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KYBERNETIKA — VOLUME 24 (1988), NUMBER 1

TWO-DIMENSIONAL LONG MEMORY MODELS

JIRf ANDEL, MARIA GOMEZ

PE 4587
Za, 118 1 il

Two-dimensional long memory time series models are defined and investigated. Their co-
variance function and matrix of spectral densities are derived and the corresponding AR(c0)
and MA() representations are given.

1. INTRODUCTION

Let X, be a one-dimensional stationary time series with a covariance function R(f)
and a spectral density f(4). In some applications, especially in hydrology, f(4)
exhibits a high peak at A = 0. To describe properly this phenomenon, some models
were proposed in which f(4) - o as 4 — 0. One of the simplest models of this
kind is
Ly - (1-BYX,=e¢,
where ¢, is a white noise, B is the back-shift operator and & e (0, 4). This process
X, is called the fractionally differenced white noise (FDWN). If Es, = O and var ¢, =
= g2, then the spectral density of X, is

f(4) = (2m)™* o*[4 sin®(A[2)] ¢
and the covariance function is
R(t)=(-1)a?T(1 - 28)/[T(t + 1 — HT(~t + 1 - 8)].

Since Y |R()] = o0, X, is called a process with long memory. This definition was
proposed by McLeod and Hipel [7]. On the other hand, it is known that the co-
variance function R(f) of any stationary ARMA process satisfies Z|R(t)[ < oo and
thus stationary ARMA processes are processes with short memory.

An introduction to long memory time series models is published by Granger

and Joyeux [5]. Hosking [6] derives formulas for the spectral density and the co-
variance function. Geweke and Porter-H7k [4] deal also with the problem of



estimating parameters in long memory models. And&l [1] presents a survey of resulis
and methods which concern the long memory models. In his paper also other relevant
references to this subject can be found.

The model (1.1) can be generalized to p dimensions as follows. Let &, be a p-
dimensional white noise with Eg, = 0, vare, = V. Let A be a p x p matrix with

eigenvalues 4, ..., A,. Assume that Hjl < 1 for all j and that the equality holds for
at least one j. Then a p-dimensional process X, satisfying
(1.2) (I—ABYX, =5, 0<b6<%,

can be considered as a p-dimensional generalization of the FDWN. However,
a deeper analysis of the model is necessary because the conditions mentioned above
do not guarantee the existence of the process X, in (1.2). This will be shown in Sections
3and 4.

Generally, a p-dimensional stationary process X, with a covariance function
R(t) = (Ru(1))? 1=, will be called a long memory process, if

;igl k:Lﬁl'Rjk(t); =

If the sum is finjte, X, will be called a process with short memory.
In this paper we investigate the model (1.2) when p = 2. The ecigenvalues A,. /,

of the matrix
A= a3 “xz)
A2y A3z

(L.3) 2= (ayy + a23) A+ ay1ay; — ag3a5, = 0.

are the roots of the equation

The following cases will be considered:

a. Ay =1, L e[-1,1).

b. A, =4, =1L

C. Ay =4, =—1

d Ay =2 =e¢ we(0n).

In the paper we do not study the problem of estimating parameters. Since the
elements of the matrix of spectral densities are not bounded, the procedure proposed
by Dunsmuir and Hannan [2] is not applicable. This point would need a special
research.

2. CASE 2, = 1, hye[—1,1)

In this section we denote w = 4,.
Lemma 2.1. Let z == 1. If w # 0 then let also z # 1jw. Then for any real n

(F=zAy =(1 —w) ' [(1 = 2)" (A= wl) + (1 — wz)" (I = A)].



Proof. If z = 0, then the assertion clearly holds. Assume that z == 0. Let 1> K2
be the eigenvalues of the matrix I — zA. Since

Il — zA — pl\ =(-z)? |A - [l = =] ”

and the eigenvalues of A are | and w, we have (L — p,)jz = L, (1 — pp)fz = w.

