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K Y B E R N E T I K A - V O L U M E 24 (1988), N U M B E R 1  

TWO-DIMENSIONAL LONG MEMORY MODELS 

JIŘÍ ANDĚL, MAŘÍ A GÓMEZ 

FE Шi 
'M ÍШJ^ 

Two-dimensional long memory time series models are defined and investigated. Their co-
variance function and matrix of spectral densities are derived and the corresponding AR(oo) 
and MA(co) representations are given. 

1. INTRODUCTION 

Let Xt be a one-dimensional stationary time series with a covariance function R(t) 

and a spectral density j(A). In some applications, especially in hydrology, j(A) 

exhibits a high peak at A = 0. To describe properly this phenomenon, some models 

were proposed in which j(A) -» GO as A -» 0. One of the simplest models of this 

kind is 

(1.1) (l-B)sXt = at, 

where &t is a white noise, B is the back-shift operator and 5 e (0, i ) . This process 
Xt is called the fractionally differenced white noise (FDWN). If Be, = 0 and var e, = 
= o-2, then the spectral density of X, is 

j(A) = (27r)- 1a 2[4sin 2(A/2)]^ 

and the covariance function is 

R(t) = ( - 1 ) ' <r 2r(l - 25)j\T(t + 1 - 5)T(-t + 1 - 3)] . 

Since £ |R( t) | = °o, Xt is called a process with long memory. This definition was 
proposed by McLeod and Hipel [7]. On the other hand, it is known that the co-
variance function R(t) of any stationary ARM A process satisfies £ |R( t) | < oo and 
thus stationary ARMA processes are processes with short memory. 

An introduction to long memory time series models is published by Granger 
and Joyeux [5]. Hosking [6] derives formulas for the spectral density and the co-
variance function. Geweke and Porter-Hudak [4] deal also with the problem of 



estimating parameters in long memory models. Andel [ l ] presents a survey of results 
and methods which concern the long memory models. In his paper also other relevant 
references to this subject can be found. 

The model (1.1) can be generalized to p dimensions as follows. Let s, be a p-
dimensional white noise with Eet = 0, var st = V. Let A be a p x p matrix with 
eigenvalues Xt, ..., Ap. Assume that |A,-| <. 1 for all j and that the equality holds for 
at least one./. Then a p-dimensional process X, satisfying 

(1.2) (/ - ABf Xt = s,, 0<d<i, 

can be considered as a p-dimensional generalization of the FDWN. However, 
a deeper analysis of the model is necessary because the conditions mentioned above 
do not guarantee the existence of the process Xt in (1.2). This will be shown in Sections 
3 and 4. 

Generally, a p-dimensional stationary process X, with a covariance function 
R(t) = (RJk(t))1k=1 will be called a long memory process, if 

i f fwoi-». 
» j = i k=i 

If the sum is finite, Xt will be called a process with short memory. 
In this paper we investigate the model (1.2) when p — 2. The eigenvalues Xu k2 

of the matrix 

A = 

are the roots of the equation 

(1.3) A2 - (an + a22)X + alta22 - a12a21 = 0 . 

The following cases will be considered: 

a. Xt = 1, A 2 e [ - l , l ) . 
b. At = A2 = 1. 
c. Xt — X2 = — 1. 
d. Xt = eim, A2 = e""1", co e (0, n). 

In the paper we do not study the problem of estimating parameters. Since the 
elements of the matrix of spectral densities are not bounded, the procedure proposed 
by Dunsmuir and Hannan [2] is not applicable. This point would need a special 
research. 

2. CASE A, = 1, A 2 e [ - 1 , 1) 

In this section we denote w = A2. 

