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KYBERNETIKA CISLO 4, ROCNIK 4/1968

Adaptive Closed Loop Control of Some
Special Plants by means of the Gradient
Model - without Plant Identification

JAROSLAV MARSiK

In some special cases, if the cascade control is applicable, it is possible to design an adaptive
closed loop control circuit using the gradient model, without special test signals and plant iden-
tification. Instead of the plant model directly a part of the real plant can be used.

1. INTRODUCTION

Recently, the gradient model (or sensitivity model, respectivcly) found many
applications in the domain of adaptive circuits. However, some difficulties with the
realization can arise, if it is used in any closed loop control circuit with an unknown
plant. In such cases, the plant transfer function must be identified to enable the
modelling of the gradient. For this purpose, first the plant model must be found
(what may be done by means of the gradient model method again). Therefore the
complete system will be very complicated.

In [1] a simple device is described which solves the problem of identification
and adaptive control in a closed loop simultaneously, using one model only. In some
special cases, however, the identification problem can be avoided (generally, it is
possible in open loop circuits only — cf. [2]).

The aim of this paper is to show when and how it may be done.
2. GENERAL PRINCIPLE OF THE ADAPTIVE CIRCUIT

The controller parameters are adjusted automatically to achieve the conditions
of an optimal performance. We will take notice of the simplest performance criterion
the mean square error. The error is minimized by means of the gradient method
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according to equations (in the time domain):

(1) %= —M(p2=—2li<p?—¢ (lli:1,2,3,...),
dt 50(,- ot

where we denote by «; the controller parameters, by ¢ the control error, and by 4,
the proportionality constant.

In accordance with Fig. 1 we have (in the Laplace transform notation)

DP
@) 017,
1+ PC
where: D is the input disturbance, P is the plant transfer function, C is the controller
transfer function, and W is the reference signal.

The variable controller parameters o; are regarded as constants, of course, there-
fore they must change rather slowly as compared with the system response (other-
wise the gradient would be wrong). Then, the components of the gradient model are
obtained by differentiation of the Eq. (2) with respect to the corresponding parame-
ters o;:

P DP + W _oC
® ©-

o, (1+PCP o

Making use of (2) one may write:

0P dP 0OC
@ L X
ot 1+ PC 0x;

Eq. (4) shows that the gradient model is, in fact, the model of the control loop with
the control error @ at its input, completed by 8C/da; at the output (see Fig. 1a).

The terms 0C, /aa,- need not be simulated separately, for they can be taken from the
controller itself, as can readily be demonstrated on a P—1—D controller:

(5) - C=o, +22 +ayp.
p
From (5) it follows:

©

(see also Fig. 1b).

From Fig. 1 we see that the complete adaptive control system is not too complicated
if the plant model is known. (Otherwise it is not worth while- there exist simpler
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methods, for example [1], [2]). As mentioned above there, are some special cases,
when the identification is not necessary even if the plant model is not known. In
this cases, the control system can be divided into two identical parts in a cascade, the
second part performing the desirable function of the model besides the normal con-

trol action.

Fig. 1a.
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3. THE CASCADE CONTROL

In practice, the cascade control — if applicable at all — is often the only effective
method to overcome poor dynamic properties of a plant. For instance in the chemical
industry, there are many cases, such as concentration or temperature control of fluids,
where this way is available. As a further example can serve the steam superheater
control in any power station; the superheater is divided into two or more sections
in series, each of them being controlled separately.

First stage Second stage

w2

Fig. 2.

For utilizing the cascade in the adaptive circuit the following conditions must be
fulfilled:

Two stages of the cascade must be identical (the sccond stage being model of the
first one).

The plant and the controller must be linear, the incidental changes of the plant
parameters being sufficiently slow.

To prevent the instability, the selfadjustment of the controller parameters must
be slow, too.

Inner disturbances of the second stage must be either negligible or uncorrelated
with those of the first stage.

The general view of such an adaptive system, is shown in Fig. 2. It is easy to see
that this system differs only slightly from that shown in Fig. 1.

If the reference values W; and W, were zero then Fig. 2 and Fig. 1 were identical.
Nevertheless, the identity can also be achieved if those values are constant, the con-
troller having an integrating component. Thus, the mean value of both control
deviations is zero too as if W, and W, were zero.



It must be stated here that only the parameters of the first stage are adjusted to
optimal values according to the given performance criterion.

Due to the fact that the input signal of the second stage has another character
than that of the first one, the parameters of the second stage ought to be somewhat
different.

Nevertheless, it does not matter — the adaptability is conserved even though not
optimal for both stages.

1 2

Xk+1

> b,

Fig. 3.

Generally, the cascade could be extended to three or more stages, the scheme being
analogous. One additional stage only for modelling the gradient is necessary.
For (k + 1) stages we have (see Fig. 3)

DP*
7 ¢ =
@ (1 + PC)
k+ 1
) @ _ _p PT_¢
oa, (L + P Gn

Using (7) and (8) we may write
©) LA P 4

o 1 + PC o4,

what corresponds, in fact, to Eq. (4) (the difference consisting in the constant k only);
k stages are optimized, the (k + 1)** stage working as the “model”.

As mentioned above, the adjustment of the parameters must be relatively slow
otherwise the adaptive loops become unstable (as consequence of the incorrect
gradient).
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4. CONCLUSION

It has been shown that the cascade control is convenient for utilizing in a simple
adaptive circuit. Neither special test signals nor plant identification are necessary.

The basic condition of realizability is the division of the plant into two identical
stages, (or more), each of them being controlled by an identical controller. The last
stage represents the additional model which is necessary for simulation of the per-
formance-criterion gradient (merely one stage for an arbitrary number of preceding
stages is sufficient). It must be pointed out that the gradient of the performance
criterion is not valid in a rigorous mathematical sense, because the optimized con-
troller parameters cannot be constant.

Therefore the adjustment speed of these parameters ought to be low (the more
stages — the lower) for the sake of stability. It is evident that the adjustment equa-
tions are nonlinear (because of the adjusted parameters «; in the denominator of the
function 69/dx; sce Egs. (4) and (5)). For that reason, the occurrence of ambiguous
adjustments cannot be excluded and stability cannot be solved generally. As for noise
influence, it has been said that the noise in the last stage must be either negligible or
uncorrelated with the noise in the preceding stages.

This condition follows from Eq. (1):

o _ _ 220 % .
dt Oy

Integration of this equation yields
o= —2A4; | % dt
Jot
and analogous for the mean values:
o= — 2 goa—“’dt.
ooy

The noise of the last stage is comprised in 8¢[da; only so that the mean product
7/)(5?/5&:) does not depend on this noise (see also Fig. 3). Consequently, the steady-
state values of the parameters o; are independent of the noise in the last stage.

(Received January 2nd, 1968.)
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VYTAH

Adaptivni regulace nékterych specidlnich soustav pomoci modelu
gradientu — bez identifikace soustavy

JAROSLAV MARSiK

V nékterych specidlnich pfipadech, kdy miZeme pouzit kaskddové regulace, lze
navrhnout adaptivni regulacni obvod s modelem gradientu, a to bez zvldstniho
zkuSebniho signdlu a bez identifikace soustavy. Misto modelu soustavy mlZeme
pouzit pfimo Cdsti soustavy samé.

Tento zplsob je moZno aplikovat u soustav, které lze rozdélit na dva nebo vice
stejnych €ldnkd zapojenych za sebou, pfi¢emZ kaZdy Cldnek md i vlastni stejny
reguldtor.

Ing. Jaroslav Marsik, CSe., Ustav teorie informace a automatizace CSAV, Vysehradskd 49,
Praha 2.
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