From here gy = 1 — z, i, = 1 — wz. Since ju; = fi5, it holds
(2.1) (I — zAy = 1\ Z, + 15Z,,
where Z, and Z, are the components of the matrix I — zA. Choosing n = 0and
n =1 we get the equations

Z + Z, =1,

(I=2)Z, + (1 —wz)Z, =1 - zA.
Thus
Z,=(1—-w)yl(A=wh), Z,=(1-w)'(I-A)

and the assertion follows from (2.1). O

Lemma 2.2. Let fz‘ <1 and §e(0,1). Then

(1 — 28y =Y b,C,27, (1 - zAf =Y a,Cj/
=0

where
Ci=(1-w'[A-wl+(—-Aw], j=01,..

and the coefficients a;, b; are defined in Lemma 6.1.

Proof. The assertion follows from Theorem 2.1 and Lemma 6.1. 0

Theorem 2.3. The MA(0) representation of the process X, is

(2'2.) X, = 2 biCe.—,
i=o
and the AR(ow) representation of X, is
(2.3) Ya,CX,_;=zs.
j=o

Proof. From (1.2) we have
X, =(1— AB) s, =Y bCp,_;.
i=o

Tt can be shown that there exists a constant M > 0 such that Tr C;C ;¥ < M for all j
(the symbol ' denotes the transposition). Since Xb? < o0, it follows from Lemma 6.2
that the series Y b;Cg,_; converges in the quadratic mean.

Formula (2.3) follows . immediately from (1.2). The convergence in the quadratic
mean of the series (2.3) is ensured by Lemma 6.3. ]



Theorem 2.4. The process X, possesses the matrix of -Spectral densities
@49 fO =0 (1 -w2[l -G + [l —we |"%G, +
£ (=T - e G 4 (1 - we ) (1 )G,

where
G, =(A - wl)V(A’ -wh, G, = (l - A)V(l — A’),
Gy =(A—-whV( - A),
Proof. The white noise g has the spectral decomposition
5 = (1, " dZ(h),
where Z(*) is a random measure satisfying
EdZ(1) dZ*(2) = (2n) "' Vdi

(* denotes transposition and complex conjugation). From (2.2) we have
N
¥ b;Cy A AZ(7) .

N
X, =lim.y b;Cg,_; = Lim. {2
N-owo i=0

N-w j=0

Since ) b;C e, _; converges in the quadratic mean, the series Y b;C; ¢!~ * converges
in the quadratic mean with respect to (21)"' V. If 2 % 0, 4 + +m, then Lemmas
6.5, 6.6 and 6.8 ensure that

N

lim Y b;C; e A = (l - c:"”‘A)“s i

N-ow j=0
From Lemma 6.7 we get

X, = [2 eI — e A2 dz()) .
The covariance function of the process X, is

R(r) = EXX3 = (2r)7" [* (1 — e A) V(I — o H*A) ¥ dA.
Tt implies that
2) = (2r)™" (1 = &™) V[(I — e~ A) 7]+

Using Lemma 2.1 we get the assertion.

O
Consider the covariance function R(z). Since R(—t) = R*(z), it suffices to assume
120

Theorem 2.5, If t = 0, then
R(1) = (1 — w)~? [(kzobkbm) G, + (w' 2 bib ™) Gy +
(= K=o
+ (kzob,‘b,,,kw") Gy + (W'Y byb, ) Gy
= k=0

Proof. The covariance function R(r) can be calculated from

R(i) = 7, ¢ f(A) di.



Theorem 2.4 yields
R(t) = (2m)" (1 = w)"2(J\G; + J,G, + J,G; + J,Gj),

where

Jp= [Tl — e "2 dA, J, = 1ol - weTH T2 d),

Jy = [T el —e )70 (1 — weH)70da,

Jo= [Tl —we )79(1 — )70 da.
For example, consider J,. From Lemmas 6.1, 6.5, 6.6 and 6.8 (see the Appendix)
we have

@
(2:5) (1 —we ™™ =3 bwe /2,
j=o
(2.6) (1 —we?)™? =73 pwkeltt,
k=0

The series converge for all Ae(~m,m). Since the functions (1 — we™*)7% and
(1 — we'*)™? are absolutely integrable, the series (2.5) and (2.6) are their Fourier
series (see Lemma 6.9). Using Lemma 6.11 we obtain the Fourier series of the func-
tion