Lemma 2.1. Let z #= 1. If w + 0 then let also z 4= 1/w. Then for any real n 

(1 - zAf = (1 - w)"1 [(1 - zf (A - wl) + (l- wz)" (I - A)] . 
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Proof. If z = 0, then the assertion clearly holds. Assume that z + 0. Let ^ I * M2 
be the eigenvalues of the matrix / — zA. Since 

| l - z . 4 - ^ | - = ( - z ) 2 | A - [ ( l - A i ) / - ] l | 

and the eigenvalues of A are 1 and vv, we have (1 — \xx)\z — 1, (l — /t2)/z ~ w-
From here /.x = 1 — z, fi2 = 1 — vvz. Since /.^ + /<2, it holds 

(2.1) (' - zAf - /,-Zi + /4Z2 , 

where Zx and Z2 are the components of the matrix / — zA. Choosing n = 0 and 
n = 1 we get the equations 

Z1+ Z2 = l. 

(1 - z) Z, + (1 - vvz) Z2 = / - zA 
Thus 

Z. = (1 - vv)-1 (A - w/), Z2 = (1 - w)-1 (/ - A) 

and the assertion follows from (2.1). • 

Lemma 2.2. Let \z\ < \ and «5e(0,f). Then 

( Z - z A ) - * = f> , .C ,z ' \ ( / - zA)* = f > , C , z J \ 
j=o ;=o 

where 

C,. = (1 - w)-1 [A - vv/ + (/ - A) vvJ] , j = 0, 1, ... 

and the coefficients a,, &j- are defined in Lemma 6.1. 

Proof. The assertion follows from Theorem 2.1 and Lemma 6.1. • 

Theorem 2.3. The MA(co) representation of the process X, is 

(2.2) X, = £ bjCjB,^ 
J = o 

and the AR(oo) representation of X, is 

(2.3) £ ajCjXt^ = s,. 
J = 0 

Proof. From (1.2) we have 

X, = (/ - AB)-'«, = £ bjCjSt_j. 
J = 0 

It can be shown that there exists a constant M > 0 such that Tr C'JCJV < M for all j 
(the symbol' denotes the transposition). Since Y_fr2. < 00, it follows from Lemma 6.2 
that the series Y.bjCjet-j converges in the quadratic mean. 

Formula (2.3) follows immediately from (1.2). The convergence in the quadratic 
mean of the series (2.3) is ensured by Lemma 6.3. • 



Theorem 2.4. The process X, possesses the matrix of spectral densities 

(2.4) f(X) = (27I)"1 (1 - w)-~ [|1 - e-u\-"Gl + |l - w e - i A | - 2 a G 2 + 

+ (1 - e- i A)-*(l - w e u ) - j G 3 + (1 - w e - u ) - ^ ( l - e " ) - 'G j ] , 
where 

GX = (A- wl) V(A' - wl), G2 = (l - A) V(l - A'), 

G3 = (A - wl) V(l - A'). 

Proof. The white noise s, has the spectral decomposition 

g, = J*!,. e i ,AdZ(A), 

where Z(-) is a random measure satisfying 

EdZ(A)dZ*(A) = ( 2 K ) - 1 VdA 

(* denotes transposition and complex conjugation). From (2.2) we have 
N JV 

X, = l.i.m. X bjCj8t_j = l.i.ra. J_„ £ &_-Cy e
1 ^ " ^ dZ(A). 

N-*oo/=0 N->°o j = 0 

Since X&,-C,_.__; converges in the quadratic mean, the series Yfifij e i ( f- j )A converges 
in the quadratic mean with respect to ( 2 K ) - 1 V. If A 4= 0, A 4= ± K , then Lemmas 
6.5, 6.6 and 6.8 ensure that 

lim 2>.-C_.e-! jA = (/ - e - u A ) - « . 
JV-a> J = 0 

From Lemma 6.7 we get 

X, - f-„e i tA(. - e - u A ) - 3 d Z ( A ) . 

The covariance function of the process X. is 

R(t) = EX.X* = ( 2 K ) " 1 f_.ei<A(7 - e ~ u A ) ^ V[(l - e - i A A)-^]* dA . 

It implies that 
f(A) = ( 2 K ) - 1 (/ - e~[XA)-» V[(l - e- iAA)~5]* . 

Using Lemma 2.1 we get the assertion. • 

Consider the covariance function R(t). Since R(-t) = R*(t), it suffices to assume 
t _>0. 

