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KYBERNETIKA- VOLUME 22 (1986), NUMBER 4 

A POLE ASSIGNMENT TECHNIQUE 
FOR MULTIVARIABLE SYSTEMS WITH INPUT DELAY 

M. RAZZAGHI 

A design procedure is established for pole allocation in linear multivariable systems with delay 
in control. A relationship is obtained which permits a straightforward calculation of the feedback 
matrix to attain prescribed closed-loop poles. An example illustrating the concept involved is 
included. 

1. INTRODUCTION 

The pole assignment method for non-delay multivariable systems has received 
a great deal of attention for designing feedback controllers to achieve desired objec­
tives [1], [2]. Suh and Bien [3] have considered a root locus technique for linear 
systems with time-delay. Here is an attempt to present a pole assignment method 
for multi-input systems with input delay. The single-input system with delay is first 
considered and the results are then extended to multi-input system using unity-rank 
state feedback matrices. 

2. SINGLE-INPUT SYSTEMS WITH INPUT DELAY 

Consider a controllable single-input system with input delay described by 

(1) x(t) = A x(t) + bu(t-a), 

where x is the n-state vector, u is the scalar input. A and b are constant n x n 
and n x 1 matrices, respectively, and a. is the constant delay. The transfer-function 
representation of (1) is given by 

x{ g(s)exp(-as) u{sh 

f(s) 
where g(s) = adj (si — A) b is the n x 1 non-delay numerator polynomial vector 
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and/(s) = \sl — A\ is the characteristic polynomial of the open-loop system. If state 
variable feedback u = v - kx, where v is the command input and k is the 1 x n 
state feedback vector, is now applied, the characteristic polynomial of the closed-loop 
system becomes 

H(s) = \sl - A + bexp(-as)k\ . 

It has been shown that [1], [2] 

(2) H(s) = \sl - A + Bk\ = \sl - A\ + k adj (si - A) B . 

On substituting B = b exp(-as) in (2), we obtain 

(3) H(s)=f(s) + kg(s)exp(-as). 

H(s) = 0 is a transcendental equation in s and may have an infinite number of roots. 
But it is known that the number of zeros of H(s), each of whose real part is greater 
than any given real number, is finite if g(s)jf(s) is strictly proper rational and all 
zeros of H(s) except some finite number around the origin lie in the left half of the 
s-plane [3], [4]. Thus only a finite number of roots near the origin need to be con­
sidered. Now for Xx, X2, ..., Xn to be roots of H(s), we require 

(4) H(Xt) = /(A,) + k g(Xi) exp ( - Xp) = 0 , i = 1, 2 , . . . , n . 

From (4) the n elements of the state feedback vector k which positions the n roots 
at X!,..., A, can be found. 

3. MULTI-INPUT SYSTEMS WITH DELAY 

Consider a cyclic and controllable multi-input system with delay in control 
described by 

(5) x = A x(t) + B u(t - a) , 

where x is the n x 1 state vector, u is the m x 1 control vector, A and B are con­
stant matrices of appropriate dimensions, and a is a constant delay. Taking the Lap­
lace transform from (5) we obtain 

s X(s) = A X(s) + B exp ( -as ) U(s). 
Hence 

X(s) = [si - A]"1 Eexp(-as) U(s) = <jj& U(s) , 
F(s) 

where G(s) = adj [si — A] B exp ( — as) is the n x m numerator polynomial matrix 
and F(s) = \sl — A| is the open-loop characteristic polynomial. 

On applying state feedback u = v — Kx, where v is the m x 1 command input 
vector and K is the m x n state feedback matrix, the closed-loop system matrix 
becomes 

Ac = A - Bexp(-as)K. 
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The design problem is to determine the state feedback matrix K such that the closed-

loop system matrix Ac has n specified eigenvalues Xt,..., Xn. The closed-loop eigen­

values are roots of the characteristic polynomial 

(6) H(s) =\sl - A + Bexp(-as)K\ . 

The m x n state feedback matrices K considered in this paper are restricted to have 

unity-rank by predefining them in the dyadic structure K = qk, where q and k are 

m x 1 and 1 x n vectors, respectively. Under this restriction, (6) can be simplified 

to 

H(s) = \sl - A + B exp(-as) qk\ = \sl - A + btk\ , 

where bt = Bexp(-as) q is an n x 1 vector. The restriction of the m x n state 

feedback matrix K to have unity rank thus reduces the multi-input system to an 

'equivalent' single-input system. The design is now carried out as follows: 

(1) Choose an m x 1 vector q such that the equivalent single-input system (A, bt) 

is controllable. 

(2) Find the 1 x n state feedback vector k for this single-input system. 

(3) Calculate the m x n state feedback matrix K = qk for the multi-input system. 

A numerical example is now given for illustration. 

3.1. Example. Consider the system 

*-[;_.]*>+[;:;]•"-*»• 
ks 

=[?]• 
Find the unity-rank state feedback matrix K = qk to place two poles at - 2 , —3. 

On choosing q = I , the controllable equivalent single-input system becomes 

* = [І-ľ]< t) + џ(t - 0.1) , 

where ju is the scalar input for this system. We now find the state feedback vector k 

to place two poles of this system at — 1 , - 3 . The transfer function representation 

of the system is 

X(s) = [sl - A]'1 b exp (-as) n(s) 

=

 s rzip- !] e x p (- a i s )^-
On applying p = kx, the closed-loop characteristic polynomial becomes 

H(s) = s2 - 1 + kt(s + 1) exp (-0.1s) + k2(s - 1) exp (-0.1s) . 

To place the poles at —2, —3, we require 

H(-2) = 0 , 3 - exp (0.2) kt - 3 exp (0.2) k2 = 0 

H(-3) = 0 , 8 - 2 exp (0.3) kt - 4 exp (0.3) k2 = 0 . 
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The feedback gains kt and k2 are found to be 

fc. = - 6 e x p ( - 0 . 2 ) + 12exp(-0.3) 

k2= 3 e x p ( - 0 . 2 ) ~ 4 e x p ( - 0 . 3 ) . 

The feedback matrix for the multivariable system is 

-ч2ra-
4. CONCLUSION 

In this paper the pole assignment method for non-delay systems has been extended 

to linear multivariable systems with input delay. Further work on the extension to 

multivariable systems with delay in state and output feedback is presently under 

study. 
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