(t—we ™) (1 —we) P =1 - we 42
in the form
had P N had kel
L bjW’ P Z bkwk euc). — L Z bubs+uws+2u eist
i=0 k=0 s=—c0 u=max(0,~s)

According to Lemma 6.10 we have for t = 0

w©
Jleet ™1 — we 72 dh = 2mw' Y beb,yw? .
o

All the other integrals J,, J; and J, can be calculated in the same way. O

The authors know an explicit formula only for J,. Using the method described
by Andgl [1], pp. 106—107 one gets

Jy = 2[5cos tA (4sin® ($1))"% dA = 4 [§/? cos 2tx (4 sin? x)? dx =
= (=1 2nT(1 — W)[T(t + 1 — )T(~t + 1 — 8)] .

The values of J,, J; and J, must be calculated either by numerical integration or
by help of the series given in Theorem 2.5. If w is not near to +1, then the con-
vergence of the series is rather fast.

Theorem 2.6. If AV = wV, then X, is a long memory process.
Proof. The spectral density f(4) from Theorem 2.4 can be also written in the form
fA) = @n) " (L= w2 |1 = e [G + |l — e P |1 — we 2@, +
+ (1 _ eiJ.)a (1 _ wcu)—éGs + (1 _ e-i}.).s (- we—il)v& Gj].



It is clear that f(%) is not bounded in the neighbourhood of the origin, if Gy # 0.
It means that G, + 0 implies Y, Zlek(t)l = oo otherwise f(4) would be continuous
t j ok

and therefore bounded on [—7, n]. But G, = 0 if and only if (A —wh)V =0. O

1115 2 -1
A=§<17)' V=<-1 3)'

The matrix A has eigenvalues 1 and 0-5. Further,

1(s5 1 1L=5
Zl:é(] 1)’ ZZ:E(—J 5)’

1 /255 29 1 -1 1 /-1515
G, = — G, === G, = —
t 48(51)’ 2 48<~1 1)’ 3 48(w 3 3)'
The process X, = (I— AB)™%*¢, has long memory. Its spectral density is
given by the formula (2.4). The speciral densities f31(4), f22(4), coherence and phase

diagrams are plotted in Fig. 1—4, respectively. From this example we can see that
the model could be suitable for such two-dimensional time series, where the spectral

Example. Let
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Fig. 1. Spectral density /7 1(4).

1 2 3 A
Fig. 2. Spectral density £, ,(4).
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Fig. 4. Phase diagram.

densities f;,(2) and f,,(1) are not bounded in the neighbourhood of 4 = 0. Such
situations occur in hydrology, for example (see [4]).

3.CASE J, = 4, = 1

Lemma 3.1. Let z % 1. Then for any real n
(I —zAy =(1 — 201 + n(l — z)' "t z(I — A).
Proof. The matrix I — zA has eigenvalues y; = p, = 1 — z. Thus according
to the Perron formula
(I —zAy =(1 - 2)"Z, + 1l -z 1 Z,,
where Z, = I, Z, = z(I - A). , O



Lemma 3.2. If [z] < land 8 &(0, §), then
o«
(1 — zA)2 = Y [1 — j(l — A)] bz! .
j=o
Proof. The assertion follows from Lemma 3.1, since
(1 —2)%=Ybz, (1 —2)° 1 =3%jbz"". 0

Theorem 3.3. The process X, = (I — AB)~’¢, exists if and only if
(3.1) Tr2-A-A)V=0, Tr(I - A)(I - AV=0.
If the conditions (3.1) are fulfilled, then

(32) X, = S0~ = A ba,.

Proof. In view of Lemma 3.2 the process X, must have form (3.2). But according
to Lemma 6.2 the series (3.2) converges in the quadratic mean if and only if

-]
(33) SBTe[l— il — A [ —jl— A)]V<o.
j=o
Since
b} ~ [1)r ()] 72,
the series (3.3) converges if and only if the coefficients by j and by j* are zeros. [

The general form of the matrix A is given in Lemma 6.12. Thus it is possible to
investigate in which cases (3.1) holds. Because it is clear that the existence of X,
is ensured only in very special cases, we do not describe further details here.