Theorem 2.5. If f __ 0, then 

R(t) = (1 - w)"2 [(tbkbt+k)Gi + ( w ' £ bkbt+y)G2 + 
k = 0 fc=0 

+ ( I bkbt+kw
k) G3 + (w( f. 6sft,„*-) G3] . 

k = 0 k=0 

Proof. The covariance function R(() can be calculated from 

R(0 = r-*ei,Af(A)dA. 
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Theorem 2.4 yields 

R(t) = ( 2 K ) - 1 (1 - w ) ' 2 (J.G. + J2G2 + J3G3 + J4G3) , 

where 

J . = f R e i a | l - e - u | - w d A , J 2 - f _ n e " A | l - we" i A | - 2 d dA, 

J 3 = f - n e i ' A ( l - e~ix)~s(l - weiX)~sdX, 

J4 = f „e"A(l - w e'iX)~d (1 - eiA)-^ dX . 

For example, consider J?. From Lemmas 6.1, 6.5, 6.6 and 6.8 (see the Appendix) 
we have 

(2.5) (1 - w e~iX)~d = f bjW
J e~ijX , 

J = O 

(2.6) (1 - weu)-'5 = f bkw
kem. 

k = 0 

The series converge for all Xe(-n, n). Since the functions (1 - we~iX)~s and 
(1 — w &lX)~s are absolutely integrable, the series (2.5) and (2.6) are their Fourier 
series (see Lemma 6.9). Using Lemma 6.H we obtain the Fourier series of the func­
tion 

(1 - we~iX)~ö(l - w e u ) - á = li - w e 
- І A I - 2 Í 

in the form 

Y, by e~iJX V bkw
k eikX = £ £ bubs+uw

s+2u e M . 
j = 0 k = 0 s = - c o u = max(0 , -s ) 

According to Lemma 6.10 we have for t ^ 0 

f _e"A|l - we~iX\~23dX = 2nwtfjbkb,+kw
2k. 

/c = 0 

All the other integrals Jx, J3 and JA can be calculated in the same way. • 

The authors know an explicit formula only for J1. Using the method described 
by Andel [1], pp. 106-107 one gets 

Ji = 2 JSCOS a (4 sin2 (_A))~5 dX = 4 f/2 cos 2tx (4 sin2 x)~5 dx = 

= (~i)'27tr(i - 2<5)/[r(* + 1 - s)r(-< + 1 - _)] . 

The values of J2, J3 and J 4 must be calculated either by numerical integration or 
by help of the series given in Theorem 2.5. If w is not near to + 1 , then the con­
vergence of the series is rather fast. 

Theorem 2.6. If AV + wV, then Xt is a long memory process. 

Proof. The spectral density f(X) from Theorem 2.4 can be also written in the form 

f(X) = (27I)-1 (1 - w)-2 |1 - e ~ u | - 2 a [Gj + |1 - e- iA |23 |l - w e - u | - 2 5 G 2 + 

+ (1 - e u ) a ( l - woiX)~dG3 + (1 - e- iA)*(l - w e " u ) - 5 G 3 ] . 



It is clear that f(X) is not bounded in the neighbourhood of the origin, if 6\ =t= 0. 

It means that G t =(= 0 implies Z Z LI-*/*(*)I = ^ otherwise f(X) would be continuous 
t j k 

and therefore bounded on [—n, n] . But G t = 0 if and only if (A - wl) V = 0. Q 

Example. Let 

The matrix A has eigenvalues 1 and 0-5. Further, 

1 
Z l бli i z, = 

1 - 5 

6 V - 1 

61=-
25 5 

5 1 

29 1 - 1 

- 1 1 
Gз = 

48 

- 1 5 15 

- 3 3 

T h e process X, = (/ — A B ) - 0 ' 4 s, has long memory . I ts spectral density is 

given by the formula (2.4). The spectral densities / U ( A ) , L^W, coherence a n d phase 

d iagrams are p lo t ted in Fig. 1—4, respectively. F r o m this example we c a n see t h a t 

t h e m o d e l could be suitable for such two-dimensional t ime series, where the spectral 

3 тr 

Fig. 1. Spectral density/ u(A). 
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Fig. 2, Spectral density f22(X). 
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Fig. 3. Coherence diagram. 
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Fig. 4. Phase diagram. 

densities/U(A) and/ 2 2 (A) are not bounded in the neighbourhood of A = 0. Such 

situations occur in hydrology, for example (see [4]). 

