively, equation (45) gives 

(56) „ (*• z) = fl V(l + 2S;<(1 - QU) exP ( ff^'' 7(f^\ 
i=1 Vffz(l + 2S,ff,j(

1 - Qxj)V 
provided that 

' +
2 y 7 ^ > 0 , (refer [7], 

2 f f » . ( - ~ Q*y,) • 

where S' = — S is a non —ve quantity (refer [l]). 

Now using (53) and (56), we obtain 

(57) ffdx dz P(x, z) log A'(x, z) = _ £ log (1 + 2S;<r2
j(l - £ , ) ) + 

+ V S ' [ ^ + g«y.ffy. ~ 2ax^yiQxAyj] 
i t . 1 + 2S;a2

j(l - __,,) 

Thus from (43) and (44) we get 

, , ^ n _ ^l - 2ff_r.,e___,.< + c72
f + 2S;a2

|(l - g2
y,)2 

( 5 8 ) D i " [i + 2 S ; , 2 ( i - . 2 , . ) ] 2 ( ' - 1 ' 2 ) 

and 

(59) Rxlz = £ Sfit + _ £ log (1 + 2S;cT2
((l - __.,)) + 

> = 1 i = l 

, y S'l°l ~ __£_ ~ _f̂ _______ 
ik i + 2S;<(i -.__,,) 

Equations (58) and (59) are the required Variational equations for Gaussian Channel 
under squared error fidelity criterion. 

In our opinion the results of this paper can be of significant interest for further 
work in the direction of evaluating the bounds on rate distortion function for broad­
cast channel. Source coding theorems for these channels with side information 
provided at the encoder and the decoder may also be established on lines similar 
to those considered in [10]. 

(Received October 29, 1981.) 
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