4. CASE )y = 4, = —1

All the derivations are quite analogous to those given in Section 3 and so we
present only the results.
Lemma 4.1. Let z &= —1. Then for any real n
(l — zA)" = (1 + z)"l - n(l + z)"" z(l + A) .
Lemma 4.2. If Iz] < 1and 6¢(0, %), then

(7 \ 20(—1)" [ —j(t+ AT bz’

Theorem 4.3. The process X, = (I — AB)“" g, exists if and only if
Tr2l + A+ A)V =0, Tr(I+ A)(I+ A)V=0.
If these conditions are fulfilled, then

X, :éo(_l)f [ — i1 + A)] b, .



Let us remark that the general form of the matrix A with eigenvalues 4, = 1, =

= —1is given in Lemma 6.13.

5. CASE A, =¢'®, 2, =¢7, we(0,n)
This case is analogous to that investigated in Section 2 and so we do not introduce
all the details in the proofs.
Lemma 5.1. If z # ¢!, z & ¢~'°, then for any real n
(l — zA)" = i(2 sin w)_1 [(l — zei“’)" (e_i‘”l — A) +
+ (1 —ze o)y (A =e“D].
Proof. The matrix I — zA has eigenvalues 1 — ze' and 1 — ze™®, The com-

ponents of I — zA are

Z, =i@2sinw)" (e — A), Z, =i(2sinw)”! (A - el). O
Lemma 5.2. Let |z| < 1, 5 € (0, ). Then
(I — zA)~ = (sin w)~1_§0[sin oA —sin(j — ) ol] bz’
Proof. From Lemma 5.1 and fro:rI Lemma 6.1 we have
(1 — 28 = i(2sin )™ 3 b,C2!
where e
C; = eo(e™iol — A) 4 e (A — ell).

Rearranging the terms we obtain the assertion.

Theorem 5.3. The MA(co) representation of the process X, is
@
X, = (sinw)™ 'Y [sin joA —sin(j — 1) ol] bje,_; .
j=0

The AR(co) representation of X, is
(sin @)1 Y [sin joA — sin(j — ) wl] a;X,_; = ¢,.
i=o

The proof is analogous to that of Theorem 2.3.

Theorem 5.4. The process X, possesses the matrix of spectral densities

f(2) = @nsin® @) ' {[2 — 2cos (1 ~ )] 7° G, + [2 ~ 2cos (A + 0)] ?G, +
+[1 — 2™ cos A + e’} G, + [1 —2e"“cos A + e ] 70 GE},

where
G, = (e_”"l _ A) v(eiw’ _ A’), GZ - (A _ eim’) V(A’ = e—im’) ,

Gs = (e7i°l — A) V(A —c™il),



Proof. In the same way as in the proof of Theorem 2.4 we obtain
f(1) = (8nsin® )7 [(1 — @972 (1 - )G, +
+ (1 _ eq(;.h,))-a(l . ei(“m))—an +
+ (1 . ei(u—l))ﬂs(l _ ei<;+m))—563 +
+ (1 = emiGFe)TI(] — eitimaly =i GY] |

After a simple calculation we get the formula introduced in Theorem 5.4. O

Let us remark that applying the procedure introduced in the proof of Theorem
2.4 we can derive an alternative expression

f(4) = (2nsin* w)™' Y Y by, %
5= — o k=max(0,~s)

x [sin(k + s) wA — sin (k + s — 1) of] V[sin kwA” — sin (k — 1) wl] e™**.

Theorem 5.5. If t = 0 then the covariance function is
R(t) = (4sin® @)™ (—1) [ Y (= 1) bb,y Gy +
k=0
+ el D (=1 byb, 1, Gy + €' Y (=1 bby G, +
k=0 k=0
o«
+ emite Z (_l)k bibas &~ 2iko G:] .

k=0

Proof. The formula can be proved in the same way as Theorem 2.5. O

Theorem 5.6. If G, + 0, then X, is a long memory process.
The proof is analogous to that of Theorem 2.6. O

A=()

The eigenvalues of A are 4; =¢'®, A, = ¢, where @ = n/3. After some computa-
tions we get