3. CASE A. = A2 = 1 

Lemma 3.1. Let z 4= 1. Then for any real n 

(I - zA)" = (1 - zf I + »(1 - z)"-1 z(. - A). 

Proof. The matrix / - zA has eigenvalues /it = fi2 = 1 - z. Thus according 
to the Perron formula 

(I - zA)» = (I - z)" Z, + n(l - zf-' Z2 , 

where Z1 = /, Z 2 = z(l - A). • 
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Lemma 3.2. If \z\ < 1 and 5 e (0, £), then 

(/-zA)- = f [ / -y ( / -A) ]^ ' . 
7 = 0 

Proof. The assertion follows from Lemma 3.1, since 

(1 - _ ) - ' = IbjzJ , 5(1 - z)-*-i = S J V " 1 • • 

Theorem 3.3. The process X( = (/ - AB)~d st exists if and only if 

(3.1) T r ( 2 / - A - A')y = 0 , Tr (/ - A') (I - A) V = 0 . 

If the conditions (3.1) are fulfilled, then 

(3.2) X. = H'~j(/-A)]_,8(_,. 
7 = 0 

Proof. In view of Lemma 3.2 the process Xt must have form (3.2). But according 
to Lemma 6.2 the series (3.2) converges in the quadratic mean if and only if 

(3.3) £ b) Tr [/ - ;( / - A')] [/ - j(l - A)] V < oo . 
7 = 0 

Since 
_j~[i/rt-)]/"-», 

the series (3.3) converges if and only if the coefficients by j and by j 2 are zeros. • 

The general form of the matrix A is given in Lemma 6.12. Thus it is possible to 
investigate in which cases (3+) holds. Because it is clear that the existence of Xt 

is ensured only in very special cases, we do not describe further details here. 

4. CASE A. - Xz = - 1 

All the derivations are quite analogous to those given in Section 3 and so we 
present only the results. 

Lemma 4.1. Let z +• — 1. Then for any real n 

(I - zA)n = (1 + z)" I -n(l + z)"-1 z(/ + A). 

Lemma 4.2. If \z\ < 1 and 5 e (0, i ) , then 

(/-zAr = £(-iy[/-X' + A)]fe,z'. 
7 = 0 

Theorem 4.3. The process Xt = (I — A~-)~s st exists if and only if 

Tr(2/ + A + A') V = 0 , Tr (/ + A') (/ + A) V = 0 . 

If these conditions are fulfilled, then 

Xt = i(-iy[l-j(l + A)-]bjet_j. 
7 = 0 



Let us remark that the general form of the matrix A with eigenvalues At = l2 = 
= — 1 is given in Lemma 6.13. 

5. CASE A. = eiro, A2 = e_iro, co e (0, JC) 

This case is analogous to that investigated in Section 2 and so we do not introduce 
all the details in the proofs. 

Lemma 5.1. If z + ei<0, z + e _ i a \ then for any real n 

(I - ZA)" = i(2 sin co)-1 [(1 - zeiw)" (e~ial - A) + 

+ (1 - z e - i w ) " ( A - e i r a / ) ] . 

Proof. The matrix / - zA has eigenvalues 1 - z e"° and 1 - z e " t o , The com­
ponents of / — zA are 

Zx = i(2 sin co)~x (e~Uol -A), Z2 = i(2 sin co)~' (A - ei<0/). • 

Lemma 5.2. Let \z\ < 1, 5 e (0, i ) . Then 

(/ - zA) - 5 = (sin coy1 £ [sin j'coA - sin (j - l) co/] b,-zJ . 
j = 0 

Proof. From Lemma 5.1 and from Lemma 6.1 we have 

(/ - zA)~s = i(2 sin co)"1 f bjCjZ
J, 

y = o 
where 

C, = e i j ra(e-
i ra/ - A) + e-

ij'ro(A - e i ra/). 