Example. Let Y = I and

FNRN

A 1_ 1 il
GI:(? cos @ , s, tcosw usmw)
. 7 5 .
§ —acosw+igsinw iz — cosw
G, = (— 3 + cosw — cos 2w + i(sin 2w — sin w)
—%+%cosw—i;&sina)
1 . .
—g+icosw —itsinw )
—:—2—+coswwcos2w+i(sin2w~sinco)/

The spectral densities f11(%), f25(1), coherence and phase diagrams for & = 0-4

10
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are plotted in Figs. 5—8, respectively. The spectral densities f;,(4) and f,,(4) are very
similar to the spectral density of a one-dimensional seasonal persistent process

[A-c“B)(1—e B X, =¢

(cf. And81[1], p. 114). It seems that the models of this kind are suitable for describing
the time series which exhibit some seasonal behaviour corresponding to the frequen-
cy w.

6. APPENDIX

Lemma 6.1. Let d€(—14,4) and |z| < 1. Then

(1 —z)6=_zoajzj, 1=z sz’
where -
4; =T = M=)+ D] =( =1 =80 =2~35)...(1 = (=il
by =T+ S[TEOTG+ 1) =G —-1+8(F—2+06)...(1 +8)d)j!.

If j —» oo, then
J+iay > 1[T(=8), =%~ 1[T(3).

Proof. The assertions follow from the Maclaurin formula and from the Stirling
formula. ‘ 0
Lemma 6.2. Let ¢ be uncorrelated p-dimensional random vectors such that

Eg =0, varg, = V. Let D; be p x p matrices. Then the series Z D;s,_; converges
in the quadratic mean if and only if

(6.1) Z TrDDV < 0.

i=o

12



Proof. Let
N
Sy =)D
i=0

and let m = 1. Then
N+m N+m

E(SN+m - 51\')' (SN+m - SN) = X Y Ee,_;DiDie, , =

J=N+1k=N+1

Nem  N+m N+m
, , .
=y Y, TrD/D, Ee_u5;_;= Y TrD;DV.
FENHE=N+1 =N+

From here it is clear that Sy has a limit in the quadratic mean if and only if (6.1)
holds. 0

Lemma 6.3. Let X, be a p-dimensional stationary process with EX, = 0, var D, =
= W. Let F; be p x p matrices. If

(6:2) Y (Tr FFW)Y2 < oo,
Jj=0
then the series w
Z ijt—i
i=o
converges in the quadratic mean.
Proof. Let X
SN = Z ijt-j
JF=0
and let m = 1. Then
N+m N+m

E(SN-H" - SN), (SN-)-m - SN) = z, Z EX;—jF_;‘FI\x(—k -

j=N+1k=N+1

Define
Y=(Y,..Y,y=FX,_;, Z=(Z,,....2Z,) = FX_,.
Then
P 14
|EY'Z] < ) E[Yiz| < ) (B¥? EZ))'" =
i=1 i=1
P
< Y (EY'YEZ'Z)'2 = p(Tr FiF,W Tr FFW)'/2
i=1
Thus

N+m N+m
E(Swim~ Sy (Sxim—Sw)Sp 5 3 (TrFEW TrRFEW)? <

J=N+1k=N+1
N+m )
= o[ 3 (TrEFW)RT
j=N+1

If (6‘2) holds, then Sy is a Cauchy sequence and thus it converges in the quadratic
mean. [N

Lemma 6.4. Let u, and «, be sequences of complex numbers such that the following
conditions are fulfilled:

13



(a) There exists a constant M > 0 such that |u, + ... + uy| £ M for all N =
=1,2,...
(b) a, — 0.
&
(€) 3 |otw — tyuq| < 0.
n=0
Then the series a,u; + a,u; + ... 1is convergent.
Proof. The proof is analogous to that of the Dirichlet criterion. Denote
Se=oquy + ...+ au,, s, =uF .U,
Then .
Sy= sy = ag) + ooy — o) + oo+ 5 11 — %)+ S,
If m = 1, then

wem—1
Spim— S, = Z Sk(o‘k — % n) F Syrm%tm ™ Sy s
R
|Su+m - S"; = [W( kz J“k - “Hx[ + i%l + |°‘u+mD -0
=n

as n — oo. It implies that S, converges. ]