Rearranging the terms we obtain the assertion. • 

Theorem 5.3. The MA(oo) representation of the process Xt is 
00 

Xt = (sin co)'1 £ [sin jcoA — sin (j - 1) co/] 6,-e._y. 
j = o 

The AR(oo) representation of X, is 

(sin co)-1 £ [sin y'coA — sin (y — l) co/] ajXt_j = s , . 
J' = 0 

The proof is analogous to that of Theorem 2.3. ~~ 

Theorem 5.4. The process X, possesses the matrix of spectral densities 

f(X) = (8JI sin2 co)"1 {[2 - 2 cos (A - co)ys G. + [2 - 2 cos (A + co)]"* G2 + 

+ [1 - 2eiracosA + e 2 i - ] " s G 3 + [1 - 2 e"1" cos A + e~2i°>ysGt} , 
where 

Gi = (e" iw/ - A) V(e'»/ - A'), G2 = (A - eiM/) V(A' - e~ i w/), 

G3 = ( e - i m / - A ) V ( A ' - e - i M / ) . 



Proof. In the same way as in the proof of Theorem 2.4 we obtain 

f(X) = (STrsin2^)-1 [(1 - e i ( ra~A))-5(l - e ^ - ^ - ' G . + 

+ (t _ B-«(-+»))- ' ( l - ^X+^)~SG2 + 

+ (1 - e i ( u - A ) ) - * ( l - e i a + r a V G 3 + 

+ (1 _ e - i (*+«)) -«( 1 - e ' W — ) ) - ' G * ] . 

After a simple calculation we get the formula introduced in Theorem 5.4. • 

Let us remark that applying the procedure introduced in the proof of Theorem 
2.4 we can derive an alternative expression 

f(X) = (2TT sin2 co)-1 f £ Kbk+Sx 
s=-m fc = max(0,-S ) 

x [sin (fc + s) coA - sin (fc + s — 1) co/] V[sin kcoA' — sin (fc - 1) coQ e ' i s A . 

Theorem 5.5. If t ^ 0 then the co variance function is 

R(t) = (4 sin2 co)'" (-1)' [e i t o f ( - if bkbt+kG, + 
k = 0 

+ e - i t o f ( -1)* bkbt+kG2 + eitra f ( -1 ) " bkbt+k e 2 i t o G 3 + 
k=0 k = 0 

+ e-
i-f(-l)^A+fce-2itoG3*]. 

t = o 

Proof. The formula can be proved in the same way as Theorem 2.5. • 

Theorem 5.6. If Gx 4= 0, then X, is a long memory process. 

The proof is analogous to that of Theorem 2.6. • 

Example. Let V = / and 

-(4i 
The eigenvalues of A are Xt = e"°, X2 = e ltu, where co = Jt/3. After some computa­
tions we get 

< - . = Ï ( I - cos co i — \ cos co - i \ sin co\ 

ì - \ cos co + i \ sin co f l - cos co ) ' 

G3 = /— J + cos co — cos 2co + i(sin 2co — sin co) 

- 8 + i cos co - 1 i sin co 

— 8 + i c o s co — i i sin co \ 
- | | + cos co — cos 2co + i(sin 2co — sin co)) ' 

The spectral densities fu(X), f22(X), coherence and phase diagrams for & — 0-4 
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Fig. 5. Spectral density fu (X). 
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Fig. 6. Spectral density/2 2(i) . 
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Fig. 7. Coherence diagram. 
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-ф\ Fig. 8. Phase diagram. 

are plotted in Figs. 5 — 8, respectively. The spectral densities fx .(A) and /22(A) a r e very 
similar to the spectral density of a one-dimensional seasonal persistent process 

[ ( l - e n j f l - e ^ B f f X , ^ , 

(cf. Andel [1], p. 114). It seems that the models of this kind are suitable for describing 
the time series which exhibit some seasonal behaviour corresponding to the frequen­
c y CO. 