Lemma 6.5. Let o, = (u + vw") b,, where u, v and w are complex numbers such
that |w| < 1. Then the series ) «, ¢ is convergent for 0 = Ae[—m, 7).
n=0

Proof. Let A # 0, 1 e [ —m, . Since
e

Xem = (et — 1) [ 07 ],

k=0

we have N

|5 e < 2fei — 11 = [sin (2/2)] "

k=0
Further

bo=1, by =(+8)bJn+1), b,— b= —23bjn+1)

and Ybn < o,
T Sl = ai] £ ] Slb — Buaa] + ol [y — whyo] o] =

< \u‘ (L= 8)Y(byn) + 2]u| Yiwlt < .
The assertion follows from Lemma 6.4. 0

Lemma 6.6. The series ) (—1)" b, " is convergent for A€ (—m, n).
n=0

Proof. If A = 0, then the assertion is obvious, since b, 0. Assume 2 + (. We have

lng‘o(_l)n ein}.’ - [(_e-i). — 1)—1 [(“‘I)N+1 ei{N+l)/1 —_ 1]| é

2+ e|! = |t/cos (2)] -

A



Further,
Siby = busy| = (1 = 8) Ybof(n + 1) £ (1 = 8) Ybofn < 0.

Now, we apply Lemma 6.4. [

Lemma 6.7. Let p be a finite measure. Let f, f,, ... be a sequence of measurable
functions. If there exist functions f and g such that

fu—f ae [p] and {[f, —g[*dp -0,
then f = ga.e. [u].
Proof. The assumptions ensure that f,-%. f, f, “»g. This implies f = g a.e. [u]. O

o@D
Lemma 6.8. Let a series . q,1" ¢ = ¢(r ¢™*) converge for r € [0, 1). If the series

e n=0

> a, ei"* converges, then
n=0
w

Y g, € = lim o(r ™).
[ re1-

n=

The proof follows from the Abel theorem (cf. [3], p. 470).

Lemma 6.9 (generalized P. du Bois Reymond’s theorem). If f is absolutely integrable
on [—m, ] and if

o0

(6.3) f(x) = ag + ¥ (a,cos nx + b, sin nx)

1

n=

holds everywhere on [ —m, ] except, maybe, for a finite number of points x, then
the series (6.3) is also the Fourier series of the function f.

Proof. See [3], Section 751, p. 626. O
Lemma 6.10. Let f, ¢ € L,[ —x, n]. If each term of the Fourier series of the function
f is multiplied by ¢ and integrated over [ —m, «t], then the sum of these integrals is

equal to [T, fp. The assertion remains also valid in the case when f is absolutely
integrable on [ —x, n] and ¢ has bounded variation.

Proof. See [3], Section 737, p. 590. O

Lemma 6.11. Let f, ¢ € L, [ —x, n]. Then the Fourier coefficients of the function
fo are given by formal multiplication of the Fourier series of f and ¢.

Proof. See [3], Section 738, p. 592. ml

Lemma 6.12. A 2 x 2 matrix A has eigenvalues 1; = 1, = 1 if and only if
, 1+t b
. A=

(6 4) ( c 1- t)

where ¢, b, ¢ are arbitrary real numbers satisfying t* + be = 0.



Proof. Let
ab
A=(0)
has eigenvalues 1, = 4, = 1. Since [Al = Ay, TrA =4 + A,, we obtain ad —
~be=1,a+ d =2 If we write a in the form a =1 + ¢, then d =1 — ¢ and
from the first equation we get t* + be = 0.
On the other hand, if A has the form (6.4) and 1> + bc = 0, then (1.3) implies
Ay =4, =1 O

Lemma 6.13. A 2 x 2 matrix A has eigenvalues A, = A, = —1 if and only if

A:(~1+t b )
c -1 -t

where 1, b, ¢ are arbitrary real numbers satisfying t> + bc = 0.
The proof is analogous to that of Lemma 6.12. O

(Received July 2, 1987.)
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