6. APPENDIX 

Lemma 6.1. Let 5 e ( - ^ , ^) and \z\ < 1. Then 

(l--)' = f V , (l-zY> = W, 
]=o ]=0 

where 

0j = T(j - s)/[r(-s)r(j + 1)] = (j - 1 - S)(j - 2 -. S)... (1 - 8) (~5)lJl, 

bj = T(j + 8)IU(5) T(j + i)-]-(j-i + 5)(j-2 + 5)...(l + 8) Sjjl . 

If j ->• oo, then 

j^aj_>1jr{_§)> ; i - ^ _ , 1 / r ( 5 ) . 

Proof. The assertions follow from the Maclaurin formula and from the Stirling 
formula. • 

Lemma 6.2. Let e, be uncorrected p-dimensional random vectors such that 

E e, — 0, var st = V. Let Dj be p x p matrices. Then the series £ DjSt-j converges 
in the quadratic mean if and only if •'=0 

(6.1) 

12 

£ Tr D'JDJV < oo . 
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Proof. Let 
N 

S„ = __ D,£,_, 

and let m k 1. Then 

E(Sw+m - Sw)' (SN+m - SN) = "£'" Y Es't_jD'jDkst_k = 
j=iV+lk=N+l 

N+m N+m N+m 

= I I TrD;.D,E8 (_ fcg;_,= £ Tr D;.D,Vt. 
J - J V + 1 t = JV+l j = iV+l 

From here it is clear that SN has a limit in the quadratic mean if and only if (6.1) 
holds. • 

Lemma 6.3. Let X, be a p-dimensional stationary process with EX( = 0, var D( = 
= W. Let F, be. p x p matrices. If 

(6.2) Z(тr 
j—o 

FJFJW)1'2 < 00 , 

then the series 00 

J = 0 

converges in the quadratic mean. 

Proof. Let 
S N : 

N 

and let m _î 1. Then 
N + m N + 

£(SN+m-sN)'(sN+m-sN)= x x EX;_/;F_X,__ . 
j = iV+l k = N+l 

Define 
y = (y.,..., Ypy = F,X(_, , z = (z.,..., z,y = F„X,_*. 

Then 

|Ey'Z| g f E|Y;Z;| < £ (EY2 EZ?)1/2 _. 
; = i ; = i 

< £ (Eyy EZ'Z)1'2 = p(Tr F;F,W Tr F'kFkwy'2. 
1 = 1 

Thus 

E(Siv+m - SN)' (SN+m -SN)^p *£" *£" (Tr F'JFJW JvF'kFkWf'2 = 
j = i V + l fc = JV+- 1 

- K Em(Tr F;F,wy/2]2 . 
J=N+1 

If (6.2) holds, then Sjy is a Cauchy sequence and thus it converges in the quadratic 
mean. • 

Lemma 6.4. Let u„ and <x„ be sequences of complex numbers such that the following 
conditions are fulfilled: 
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(a) There exists a constant M > 0 such that \u_ + ... + uN\ ^ M for all N = 
= 1,2,... 

(b) a„ -> 0. 

(c) L la„ - a „+i | < °°-
» = 0 

Then the series a_Ui + a2w2 + ... is convergent. 

Proof. The proof is analogous to that of the Dirichlet criterion. Denote 
S„ = a._u_ + ... + a„u„, s„ — u_ + ... + u„. 

Then 
S„ = s_(a_ - a2) + s2(a2 - a3) + ... + s„_1(a„_1 - a„) + s„a„. 

If m <> 1, then 
n + m-l 

• S„ + m - S„ = __] sk(ak - a/c+1) + s„ + ,„a„ + „, - s„a„ , 
k = n 

n+m-l 

|S„+,„ - S„| <. M( X |«fc -
 a * + i | + ja„| + K + m|) -> 0 

as n -* oo. It implies that S„ converges. • 

Lemma 6.5. Let a„ = (w + vw") b,„ where «, v and w are complex numbers such 
that |vvj < 1. Then the series __] a„ e'"1 is convergent for 0 +- A e [—n, it], 

„ = o 
Proof. Let X + 0, X e [-TC, Jt]. Since 

X eiAA = (eiA- l ) " 1 [ e ' ^ + D - - l ] , 
k = 0 

we have N 

j £ e , u | < j 2 | e u - l l" 1 = Jsin (A/2)!-1 . 
* = 0 

Further 
b0 = 1 , &B+1 = (n + 5) b„/(n + 1), 6. - b„+1 = (1 - 5) b„j(n + 1) 

and v , 
2J>njn < °° • 

£|a„ - «„+1 | < |ti| Yp„ - b„ + 1\ + \v\ 2_\b„ - wb„+1\ \\v\" < 

= |"| (l ~ 5) LWn) + 2H L>|" < °° • 
The assertion follows from Lemma 6.4. • 

Lemma 6.6. The series __] (~ 0" «̂ el";' 1S convergent for A e ( — TC, re). 
„ = o 

Proof. If A = 0, then the assertion is obvious, since b„\0. Assume A 4= 0. We have 

| £ ( - l ) " e i n A | = | ( - e " u - L T ^ - l f + V ^ 1 ^ - 1]| g 
n = 0 

g 2 | l + e u | " 1 = | l /cos( / /2) | . 
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Further, 
l\b„ - bn + 1\ = (1 - 8) Zb,J(n + 1) ^ (1 - 8) Jb„jn < oo . 

Now, we apply Lemma 6.4. • 

Lemma 6.7. Let / i b e a finite measure. L e t / x , / 2 , ... be a sequence of measurable 
functions. If there exist functions / and g such that 

/„ - * / a.e. |>] and J"|/„ - g\2 d/t - 0 , 

then / = g a.e. [/x]. 

Proof. The assumptions ensure thatj„-^j ,j„-^+#. This implies/ = g a.e. [/.]. • 

Lemma 6.8. Let a series £ qnr" e'"x = (p(r e'x) converge for r e [0, l). If the series 
CD 11 = 0 

Y_ qn e'"x converges, then 
n = 0 

£ <!„ e'"* = lim cp(r e'x) . 
n = 0 r - » l -

The proof follows from the Abel theorem (cf. [3], p. 470). 

Lemma 6.9 (generalized P. du Bois Reymond's theorem). If / is absolutely integrable 
on [ — 7t, jr] and if 

(6.3) f(x) = fl0 + Z ian cos nx + bn sin nx) 

holds everywhere on [—it, JI] except, maybe, for a finite number of points x, then 
the series (6.3) is also the Fourier series of the function / . 

Proof. See [3], Section 751, p. 626. • 

Lemma 6.10. Let/, <p e L2[ — n, n] . If each term of the Fourier series of the function 
/ is multiplied by cp and integrated over [ — it, jc], then the sum of these integrals is 
equal to j'L^fcp. The assertion remains also valid in the case w h e n / is absolutely 
integrable on [-71, TT] and <p has bounded variation. 

Proof. See [3], Section 737, p. 590. • 

Lemma 6.11. Le t / , cp e L2 [ —7t, re]. Then the Fourier coefficients of the function 
ftp are given by formal multiplication of the Fourier series of/ and cp. 

Proof. See [3], Section 738, p. 592. • 

Lemma 6.12. A 2 x 2 matrix A has eigenvalues Xt = A2 = 1 if and only if 

1 + t b 
(6.4) A = . 

c I - t 
where t, b, c are arbitrary real numbers satisfying t2 + be — 0. 



Proof. Let 
(a b 

A = ' c d 

has eigenvalues Xx = X2 = 1- Since \A\ = XtX2, Tr A = A. + A2, we obtain ad — 

— fee = 1, a + d = 2. If we write a in the form a = 1 + t, then d = 1 - f and 

from the first equation we get t2 + be = 0. 

On the other hand, if A has the form (6.4) and t2 + be = 0, then (1.3) implies 

Ai = A2 = 1. • 

Lemma 6.13. A 2 x 2 matrix A has eigenvalues At = A2 = — 1 if and only if 

A = ("?'-/-,) 
where r, b, c are arbitrary real numbers satisfying t2 + be = 0. 

The proof is analogous to that of Lemma 6.12. • 

(Received July 2, 1987.) 
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